
1

StreamStor Real-Time Storage
Controller

SDK 9
User’s Guide

Copyright and Trademarks

The information in this document is subject to change without notice.

This document contains proprietary information that is protected by copyright.
All rights are reserved. No part of this document may be photocopied,
reproduced, or translated to another language without the prior written consent
of Conduant Corporation.

Printed in the United States.

© 2011 Conduant Corporation. All rights reserved.

StreamStor is a trademark of Conduant Corporation.

All other trademarks are the property of their respective owners.

Manual version: 9.72

Publication date: April 5, 2011

Table of Contents

Copyright and Trademarks... 3
License Agreement and Limited Warranty 9
Chapter 1 Introduction ... 11

The StreamStor Software Development Kit ..12
Installing the Software..12
Software Components..13

Device Driver ... 13
Windows Uninstall .. 13
Windows Configuration/Test Utility .. 14
Windows Fetch Utility ... 16
Windows Library... 18
Linux Uninstall .. 18
Linux Configuration/Test Utilities .. 19
Linux Library... 21
Data Structures.. 22

Chapter 2 Function Reference ... 23
XLRApiVersion...24
XLRAppend...25
XLRArmChannelForSync ...27
XLRArmFPDP..29
XLRBindInputChannel ..30
XLRBindOutputChannel...31
XLRCardReset...32
XLRClearChannels ...33
XLRClearOption...34
XLRClearWriteProtect ...35
XLRClose ...36
XLRDeleteAppend ...37
XLRDeviceFind ..39
XLRDismountBank..40
XLREdit ...41
XLREditData...43
XLRErase ...45
XLRGetBankStatus ..48
XLRGetBaseAddr...49
XLRGetBaseRange...50
XLRGetDBInfo ..51
XLRGetChassisType ..52
XLRGetDeviceInfo ..53
XLRGetDeviceStatus ...54
XLRGetDirectory ...55
XLRGetDriveInfo ..56
XLRGetDriveTemp ...57
XLRGetErrorMessage ...58
XLRGetEvents..59
XLRGetEventsLength ...61

6

XLRGetFIFOLength ...62
XLRGetLabel ..63
XLRGetLastError...64
XLRGetLength..65
XLRGetLengthLowHigh...66
XLRGetLengthPages..67
XLRGetMode..68
XLRGetOption ...69
XLRGetPartitionInfo ...70
XLRGetPlayBufferStatus...71
XLRGetPlayLength ..73
XLRGetRecordedChannelInfo...74
XLRGetSample ...75
XLRGetSFPDPInterfaceStatus ..76
XLRGetSystemAddr ..77
XLRGetUserDir..78
XLRGetUserDirLength ...80
XLRGetVersion ..81
XLRGetWrapLength..82
XLRGetWindowAddr..83
XLRMountBank..84
XLRNetOpen ..85
XLRNetCardReset ..87
XLROpen...89
XLRPartitionCreate ..90
XLRPartitionDelete ..92
XLRPartitionResize ..94
XLRPartitionSelect ...96
XLRPlayback ...97
XLRPlaybackLoop... 101
XLRPlayTrigger.. 103
XLRRead ... 105
XLRReadData .. 107
XLRReadFifo.. 108
XLRReadImmed .. 109
XLRReadSmartThresholds... 111
XLRReadSmartValues... 113
XLRReadStatus .. 115
XLRReadToPhy ... 117
XLRRecord ... 118
XLRRecoverData... 120
XLRReset .. 122
XLRRetrieveEvents ... 123
XLRSdkVersion ... 124
XLRSelectBank... 125
XLRSelectChannel ... 127
XLRSelfTest.. 128
XLRSetBankMode ... 130
XLRSetDBMode.. 132
XLRSetDriveStandbyMode.. 134
XLRSetLabel... 136
XLRSetMode .. 138

7

XLRSetOption.. 139
XLRSetPlaybackLength .. 141
XLRSetPortClock .. 143
XLRSetReadLimit .. 144
XLRSetSampleMode ... 145
XLRSetUserDir .. 147
XLRSetWriteProtect.. 149
XLRStop.. 151
XLRTruncate .. 152
XLRWrite .. 154
XLRWriteData.. 156
Structure S_BANKSTATUS.. 157
Structure S_DBINFO ... 159
Structure S_DEVINFO.. 160
Structure S_DEVSTATUS... 161
Structure S_DIR... 163
Structure S_DRIVEINFO ... 164
Structure S_EVENTS ... 165
Structure S_PARTITIONINFO... 166
Structure S_READDESC... 167
Structure S_RECDCHANNELINFO... 168
Structure S_SFPDPSTATUS... 169
Structure S_SMARTTHRESHOLDS .. 170
Structure S_SMARTVALUES... 171
Structure S_XLRSWREV... 172

Chapter 3 PCI Integration .. 173
PCI Integration... 174

Initialization and Setup.. 174
PCI Bus Interfacing ... 174
Multi-Card Operation.. 175

Chapter 4 Operation ... 177
Operation .. 178

Data Recording .. 178
Recording Data...178
Data Wrap ...179
Ending the Recording..179

Data Read... 179
Read Setup...180
Read Positioning...180
Reading Data...180

Chapter 5 External Port.. 181
External Port... 182
FPDP ... 183

Overview .. 183
Interface Electronics .. 183
Data Formats .. 184
PIO Signals ... 184
Interface Functions ... 184
PSTROBE/PSTROBE* and STROB Signals ... 186

Chapter 6 Channel Description and Selection........................... 187
Channel Description and Selection ... 188

Channel Description ... 188
Selecting an Operating Mode... 189

8

Clearing, Selecting, and Binding Channels... 189
SFPDP Multi-channel Commands... 190
Example 1 .. 192
Example 2 .. 194
Using Multiple PCI Express Sources ... 196

Overview..196
Address Allocation...196
Configuration ..197

Chapter 7 Bank Switching.. 199
Bank Switching ... 200

Setting Bank Mode .. 200
Selecting a Bank .. 201
Recording a Drive Module .. 201
Playing back from a Drive Module ... 202
Labeling Drive Modules ... 202
Writing a User Directory.. 203
The Length of Drive Modules ... 203
Write Protecting Drive Modules.. 204
Erasing Drive Modules .. 204
Getting Bank Status .. 204
Replacing a Drive Module .. 204

Chapter 8 Drive Partitioning... 207
Drive Partitioning... 208

Creating a Partition ... 208
Selecting a Partition.. 208
Getting Partition Information ... 209
Deleting a Partition.. 209
Bank Mode and Partitioning.. 210
Recording using Partitions... 210
Wrap Mode ... 210
Removing Partitioning .. 211
Reusing Partitions .. 211
Resizing Partitions ... 211
User Directories and Partitions... 211
Examples .. 212

Chapter 9 Forking and Passthru... 213
Forking and Passthru... 214

Overview .. 214
Forking ... 214
Passthru... 215
Output over the PCI bus .. 215
Checking the FIFO length.. 215
Ending a FIFO operation .. 215
Overflows ... 216

Chapter 10 Technical Support ... 217
Technical Support .. 218

Contacting Technical Support.. 219
Appendix A – Error Codes... 220

License Agreement and Limited
Warranty

IMPORTANT: CAREFULLY READ THE TERMS AND CONDITIONS OF THIS AGREEMENT BEFORE
USING THE PRODUCT. By installing or otherwise using the StreamStor Product, you agree to be bound by
the terms of this Agreement. If you do not agree to the terms of this Agreement, do not install or use the
StreamStor Product and return it to Conduant Corporation.

GRANT OF LICENSE. In consideration for your purchase of the StreamStor Product, Conduant Corporation
hereby grants you a limited, non-exclusive, revocable license to use the software and firmware which controls
the StreamStor Product (hereinafter the "Software") solely as part of and in connection with your use of the
StreamStor Product. If you are authorized to resell the StreamStor Product, Conduant Corporation hereby
grants you a limited non-exclusive license to transfer the Software only in conjunction with a sale or transfer
by you of the StreamStor Product controlled by the Software, provided you retain no copies of the Software
and the recipient agrees to be bound by the terms of this Agreement and you comply with the RESALE
provision herein.

NO REVERSE ENGINEERING. You may not cause or permit, and must take all appropriate and reasonable
steps necessary to prevent, the reverse engineering, decompilation, reverse assembly, modification,
reconfiguration or creation of derivative works of the Software, in whole or in part.

OWNERSHIP. The Software is a proprietary product of Conduant Corporation which retains all title, rights
and interest in and to the Software, including, but not limited to, all copyrights, trademarks, trade secrets,
know-how and other proprietary information included or embodied in the Software. The Software is protected
by national copyright laws and international copyright treaties.

TERM. This Agreement is effective from the date of receipt of the StreamStor Product and the Software. This
Agreement will terminate automatically at any time, without prior notice to you, if you fail to comply with any
of the provisions hereunder. Upon termination of this Agreement for any reason, you must return the
StreamStor Product and Software in your possession or control to Conduant Corporation.

LIMITED WARRANTY. This Limited Warranty is void if failure of the StreamStor Product or the Software is
due to accident, abuse or misuse.

Hardware: Conduant's terms of warranty on all manufactured products is one year from the date of shipment
from our offices. After the warranty period, product support and repairs are available on a fee paid basis.
Warranty on all third party materials sold through Conduant, such as chassis, disk drives, PCs, bus extenders,
and drive carriers, is passed through with the original manufacturer's warranty. Conduant will provide no
charge service for 90 days to replace or handle repair returns on third party materials. Any charges imposed by
the original manufacturer will be passed through to the customer. After 90 days, Conduant will handle returns
on third party material on a time and materials basis.

C H A P T E R 1 : I N T R O D U C T I O N

10

Software: The warranty on all software products is 90 days from the date of shipment from Conduant's offices.
After 90 days, Conduant will provide product support and upgrades on a fee paid basis. Warranties on all third
party software are passed through with the original manufacturer's warranty. Conduant will provide no charge
service for 90 days to replace or handle repair returns on third party software. Any charges imposed by the
manufacturer will be passed through to the customer.

DISCLAIMER OF WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CONDUANT CORPORATION DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT,
WITH REGARD TO THE STREAMSTOR PRODUCT AND THE SOFTWARE.

SOLE REMEDIES. If the StreamStor Product or the Software do not meet Conduant Corporation's Limited
Warranty and you return the StreamStor Product and the Software to Conduant Corporation, Conduant
Corporation's entire liability and your exclusive remedy shall be at Conduant Corporation 's option, either (a)
return of the price paid, if any, or (b) repair or replacement of the StreamStor Product or the Software. Any
replacement Product or Software will be warranted for the remainder of the original warranty period.

LIMITATION OF LIABILITIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL CONDUANT CORPORATION BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR
INABILITY TO USE THE STREAMSTOR PRODUCT AND THE SOFTWARE. IN ANY CASE,
CONDUANT CORPORATION'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR THE
STREAMSTOR PRODUCT AND THE SOFTWARE. BECAUSE SOME STATES AND JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

RESALE. If you are authorized to resell the StreamStor Product, you must distribute the StreamStor Product
only in conjunction with and as part of your product that is designed, developed and tested to operate with and
add significant functionality to the StreamStor Product; you may not permit further distribution or transfer of
the StreamStor Product by your end-user customer; you must agree to indemnify, hold harmless and defend
Conduant Corporation from and against any claims or lawsuits, including attorneys' fees, that arise or result
from the use or distribution of your product; and you may not use Conduant Corporation's name, logos or
trademarks to market your product without the prior written consent of Conduant Corporation.

ENTIRE AGREEMENT; SEVERABILITY. This Agreement constitutes the complete and exclusive
agreement between you and Conduant Corporation with respect to the subject matter hereof and supersedes all
prior written or oral agreements, understandings or communications. If any provision of this Agreement is
deemed invalid under any applicable law, it shall be deemed modified or omitted to the extent necessary to
comply with such law and the remainder of this Agreement shall remain in full force and effect.

GOVERNING LAW. This Agreement is governed by the laws of the State of Colorado, without giving effect
to the choice of law provisions therein. By accepting this Agreement, you hereby consent to the exclusive
jurisdiction of the state and federal courts sitting in the State of Colorado.

Chapter 1
Introduction

C H A P T E R 1 : I N T R O D U C T I O N

12

The StreamStor Software Development Kit
One of the most powerful features of StreamStor is that it is an open platform
device allowing other PCI devices complete access to record or read data from
the disk storage. Conduant makes it easy for system designers to use StreamStor
by providing the StreamStor Software Development Kit (SDK). This manual is
applicable to SDKs with a major number of 9 (i.e., SDK 9.0, SDK 9.1, etc.).

The SDK includes an Application Programming Interface (API) library. This
library provides the control software for StreamStor in the form of DLLs
(Dynamic Link Libraries) for Windows and an archive library for Linux that can
be accessed by user application software. Application software can be
developed in any environment capable of utilizing these library functions. This
includes the various Windows programming languages such as Visual C++ and
Visual Basic as well as graphical programming environments such as LabVIEW.

Installing the Software
Your StreamStor system was shipped with the Software Development Kit on
CD-ROM. Please power up your computer. On Windows systems, when
ready, run the setup.exe program on the CD-ROM to start the installation
process. On Linux systems, refer to the file linux/docs/install.txt on
the CD-ROM.

Plug and play operating systems such as Windows will detect the installation of
the StreamStor board and attempt to configure the boards using the hardware
plug and play wizard program. The required installation information file for
plug and play installation is included on the CD-ROM. Make sure the plug and
play wizard includes the CD-ROM drive in its search so that the StreamStor
drivers will be properly installed. You should not cancel the plug and play
wizard since this can create hardware conflicts in the system when using the
StreamStor controller. Note that the setup.exe program must still be
executed to install the StreamStor SDK onto your system.

The software installation procedure will install the device drivers, library files,
example programs and all other components of the SDK onto your system.

The StreamStor SDK does not include software interfaces or drivers used for
the control of data acquisition cards made by other manufacturers. However, it
does include some sample programs to help in your software development
efforts. Other drivers and examples may be available depending on your choice
of data acquisition hardware. Contact Conduant support for more information.

C H A P T E R 1 : I N T R O D U C T I O N

13

Always review the readme.html file included with the SDK for the latest
information not included in this manual.

Software Components
The SDK software components include operating system device drivers,
support files, programming libraries and utility programs.

Device Driver

The StreamStor SDK provides device driver support for the Windows 2000,
Windows XP, Windows 7 and Linux operating systems. The drivers are
installed automatically by the supplied setup program. On Windows systems,
the device driver is named windrvr6.sys. The Linux device driver is
installed as a kernel module named windrvr6. On Linux systems, refer to the
file linux/docs/install.txt on the CD-ROM for driver installation
instructions.

Windows Uninstall

The StreamStor SDK can be easily uninstalled in Windows by using the
“Add/Remove Software” wizard in the control panel. Simply select
“StreamStor SDK” and all installed components will be automatically removed.
You can also select “Remove StreamStor SDK” in the StreamStor menu.

C H A P T E R 1 : I N T R O D U C T I O N

14

Windows Configuration/Test Utility

The utility program sscfg.exe is included with the SDK for testing the
StreamStor system for proper configuration and functionality. If you have just
received your StreamStor system or you are experiencing problems, this
program will open the StreamStor device and report configuration information.
It also includes a basic confidence test to ensure that your system is working
properly. NOTE: The confidence test will overwrite any data already present
on the recorder. The DLL file bisrun.dll is a required component. It
should have been installed automatically into the installation directory. If
sscfg.exe is moved, you must also move bisrun.dll to the same directory
or to a Windows system directory. The initial sscfg screen will look something
like this:

If more than one StreamStor is installed in your system (PCI or PCI Express)
there will be multiple choices in the card number pull down menu. After
selecting the card number you must press the Initialize button to begin the
process of finding, initializing and querying the StreamStor board for device
information. If your board has been successfully configured, Initialize will enable
the Test button and fill in the various device information fields. The sscfg
screen should now appear similar to this:

C H A P T E R 1 : I N T R O D U C T I O N

15

If you encounter an error during initialization there may be damage to your
system from shipping or the system has not been installed correctly. Please
contact technical support for assistance.

The program can also be used to communicate with a remote StreamStor device
such as an LTX2 or NTX-16 or a system running the StreamStor remote server.
To open these devices you must enter the IP address and port number (default
port is 10001).

If the initialization has completed successfully you should check the information
provided by sscfg to ensure your system has been correctly identified
according to your purchased model and configuration. If you discover any
problems please contact Conduant. At this point you can press the Test button
to run a quick confidence test on the controller board and disk system.

 CAUTION: Running the confidence test in sscfg WILL overwrite any recorded
data on StreamStor storage.

If you get any error messages running this test please follow the instructions in
the Troubleshooting section. If this test completes successfully, your
StreamStor system is functioning normally.

C H A P T E R 1 : I N T R O D U C T I O N

16

Windows Fetch Utility

The utility program ssfetch.exe has been included to provide a basic tool
for retrieving data from the StreamStor storage system-to-system disk files. The
interface to ssfetch looks like this:

There are two options when using ssfetch to retrieve data, the first option is
to simply retrieve a block of data to a single system file. The “Single File”
button enables this mode and the filename specified is used as the destination
for data retrieved from StreamStor. The current status of the recorder is
displayed in the “Status” field and the “Available bytes” field indicates the
length of data currently recorded on the device. The “Read From” box provides
the controls for specfying the location and amount of data to be retrieved. The
amount (File size) and address must be an increment of 4 bytes.

C H A P T E R 1 : I N T R O D U C T I O N

17

The second option for retrieving data is to use the “Multiple Files” option to
automatically create system files of sequential and equal size data blocks from
StreamStor. The directory field allows you to choose an alternate system
directory (current directory will be used by default). The prefix and extension
fields are used to define the common text for the filenames. The “Start #”,
“End #” and “Digits” define a number used to form unique filenames. The
“Start #” with the number of digits defined by “Digits” is appended to the
prefix and the extension is appended after that (with a period) to form the
filename. The “Filenames” area will show a preview of the file names to be
used. The amount of data specified by “File size” is written to this file and the
process is repeated with the number incrementing until “End #” is reached.
The “Byte Address” for each retrieval is incremented by the file size amount so
that sequential data is retrieved. This mode is useful for retrieving blocks of data
into independent files when the size of the block is fixed such as when digital
images have been recorded.

In both modes, the “Byte address” field is automatically incremented after each
fetch by the amount of data transferred.

C H A P T E R 1 : I N T R O D U C T I O N

18

Windows Library

The software development kit includes a DLL library for integration of
StreamStor into Windows based user applications. The required DLL file is
xlrapi.dll. The driver library is also required and is of the form
wdapiXXXX.dll where XXXX is the current driver version (1011 in SDK 9.0).
The library file xlrapi.lib is also included for linking the DLL functions to a
user program. The required include files are xlrapi.h, xlrtypes.h and
xlrdbcommon.h. Only the xlrapi.h file needs to be included in a user
program. Example programs are included in the SDK. All of the include files
are installed automatically by the installation software in the “Include” directory.
The library file for linking user programs is installed in the “Lib” directory and
the DLL is installed in the StreamStor installation directory.

Linux Uninstall

The StreamStor SDK can be easily uninstalled in Linux by removing the
installation directory and the WinDriver module. To do so, enter the following
commands as root where <InstallDir> is the full path name where the
StreamStor SDK is installed and <WinDriverModule> is the name of the
WinDriver module. The WinDriver module is windrvr6.

1. Remove the SDK installation directory as follows:

rm –rf <InstallDir>

For example, to remove the entire SDK:

rm –rf /usr/local/streamstor

2. Remove the WinDriver module as follows:

a) Verify that the WinDriver module is not in use.

b) Unload the WinDriver module by entering:

/sbin/modprobe -r <WinDriverModule>

c) If you are not using a Linux 2.6.x kernel that supports the udev
file system, remove the old device node in the /dev directory:

rm –f /dev/<WinDriverModule>

d) Remove the system startup file (if it exists) by entering:

rm –f /etc/.windriver.rc

C H A P T E R 1 : I N T R O D U C T I O N

19

e) Remove the user startup file (if it exists) by entering:

rm –f $HOME/.windriver.rc

f) Remove the WinDriver shared object file by entering:

rm /usr/lib/libwdapi<version>.so

where <version> is the version number you want to uninstall,
e.g., libwdapi1001.so. (For version 7.x of WinDriver, erase the
file libwd_utils.so.)

Linux Configuration/Test Utilities

Two Linux utility programs are included with the SDK to test the StreamStor
system for proper configuration and functionality. If you have just received
your StreamStor system or if you are experiencing problems, running these
programs will perform configuration and confidence tests to ensure that your
system is working properly.

Linux programs that use the StreamStor SDK (such as the utilities below)
require that the environment variable STREAMSTOR_BIB_PATH be set and
exported to the SDK directory containing the StreamStor *.bib files. For
example:

STREAMSTOR_BIB_PATH=/usr/local/streamstor/linux/bib

export STREAMSTOR_BIB_PATH

The program ssopen simply attempts to open the StreamStor and then closes
it. To execute it:

1. cd <InstallDir>/linux/util

2. ./ssopen

If your system can communicate with the StreamStor board, you should see
this output:

Attempting to open StreamStor...
StreamStor opened successfully!
Device Status:
 SystemReady-> 1
 MonitorReady-> 0
 DriveFail-> 0
 DriveFailNumber-> 0
 SysError-> 0
 SysErrorCode-> 0
 CtlrError-> 0

C H A P T E R 1 : I N T R O D U C T I O N

20

The program sstest is similar to the Windows configuration test,
sscfg.exe. It will attempt to initialize and configure the StreamStor and
perform a confidence test. The confidence test will write data to the StreamStor
storage and then will read that data.

 CAUTION: Running the confidence test sstest WILL overwrite any recorded data
on StreamStor storage.

To execute sstest:

1. cd <InstallDir>/linux/util

2. ./sstest

If the confidence test completes successfully, you should see output similar to
the following:

*Getting Device Info
Board Type: PCI-816XF2
Serial Number: 5109
Number of drives: 8
Total Capacity: 320083329024

*Getting Version Info
API Version: 6.02
API Datecode: Oct 07 2005
Firmware Version: 11.14
Firmware Datecode: Oct 07 2005
Monitor Version: 6.02
XBAR Version: 3.20
ATA Version: 1.05
Ultra ATA Version: 0.00
Driver Version: 700

Processing Test Script
Script processing complete.

==== Starting Test ====

Basic Confidence Test
 ->Writing test pattern
 ->Write Completed

Check Directory
 Dir Length: 0x2000000
 ->Read/Compare Recorded Data
 ->Read/Compare Completed

Basic Confidence Test Completed

C H A P T E R 1 : I N T R O D U C T I O N

21

If you get any error messages running this test, please follow the instructions in
the Troubleshooting section. If this test completes successfully your StreamStor
system is functioning normally.

Linux Library

When the SDK is installed on a Linux system, a static function library is
installed named libssapi.a. It contains all the StreamStor API functions.
The required header files are xlrapi.h, xlrtypes.h and
xlrdbcommon.h. Only the xlrapi.h file must be included by the user
application. The library must be supplied to the linker to create a final
executable program. An example C program that shows how to call the SDK
library functions and a corresponding gcc makefile are in the directory
<InstallDir>/Linux/example.

C H A P T E R 1 : I N T R O D U C T I O N

22

Data Structures

StreamStor API functions use the following structures. Refer to the end of the
Function Reference section for details on each structure and its members.

S_BANKSTATUS - Bank status information
S_DBINFO - Daughterboard version information
S_DEVINFO - Device info parameters
S_DEVSTATUS - Device status flags
S_DIR - Recording directory information
S_DRIVEINFO - Drive information
S_EVENTS - Event information
S_PARTITIONINFO - Drive partitioning information
S_READDESC - Parameters defining read requests
S_RECDCHANNELINFO - Multi-channel recording information
S_SFPDPSTATUS - SFPDP port status information
S_SMARTTHRESHOLDS - SMART thresholds
S_SMARTVALUES - SMART values
S_XLRSWREV - Various device version strings

Chapter 2
Function Reference

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

24

XLRApiVersion

Syntax:

void XLRApiVersion(char *versionstring)

Description:

XLRApiVersion returns the API version as a string formatted as a major.minor version
number.

Parameters:

versionstring is a pointer to a character string to hold the returned version. It must be
of minimum length XLR_VERSION_LENGTH.

Return Value:

The API version is returned in versionstring.

Usage:

/* Read XLR API version into string */
char xlrstring[XLR_VERSION_LENGTH];

XLRApiVersion(xlrstring);
printf(“StreamStor API version is %s”, xlrstring);

See Also:

XLRGetVersion and XLRSdkVersion.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

25

XLRAppend

Syntax:

XLR_RETURN_CODE XLRAppend(SSHANDLE xlrDevice)

Description:

XLRAppend is used to restart a recording after it has been stopped. Data is appended to the
existing recording.

If the StreamStor is in bank mode, data will be appended to the selected bank. If the
StreamStor is partitioned, this command will append data to the currently selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
UINT32 myBuffer[40000];
XLR_RETURN_CODE xlrReturnCode;

// Open the device
xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRRecord(xlrDevice, 0, 1);
if(xlrReturnCode != XLR_SUCCESS)
 exit(1);

//
// Data transfer . . .
//
// Stop the record operation
XLRStop(xlrDevice);

// Read some data back
readDesc.AddrHi = 0;
readDesc.AddrLo = 0x120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = &myBuffer;

xlrReturnCode = XLRRead(xlrDevice, &readDesc);
if(xlrReturnCode != XLR_SUCCESS)
 exit(1);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

26

//
// Now start recording again without overwriting previous data
//
xlrReturnCode = XLRAppend(xlrDevice);
if(xlrReturnCode != XLR_SUCCESS)
 exit(1);

See Also:

XLRRecord, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

27

XLRArmChannelForSync

Syntax:

XLR_RETURN_CODE XLRArmChannelForSync(SSHANDLE xlrDevice, UINT32
channel, UINT32 syncOption)

Description:

XLRArmChannelForSync sets the start-on-sync option on the specified StreamStor
FPDPII channel. Setting the option to SS_OPT_ARM_START_ON_SYNC arms the channel
for a SYNC* pulse. When armed, it will not record or append data until a SYNC* pulse is
received. Arming is in effect for a single record or append operation. Therefore, each time
you want a record or append operation to wait for a SYNC* pulse, you must call
XLRArmChannelForSync.

If no SYNC* pulse is received, no data will be recorded.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

channel is the FPDPII channel number to arm.

syncOption is the option to set. The only option available is
SS_OPT_ARM_START_ON_SYNC, which arms the FPDPII for start-on-sync.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;

if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 exit(1);
}

…

// Arm FPDPII channel 30 for start-on-sync.
if(XLRArmChannelForSync(xlrDevice, 30,
 SS_OPT_ARM_START_ON_SYNC) != XLR_SUCCESS)
{
 exit(1);
}

//
// Put the StreamStor in record mode by calling XLRRecord.
// Data will get recorded to disk when the SYNC* pulse is
// received.
//

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

28

if(XLRRecord(xlrDevice, 0, 1) != XLR_SUCCESS)
{
 exit(1);
}

 … SYNC* is received, so data will start recording …

//
// Done recording, so call XLRStop. XLRStop will
// clear the arming for start-on-sync.
//
XLRStop();

//
// Now you want to append data to the existing
// recording. In this example, you want to wait for
// another SYNC* pulse, so you must call XLRArmChannelForSync
// again.
//
if(XLRArmChannelForSync(xlrDevice, 30,
 SS_OPT_ARM_START_ON_SYNC) != XLR_SUCCESS)
{
 exit(1);
}

//
// Put the StreamStor in append mode by calling XLRAppend.
// Data will get appended to disk when the SYNC* pulse is
// received.
//
if(XLRAppend(xlrDevice) != XLR_SUCCESS)
{
 exit(1);
}

 … SYNC* is received, so data will start recording …

//
// Done appending, so call XLRStop. XLRStop will clear the
// arming for start-on-sync.
//
XLRStop();

See Also:

XLRRecord and XLRAppend.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

29

XLRArmFPDP

Syntax:

XLR_RETURN_CODE XLRArmFPDP(SSHANDLE xlrDevice)

Description:

XLRArmFPDP moves the StreamStor PCI816-XF2 from a ready to record state, to
recording when an FPDP SYNC* pulse is received. StreamStor must already be in record
mode, and SS_OPT_FPDPSYNCARM must be set. If no SYNC* pulse is received, no data
will be recorded.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;

if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 exit(1)
}

…

if(XLRAppend(xlrDevice) != XLR_SUCCESS)
{
 exit(1);
}

if(XLRArmFPDP(xlrDevice) != XLR_SUCCESS)
{
 exit(1);
}

// Waiting for SYNC pulse – data will be recorded to disk as soon
// as SYNC is received.

See Also:

XLRSetDBMode, XLRRecord and XLRAppend.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

30

XLRBindInputChannel

Syntax:

XLR_RETURN_CODE XLRBindInputChannel(SSHANDLE xlrDevice, UINT32
channel)

Description:

XLRBindInputChannel binds a channel for input INTO StreamStor. In other words,
“input” is relative to StreamStor. To record on a particular channel, that channel must be
bound to StreamStor via this command. XLRClearChannels must be called to unbind the
channel(s) before calling XLRBindInputChannel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

channel is the channel number to bind – this is card specific.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Note: CHANGING MODES CLEARS ALL INPUT AND OUTPUT CHANNELS.
CHANNELS MUST BE BOUND AFTER THE MODE IS SELECTED.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

// Set StreamStor mode to Single Channel.
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_SINGLE_CHANNEL);
xlrStatus = XLRClearChannels(xlrDevice);

// For input over the PCI bus, select, then bind to channel zero.
xlrStatus = XLRSelectChannel(xlrDevice, 0);
xlrStatus = XLRBindInputChannel(xlrDevice, 0);

// Now ready to record over the PCI bus.
xlrStatus = XLRRecord(xlrDevice, 0, 1);
if(xlrStatus != XLR_SUCCESS)
{
 return(1);
}

See Also:

XLRClearChannels, XLRBindOutputChannel, and XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

31

XLRBindOutputChannel

Syntax:

XLR_RETURN_CODE XLRBindOutputChannel(SSHANDLE xlrDevice, UINT32
channel)

Description:

XLRBindOutputChannel binds a channel for output FROM StreamStor. In other words,
“output” is relative to StreamStor. To playback over a particular channel, that channel must
be bound to StreamStor via this command. XLRClearChannels must be called to
unbind the channel(s) before calling XLRBindOutputChannel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

channel is the channel number to bind – this is card specific.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Note: CHANGING MODES CLEARS ALL INPUT AND OUTPUT CHANNELS.
CHANNELS MUST BE BOUND AFTER THE MODE IS SELECTED.

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

// Set StreamStor mode to Single Channel.
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_SINGLE_CHANNEL);
xlrStatus = XLRClearChannels(xlrDevice);

// For output over the PCI bus, select, then bind to channel zero.
xlrStatus = XLRSelectChannel(xlrDevice, 0);
xlrStatus = XLRBindOutputChannel(xlrDevice, 0);

// Now ready to read over the PCI bus.
xlrStatus = XLRRead(xlrDevice, &readDesc);

See Also:

XLRClearChannels, XLRBindInputChannel, and XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

32

XLRCardReset

Syntax:

XLR_RETURN_CODE XLRCardReset(UINT32 index)

Description:

XLRCardReset will attempt to reset a StreamStor device and re-initialize the hardware and
firmware. This function should be used only as a last resort.

Parameters:

index is the card index number.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

xlrReturnCode = XLRCardReset(1);

See Also:

XLROpen and XLRReset.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

33

XLRClearChannels

Syntax:

XLR_RETURN_CODE XLRClearChannels(SSHANDLE xlrDevice)

Description:

XLRClearChannels unbinds all input and output channels from StreamStor. The system
cannot be reading or writing, and new input and output channels must be bound before any
recording or playback operation is started. XLRClearChannels must be called before
calling XLRBindInputChannel or XLRBindOutputChannel to unbind the channels.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);

…
xlrStatus = XLRClearChannels(xlrDevice);

…
// Close device before exiting.
XLRClose(xlrDevice);

See Also:

XLRBindInputChannel, XLRBindOutputChannel, and XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

34

XLRClearOption

Syntax:

XLR_RETURN_CODE XLRClearOption(SSHANDLE xlrDevice,
 UINT32 options_to_clear)

Description:

XLRClearOption clears an option previously set by XLRSetOption, or clears all options.
When an option is cleared, it is set to its default value. See XLRSetOption for the list of
available options and default values. To clear an option, the drives must be idle (i.e., not in
record or playback mode).

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

options_to_clear is a vector of options to clear.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

//
// This example shows how to set options to their default values
// and how to set and clear a specific option.
//

xlrStatus = XLROpen(1, &xlrDevice);

// Set all options to their default values.
xlrStatus = XLRClearOption(xlrDevice, SS_ALL_OPTIONS);

// Set the desired option.
xlrStatus = XLRSetOption(xlrDevice, SS_OPT_PLAYARM);
 . . .

// Clear the option.
xlrStatus = XLRClearOption(xlrDevice, SS_OPT_PLAYARM);

See Also:

XLRSetOption and XLRGetOption.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

35

XLRClearWriteProtect

Syntax:

XLR_RETURN_CODE XLRClearWriteProtect(SSHANDLE xlrDevice)

Description:

XLRClearWriteProtect removes write protection from a previously write protected
StreamStor recorder. By default, drives are not write protected. The drives must be idle (i.e.,
not in record mode or playback mode) to clear the write protection.

If the StreamStor is in bank mode, this command will clear write protection only on the
currently selected bank.

If the StreamStor is partitioned, this command will clear write protection only on the
currently selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);

…
xlrStatus = XLRClearWriteProtect(xlrDevice);

…
// Close device before exiting.
XLRClose(xlrDevice);

See Also:

XLRSetWriteProtect, XLRSetBankMode, XLRSelectBank,
XLRGetDirectory and XLRPartitionCreate.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

36

XLRClose

Syntax:

void XLRClose(SSHANDLE xlrDevice)

Description:

XLRClose closes the StreamStor device. This should be called before exiting an application
that has opened a StreamStor device with XLROpen. No other application can open the
StreamStor device until this function has been called.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

None.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);
.
.
.
// Close device before exiting.
XLRClose(xlrDevice);

See Also:

XLROpen.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

37

XLRDeleteAppend

Syntax:

XLR_RETURN_CODE XLRDeleteAppend(SSHANDLE xlrDevice, UINT32
AddrHigh, UINT32 AddrLow)

Description:

XLRDeleteAppend deletes the last appended data set on the StreamStor device. An
appended data set is defined as the data recorded to StreamStor with the XLRAppend
function. An optional address can be provided to define the new last append start point.
Zero should be used for the address in most circumstances.

The new last append address must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will delete appended data from the
currently selected bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

AddrHigh is the upper 32 bits of the 64-bit address to use for the new last append start
point. In most cases, this should be zero.

AddrLow is the upper 32 bits of the 64-bit address to use for the new last append start
point. In most cases, this should be zero.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

38

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);

// Append data.
xlrStatus = XLRAppend(xlrDevice);
.
.
.
// Stop recording.
XLRStop(xlrDevice);

// Delete just the data recorded above.
xlrStatus = XLRDeleteAppend(xlrDevice, 0, 0);

// Close device before exiting
XLRClose(xlrDevice);

See Also:

XLRTruncate, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

39

XLRDeviceFind

Syntax:

UINT32 XLRDeviceFind()

Description:

XLRDeviceFind searches the PCI bus(es) and returns the number of StreamStor cards
present in the system.

Parameters:

None.

Return Value:

This function returns the number of StreamStor cards in the system. If the driver has not
been installed properly, this function returns zero.

Usage:

UINT32 NumCards;

if(NumCards = XLRDeviceFind())
{
 // There are StreamStor cards on this system.
 printf(“StreamStor cards found: %d\n”, NumCards);
}
else
{
 // No StreamStor cards on the system.
 printf(“No StreamStor cards detected!\n”);
}

See Also:

XLROpen.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

40

XLRDismountBank
Syntax:

XLR_RETURN_CODE XLRDismountBank(SSHANDLE xlrDevice, UINT32
bankID)

Description:

XLRDismountBank will power down the selected bank. A bank can also be dismounted by
a key on-off transition.

A dismounted bank can be re-powered by a key off-on transition or by calling
XLRMountBank.

If you attempt to dismount a bank that has already been dismounted, no action is taken and
XLR_SUCCESS is returned.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bankID is a constant indicating the bank to be dismounted (BANK_A or BANK_B).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
S_BANKSTATUS AbankStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRSetBankMode (xlrDevice, SS_BANKMODE_NORMAL);
xlrStatus = XLRGetBankStatus (xlrDevice, BANK_A, &AbankStatus);
if (AbankStatus.MediaStatus == MEDIASTATUS_FULL)
{
 printf (“BANK A is full.\n”);
 xlrStatus = XLRDismountBank (xlrDevice, BANK_A);
}

See Also:

XLRMountBank, XLRGetBankStatus, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

41

XLREdit

Syntax:

XLR_RETURN_CODE XLREdit(SSHANDLE xlrDevice, PS_READDESC
pReadDesc)

Description:

XLREdit edits data from the StreamStor device by overwriting existing data (specified by
the AddrHi, AddrLo, and XferLength structure members of pReadDesc) with new data
contained in the buffer pointed to by the BufferAddr structure member of
pReadDesc.

The edit address of the requested data must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will edit the data on the currently selected
bank. If the StreamStor is partitioned, this command will edit the data on the currently
selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pReadDesc is a pointer to an S_READDESC structure that holds the edit address, length
and buffer address containing the new data to overwrite the existing data.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
UINT32 myBuffer[40000];
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
/* Fill buffer with new data here */

//AddrHi and AddrLo must represent an appropriately aligned address.
readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLREdit(xlrDevice, &readDesc);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

42

See Also:

XLREditData, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

43

XLREditData

Syntax:

XLR_RETURN_CODE XLREditData(SSHANDLE xlrDevice,
PUINT32 BufferAddr, UINT32 AddrHigh, UINT32 AddrLow,
UINT32 XferLength)

Description:

XLREditData edits data from the StreamStor device by overwriting existing data (specified
by the AddrHi, AddrLo, and XferLength parameters) with new data contained in the
buffer pointed to by the BufferAddr.

This function is identical to XLREdit without the structure to pass the edit parameters.

The edit address of the requested data must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will edit the data on the currently selected
bank. If the StreamStor is partitioned, this command will edit the data on the currently
selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Buffer is the address of the user memory buffer to hold the requested data.

AddrHigh is the upper 32 bits of a 64-bit byte address of the requested data.

AddrLow is the lower 32 bits of a 64-bit byte address of the requested data.

XferLength is the number of bytes requested.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

44

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;
UINT32 myBuffer[40000];

xlrReturnCode = XLROpen(1, &xlrDevice);

…

/* Fill buffer with new data here */

xlrReturnCode = XLREditData(xlrDevice, myBuffer, 0, 0xFE120000,
sizeof(myBuffer));

See Also:

XLREdit, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

45

XLRErase

Syntax:

XLR_RETURN_CODE XLRErase(SSHANDLE xlrDevice, SS_OWMODE mode)

Description:

XLRErase erases data on the drives.

If the StreamStor is in bank mode, this command will erase only the selected bank.

If the StreamStor is partitioned, the command will erase only the data within the currently
selected partition. Other partitions will be unaffected. An exception to this is XLRErase
called with the SS_OVERWRITE_PARTITION option. When called with this option, all
partitions will be deleted from the device (or from the currently selected bank, if in bank
mode).

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

mode is the erase mode.

There are five erase modes:

 SS_OVERWRITE_NONE sets the directories to zero, such that the drives are reported
as having no data. However, all data is still on the drives. XLRErase will return
when this command is complete.

 SS_OVERWRITE_RANDOM_PATTERN overwrites all data on the drives with a
random pattern so that the data is permanently deleted. XLRErase returns
immediately, but the erasure can take several hours – use XLRGetDeviceStatus
(see below) to find out when erasure is complete.

 SS_OVERWRITE_RW_PATTERN is similar to SS_OVERWRITE_RANDOM_PATTERN
except that data is read first and then overwritten with a random pattern. This mode
can be used to verify that all sectors can be read and written. Note that this mode
will take on average twice as long as the SS_OVERWRITE_RANDOM_PATTERN mode
to complete. XLRErase returns immediately, but the erasure can take several hours
– use XLRGetDeviceStatus (see below) to find out when erasure is complete.

 SS_OVERWRITE_DIRECTORY destroys the directory locator block (for the currently
selected partition, if the system is partitioned). This option will erase all data
including the user directory and labels. Other partitions (if partitioned) are
unaffected. XLRErase will return when this command is complete.

 SS_OVERWRITE_PARTITION destroys everything: all partitions, data, user
directories, and labels. XLRErase will return when this command is complete.

As with other API functions that record data, XLRErase will immediately return control to
the calling program. If an erase is in progress, XLRGetDeviceStatus will indicate that
the device is in Recording mode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

46

If the SS_OVERWRITE_RANDOM_PATTERN mode is specified, and an overwrite operation is
in progress, a call to XLRGetLength will return the number of bytes remaining to overwrite
for the slowest bus. (Each bus is erased in parallel, thus it returns the number of bytes
remaining for the slowest bus. In other words, when the slowest bus completes, the entire
operation will be complete.)

If the SS_OVERWRITE_RW_PATTERN mode is specified, the erase is done in two passes.
The first pass will read all blocks on the device and the second pass will write all blocks on
the device. During the read pass, a call to XLRGetLength will return the number of bytes
remaining to be read. During the write pass, a call to XLRGetLength will return the
number of bytes remaining to be overwritten.

Stopping StreamStor part way through an overwrite erase will immediately set the directory
length to zero. Restarting the overwrite erase will start from the beginning – not where you
previously stopped.

The following table summarizes what, in addition to the data, is erased.

Erase Option Specified Label

Erased?
User
Directory
Erased?

Partitions
Removed?

SS_OVERWRITE_NONE No No No
SS_OVERWRITE_RANDOM_PATTERN No No No
SS_OVERWRITE_RW_PATTERN No No No
SS_OVERWRITE_DIRECTORY Yes Yes No
SS_OVERWRITE_PARTITION Yes Yes Yes

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturn;
UINT64 xlrLength;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRErase(xlrDevice, SS_OVERWRITE_RANDOM_PATTERN);
if(xlrReturn != XLR_SUCCESS)
 return(1);

//
//Overwrite Erase Examples:
//Example 1: 2 20GB drives per bus - master / slave configuration
//

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

47

xlrLength = XLRGetLength(xlrDevice);
//xlrLength equals approximately 40GB – if called
//at the beginning of the erase.

//Example 2: 1 100GB drive per bus - master only configuration.
xlrLength = XLRGetLength(xlrDevice);
//xlrLength equals approximately 100GB – if called
//at the beginning of the erase.

See Also:

XLRSetLabel, XLRSetUserDir, XLRGetBankStatus, XLRGetLength,
XLRSetWriteProtect, XLRClearWriteProtect, XLRSetBankMode,
XLRSelectBank, and XLRPartitionSelect.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

48

XLRGetBankStatus

Syntax:

XLR_RETURN_CODE XLRGetBankStatus(SSHANDLE xlrDevice, UINT32
bankID, PS_BANKSTATUS pBankStatus)

Description:

XLRGetBankStatus retrieves information from the StreamStor about the specified
bankID. The StreamStor must be in bank mode to get the status of a bank.
XLRGetBankStatus can be called when the StreamStor is not idle.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bankID is a constant indicating the bank to report on (BANK_A or BANK_B).

pBankStatus is a pointer to an S_BANKSTATUS structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_BANKSTATUS AbankStatus;
S_BANKSTATUS BbankStatus
XLR_RETURN_CODE xlrStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

xlrStatus = XLRSetBankMode (xlrDevice, SS_BANKMODE_NORMAL);
xlrStatus = XLRGetBankStatus (xlrDevice, BANK_A, &AbankStatus);
xlrStatus = XLRGetBankStatus (xlrDevice, BANK_B, &BbankStatus);
if (AbankStatus.MediaStatus == MEDIASTATUS_FULL)
{
 printf (“BANK A is full.\n”);
}
if (BbankStatus.MediaStatus == MEDIASTATUS_FULL)
{
 printf (“BANK B is full.\n”);
}

See Also:

XLRGetDeviceStatus, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

49

XLRGetBaseAddr

Syntax:

UINT32 XLRGetBaseAddr(SSHANDLE xlrDevice)

Description:

XLRGetBaseAddr returns the physical address of the recording data window. This address
can be used to program PCI hardware devices for direct card-to-card data transfer. The
address returned from this function is NOT a valid user address.

If using multi-channel PCI Express and virtual channels, call XLRSelectChannel then
bind the channels you want to use. Once all channels have been bound, to get the physical
address for a specific virtual channel, call XLRSelectChannel to select the channel, and
then call XLRGetBaseAddr to get the physical address.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns the physical PCI address as a 32 bit unsigned integer.

Usage:

UINT32 xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 // Error opening StreamStor.
}
else
{
 xlrAddress = XLRGetBaseAddr(xlrDevice);
}

See Also:

XLRGetBaseRange, XLRGetWindowAddr and XLRSetMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

50

XLRGetBaseRange

Syntax:

UINT32 XLRGetBaseRange(SSHANDLE xlrDevice)

Description:

XLRGetBaseRange returns the size of the StreamStor device data window in bytes. This
range of addresses is intended to be used by hardware transferring data that cannot be
programmed to write with a non-incrementing address. Note that the address used to write
to StreamStor does not effect the storage location of the data; StreamStor always stores data
sequentially in the order it is written regardless of the address.

If using multi-channel PCI Express and virtual channels, the range is divided between the
channels. For example if XLRGetBaseRange returns 16 megabytes, if you configure two
virtual input channels, each channel will have a range of 8 megabytes.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns the window size in bytes.

Usage:

UINT32 xlrAddress, xlrRange;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 // Error opening StreamStor.
}
else
{
 xlrAddress = XLRGetBaseAddr(xlrDevice);
 xlrRange = XLRGetBaseRange(xlrDevice);
}
// DMA Hardware may now be programmed to write to any address from
// xlrAddress to (xlrAddress + xlrRange).

See Also:

XLRGetBaseAddr, XLRGetWindowAddr and XLRSetMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

51

XLRGetDBInfo

Syntax:

XLR_RETURN_CODE XLRDBInfo(SSHANDLE xlrDevice, PS_DBInfo pdbInfo)

Description:

XLRGetDBInfo retrieves information from the StreamStor daughterboard. The drives
must be idle (i.e., not in record or playback mode) to get daughterboard information.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pdbInfo is a pointer to an S_DBInfo structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DBINFO dbInfo;
XLR_RETURN_CODE xlrStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);

xlrStatus = XLRGetDBInfo(xlrDevice,&dbInfo);
printf(“Daughterboard type is %s\n”, dbInfo.PCBType);

See Also:

XLRGetDeviceInfo.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

52

XLRGetChassisType

Syntax:

UINT32 XLRGetChassisType(SSHANDLE xlrDevice)

Description:

XLRGetChassisType retrieves an integer value representing the chassis type. The defined
values for chassis types are:

 TK200 – a chassis that can hold two drive modules and supports bank switching.
 UNKNOWN_CHASSIS_TYPE – any chassis that is not a TK200 and therefore

does not support bank switching.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

The chassis type, as described above.

Usage:

SSHANDLE xlrDevice;
UINT32 chassisType
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
chassisType = XLRGetChassisType(xlrDevice);
if (chassisType == TK200)
{
 printf (“This system supports bank switching.\n”);
 xlrStatus = XLRSetBankMode(xlrDevice, SS_BANKMODE_NORMAL);
 xlrStatus = XLRSelectBank(xlrDevice, BANK_B);
 …
}
else
{
 printf (“This system does not support bank switching.\n”);
}
 …
// Close device before exiting
XLRClose(xlrDevice);

See Also:

XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

53

XLRGetDeviceInfo

Syntax:

XLR_RETURN_CODE XLRGetDeviceInfo(SSHANDLE xlrDevice, PS_DEVINFO
pDevInfo)

Description:

XLRGetDeviceInfo retrieves information from the StreamStor device about its physical
configuration. The drives must be idle (i.e., not in record or playback mode) when this
function is called.

If the StreamStor is in bank mode, this command will report on the currently selected bank.
For example, the number of drives reported will be the number of drives on the selected
bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pDevInfo is a pointer to an S_DEVINFO structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DEVINFO devInfo;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRGetDeviceInfo(xlrDevice, &devInfo);
if(xlrReturn != XLR_SUCCESS)
 return(1);
printf(“StreamStor serial number is: %d”, devInfo.SerialNum);

See Also:

XLRGetDBInfo, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

54

XLRGetDeviceStatus

Syntax:

XLR_RETURN_CODE XLRGetDeviceStatus(SSHANDLE xlrDevice,
PS_DEVSTATUS pDevStatus)

Description:

XLRGetDeviceStatus retrieves status of the StreamStor device.

If the StreamStor is in bank mode, this command will report the device status of the
currently selected bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pDevStatus is a pointer to an S_DEVSTATUS structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DEVSTATUS devStatus;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRGetDeviceStatus(xlrDevice, &devStatus);
if(xlrReturn != XLR_SUCCESS)
 return(1);
if(devStatus.Recording)

printf(“StreamStor is recording.”);
else
 printf(“StreamStor is idle”);

See Also:

XLRGetBankStatus, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

55

XLRGetDirectory

Syntax:

XLR_RETURN_CODE XLRGetDirectory(SSHANDLE xlrDevice, PS_DIR pDir
)

Description:

XLRGetDirectory gets the directory information of the current recording on a
StreamStor device. The drives must be idle (i.e., not in record or playback mode) when this
function is called.

If the StreamStor is in bank mode, this command will report directory information on the
currently selected bank.

If data on the StreamStor was recorded in multi-channel mode, this command will report
directory information for data recorded on the currently selected channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pDir is a pointer to an S_DIR structure to be filled by this function call.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
S_DIR xlrDir;

xlrStatus = XLROpen(1, &xlrDevice);

 … Record some data …

XLRStop(xlrDevice);
xlrStatus = XLRGetDirectory(xlrDevice, &xlrDir);
if(xlrStatus != XLR_SUCCESS)
{

return(1);
}

See Also:

XLRGetLength, XLRSetMode, XLRSelectChannel, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

56

XLRGetDriveInfo

Syntax:

XLR_RETURN_CODE XLRGetDriveInfo(SSHANDLE xlrDevice, UINT32 Bus,
UINT32 MasterSlave, PS_DRIVEINFO pDriveInfo)

Description:

XLRGetDriveInfo retrieves info from the StreamStor drive about its physical
configuration. The drives must be idle (i.e., not in record or playback mode) when this
function is called.

If the StreamStor is in bank mode, this command will get drive information for the drives in
the currently selected bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Bus is the ATA bus number of the drive.

MasterSlave is XLR_MASTER_DRIVE (0) or XLR_SLAVE_DRIVE (1) to select the master
or slave drive on the ATA bus.

pDriveInfo is a pointer to an S_DRIVEINFO structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DRIVEINFO drvInfo;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRGetDriveInfo(xlrDevice, 0, XLR_MASTER_DRIVE, &drvInfo
);
if(xlrReturn != XLR_SUCCESS)
 return(1);
printf(“Drive serial number is: %s\n”, drvInfo.Serial);
printf(“Drive model number is: %s\n”, drvInfo.Model);
printf(“Drive revision: %s\n”, drvInfo.Revision);
printf(“Drive capacity (sectors): %d\n”, drvInfo.Capacity);

See Also:

XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

57

XLRGetDriveTemp

Syntax:

XLR_RETURN_CODE XLRGetDriveTemp(SSHANDLE xlrDevice, UCHAR Bus,
UCHAR MasterSlave, PUINT32 temp)

Description:

XLRGetDriveTemp retrieves the current temperature (in C) reading from the disk drive.
Drive temperature information is retrieved from the drive’s SMART (“Self-Monitoring
Analysis and Reporting Technology”) data. Some drive models are not SMART-capable, so
temperature information cannot be retrieved by XLRGetDriveTemp.

XLRGetDriveTemp is supported on a limited number of drive models. Each disk drive
vendor has its own technique for storing drive temperature data. Therefore, you should
independently verify that the drive temperatures reported by XLRGetDriveTemp are
accurate for your drives.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Bus is the ATA bus number of the drive.

MasterSlave is XLR_MASTER_DRIVE (0) or XLR_SLAVE_DRIVE (1) to select the master
or slave drive on the ATA bus.

temp is a pointer to an unsigned integer to be filled by this function call.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
PUINT32 temp;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRGetDriveTemp(xlrDevice, 0, XLR_MASTER_DRIVE, &temp);
if(xlrReturn != XLR_SUCCESS)
 return(1);
printf(“Drive temperature on Bus 0 Master is: %d degrees C\n”, temp);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

58

XLRGetErrorMessage

Syntax:

XLR_RETURN_CODE XLRGetErrorMessage(char *string, XLR_ERROR_CODE
err)

Description:

XLRGetErrorMessage returns the error message of the most recent API failure.

Parameters:

string is a pointer to a string to accept the error message of at least XLR_ERROR_LENGTH
size.

err is an error code returned from XLRGetLastError.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrHandle;
S_DIR xlrDir;
XLR_RETURN_CODE xlrReturn;
XLR_ERROR_CODE xlrError;
char temp[XLR_ERROR_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturn = XLRGetDirectory(xlrHandle, &xlrDir);
if(xlrReturn != XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(temp, xlrError);
 printf(“Error message: %s\n”, temp);
 exit(1);
}

See Also:

XLRGetLastError.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

59

XLRGetEvents

Syntax:

XLR_RETURN_CODE XLRGetEvents (IN SSHANDLE xlrDevice,
 IN UINT32 bufSize, OUT PS_EVENTS events);

Description:

XLRGetEvents retrieves events that were captured as a result of setting one or more event
options when calling the XLRSetDBMode function. (I.e., calling XLRSetDBMode with
option set to SS_OPT_EVENTLOG bit-wise inclusively or’ed with an SS_OPT_EVENT_*
option.)

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bufsize is the size, in bytes, of events.

events is a pointer to the S_EVENTS structure that is to receive the events.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

60

Usage:

SSHANDLE xlrHandle;
XLR_RETURN_CODE xlrStatus;
UINT32 eventCount=0;
UINT32 i=0;
PS_EVENTS eventBufPtr = NULL;

xlrStatus = XLROpen(1, &xlrHandle);

// Select the desired channels….

//
// Set the FPDP mode and select the type of event to
// capture. This shows how to capture events on
// rising edge of SYNC* signal on a PCI-816XF2. Note that
// to use any of the SS_OPT_EVENT_* options, you must “or”
// the option (or options) with SS_OPT_EVENTLOG.
//
xlrStatus = XLRSetDBMode(xlrHandle,
 SS_FPDP_RECVMASTER, SS_OPT_FPDPEVENTLOG | SS_OPT_EVENT_SYNC_RISE);

 // Record some data …

xlrStatus = XLRStop(xlrHandle);

//
// Get the number of events that were captured so you know
// how much space to allocate to hold them.
//
eventCount = XLRGetEventsLength(xlrHandle);
eventBufPtr = (PS_EVENTS)malloc(eventCount * sizeof(S_EVENTS));

//
// Retrieve the events into the array.
//
xlrStatus = XLRGetEvents(xlrHandle,
 eventCount * sizeof(S_EVENTS), eventBufPtr);

//
// Examine the events.
//
for (i = 0; i < eventCount; i++)
{
 printf(“Event[%u].Source = 0x%X - ", i, eventBufPtr[i].Source);
 printf("Address: 0x%X%X\n",

eventBufPtr[i].AddressHigh,
eventBufPtr[i].AddressLow);

}

See Also:

XLRSetDBMode, XLRGetEventsLength and XLRRetrieveEvents.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

61

XLRGetEventsLength

Syntax:

UINT32 XLRGetEventsLength(SSHANDLE xlrDevice)

Description:

XLRGetEventsLength returns the number of events that have been captured as a result
of setting one or more event options when calling the XLRSetDBMode function. (I.e.,
calling XLRSetDBMode with option set to SS_OPT_EVENTLOG bit-wise inclusively or'ed
with an SS_OPT_EVENT_* option.)

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

The number of events that have been captured.

Usage:

SSHANDLE xlrHandle;
UINT32 numberOfEvents=0;
XLR_RETURN_CODE xlrReturn;

xlrStatus = XLROpen(1, &xlrDevice);

 // Capture events …

numberOfEvents = XLRGetEventsLength(xlrHandle);

See Also:

XLRSetDBMode, XLRRetrieveEvents and XLRGetEvents.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

62

XLRGetFIFOLength

Syntax:

UINT64 XLRGetFIFOLength(SSHANDLE xlrDevice)

Description:

XLRGetFIFOLength returns the amount of data currently in the FIFO. This function is
only valid when StreamStor is in a forking or pass thru mode (SS_MODE_FORK,
SS_MODE_PASSTHRU). If StreamStor is not in one of the modes listed above, or is not
currently moving data, XLRGetFIFOLength will return 0.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

Usage:

SSHANDLE xlrDevice;
UINT64 length = 0;

...

// Setup StreamStor in a valid fork or pass-thru mode

...
// Get the length of data in the fifo.
length = XLRGetFIFOLength(xlrDevice);

See Also:

XLRSetMode, XLRReadFIFO and XLRGetLength.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

63

XLRGetLabel

Syntax:

XLR_RETURN_CODE XLRGetLabel(SSHANDLE xlrDevice, char *label)

Description:

XLRGetLabel returns the label on the StreamStor recorder where the label was previously
set with the XLRSetLabel command. If no label has been previously set, a default label
will be returned.

If the StreamStor is in bank mode, this command will return the label of the currently
selected bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

label is a pointer to a string to accept a label of at least XLR_LABEL_LENGTH in size.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
char label[XLR_LABEL_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRSetLabel(xlrDevice, “Label 2”);
xlrStatus = XLRGetLabel(xlrDevice, label);
printf (“This disk set is labeled %s\n”, label);
 …
// Null out the label.
label[0] =’\0’;
XlrStatus = XLRSetLabel(xlrDevice, label);
 …
// Close device before exiting
XLRClose(xlrDevice);

See Also:

XLRSetLabel, XLRErase, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

64

XLRGetLastError

Syntax:

XLR_ERROR_CODE XLRGetLastError(void)

Description:

XLRGetLastError returns the error code of the most recent API failure. This function
should always be called immediately after any StreamStor API function call that returns
failure.

It is not meaningful to call XLRGetLastError if the last StreamStor API function call was
successful. In this case, the returned error code will be error code 3 (XLR_ERR_NOINFO).

Parameters:

None.

Return Value:

This function returns the error code. Error codes are listed in Appendix A.

Usage:

SSHANDLE xlrDevice;
XLR_ERROR_CODE xlrError;
char errString[XLR_ERROR_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturn = XLRGetDirectory(xlrDevice, &xlrDir);
if(xlrReturn != XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(errString, xlrError);
 printf(“Error message: %s\n”, errString);
 exit(1);
}

See Also:

XLRGetErrorMessage.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

65

XLRGetLength

Syntax:

UINT64 XLRGetLength(SSHANDLE xlrDevice)

Description:

XLRGetLength returns the length (in bytes) of the current recording as a 64-bit integer.
This function can be used during an active recording or FIFO operation. Note that during
active record and during FIFO operations, the returned value may not be exact since data is
still moving between devices.

If the StreamStor is in bank mode, this command will return the length of data on the
currently selected bank.

If data on the StreamStor was recorded in multi-channel mode, this command will return the
length of data recorded on the currently selected channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

Current recording length in bytes.

Usage:

SSHANDLE xlrHandle;
UINT64 recordingLength;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrHandle);
recordingLength = XLRGetLength(xlrHandle);

See Also:

XLRGetDirectory, XLRGetBankStatus, XLRSelectBank, XLRSetMode and
XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

66

XLRGetLengthLowHigh

Syntax:

void XLRGetLengthLowHigh(SSHANDLE xlrDevice, PUINT32 low,
PUINT32 high)

Description:

XLRGetLengthLowHigh returns the current recording length (in bytes) in two 32-bit
variables. This function is provided for programming environments unable to handle 64 bit
integers.

If the StreamStor is in bank mode, the values returned will be for the recording on the
currently selected bank.

If data on the StreamStor was recorded in multi-channel mode, the values returned will be
for the data recorded on the currently selected channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

low is a pointer to a UINT32 (unsigned int) that will be written with the lower 32 bits of
the recording size in bytes.

high is a pointer to a UINT32 (unsigned int) that will be written with the upper 32 bits of
the recording size in bytes.

Return Value:

None

See Also:

XLRGetDirectory, XLRGetBankStatus, XLRSelectBank, XLRSetMode and
XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

67

XLRGetLengthPages

Syntax:

UINT32 XLRGetLengthPages(SSHANDLE xlrDevice)

Description:

XLRGetLengthPages returns the current recording length in units of system pages. This
function is provided for programming environments unable to handle 64 bit integers.
Windows environments typically utilize a page size of 4096 bytes but this should be checked
using a query to the operating system.

If the StreamStor is in bank mode, the value returned will be for the recording on the
currently selected bank.

If data on the StreamStor was recorded in multi-channel mode, the values returned will be
for the data recorded on the currently selected channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

Recording length in system pages.

See Also:

XLRGetDirectory, XLRGetBankStatus, XLRSelectBank, XLRSetMode and
XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

68

XLRGetMode

Syntax:

XLR_RETURN_CODE XLRGetMode(SSHANDLE xlrDevice, SSMODE pMode)

Description:

XLRGetMode returns the input/output path (or “port mode”) on the StreamStor recorder
where the mode was previously set with the XLRSetMode command.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pmode is a pointer to an SSMODE variable that will receive the mode.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrHandle;
XLR_RETURN_CODE xlrStatus;
SSMODE portMode;

xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRGetMode(xlrDevice, &portMode);

if(portMode == SS_MODE_SINGLE_CHANNEL)
{
 printf(“In single channel mode.\n”);
}
…

See Also:

XLRSetMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

69

XLRGetOption

Syntax:

XLR_RETURN_CODE XLRGetOption(SSHANDLE xlrDevice, UINT32
options_to_get, PBOOLEAN options_on)

Description

XLRGetOption is used to determine if one or more options are set.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

options_to_get is a vector of options to query.

options_on is the returned BOOLEAN indicating if all the options in options_to_get
are set. If TRUE, all of the options in options_to_get are set. If set to FALSE, one or
more of the options in options_to_get are not set.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
BOOLEAN options_on;

xlrStatus = XLROpen(1, &xlrDevice);

// See if an option is set.
xlrStatus = XLRGetOption(xlrDevice, SS_OPT_PLAYARM, &options_on);
if (options_on == TRUE)
{
 printf ("PlayArm option is set.\n");
}
else
{
 printf ("PlayArm option is not set.\n");
}

See Also:

XLRSetOption and XLRClearOption.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

70

XLRGetPartitionInfo

Syntax:

XLR_RETURN_CODE XLRGetPartitionInfo(SSHANDLE xlrDevice,
PS_PARTITIONINFO pPartitionInfo)

Description:

XLRGetPartitionInfo retrieves information from the StreamStor about the currently
selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pPartitionInfo is a pointer to an S_PARTITIONINFO structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_PARTITIONINFO partitionInfo;

// Open the device.
if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 printf(“ERROR: Open failed: %u\n”, XLRGetLastError());
 exit(-1);
}

if(XLRGetPartitionInfo(xlrDevice, &partitionInfo) != XLR_SUCCESS)
{
 printf(“ERROR: GetPartitionInfo failed: %u\n”, XLRGetLastError());
 exit(-1);
}

printf (“Number of partitions = %u\n”, partitionInfo.NumPartitions);

See Also:

XLRPartitionCreate, XLRPartitionDelete and XLRPartitionSelect.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

71

XLRGetPlayBufferStatus

Syntax:

XLR_RETURN_CODE XLRGetPlayBufferStatus(SSHANDLE xlrDevice,
PUINT32 status)

Description

XLRGetPlayBufferStatus retrieves the status of the playback buffer. The playback
buffer is used when the playback trigger is armed. See the SS_OPT_PLAYARM option of the
XLRSetOption command.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• status is a pointer to a UINT32 that will receive the playback buffer status, where
status is one of:

 SS_PBS_IDLE – The playback buffer is not in use.

 SS_PBS_FULL – The playback buffer is full and a playback is not in progress.

 SS_PBS_FILLING – Data is streaming into the playback buffer.

 SS_PBS_PLAYING – Data from the playback buffer is playing.

 SS_PBS_UNKNOWN – The status of the playback buffer cannot be determined.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

72

Usage:

// Example showing how to use the playback trigger and get
// the play buffer status.

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
UINT32 playBuffStatus;

XLROpen(1, &xlrDevice);

// Setup channel for playback …

// Prepare for playback.
xlrStatus = XLRSetOption(xlrDevice, SS_OPT_PLAYARM);

//
// Since the playback buffer is not in use yet, the status returned
// here should be SS_PBS_IDLE.
//
xlrStatus = XlrGetPlayBufferStatus(xlrDevice, &playBuffStatus);

//
// Since SS_OPT_PLAYARM has been set, this call to XLRPlayback
// will not cause the data to flow yet.
//
xlrStatus = XLRPlayback(xlrDevice, 0, 0);

//
// XLRPlayback has been called, but XLRPlayTrigger has not. The status
// of the playback buffer should be SS_PBS_FILLING now.
//
xlrStatus = XlrGetPlayBufferStatus(xlrDevice, &playBuffStatus);

//
// Call XlrGetPlayBufferStatus periodically until the status of
// the playback buffer is SS_PBS_FULL.
//
 . . .
//
// Buffer is now full, so call XLRPlayTrigger to start the data
// flowing out of the buffer.
//
xlrStatus = XLRPlayTrigger(xlrDevice);

 ... playback the desired length of time . . .

// Stop the playback.
XLRStop(xlrDevice);

See Also:

XLRPlayTrigger, XLRSetOption, and XLRPlayBack.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

73

XLRGetPlayLength

Syntax:

UINT64 XLRGetPlayLength(SSHANDLE xlrDevice)

Description:

XLRGetPlayLength returns the number of bytes that have been played back between
calling XLRPlayback and XLRStop.

You can call XLRGetPlayLength while the StreamStor is playing back. In this case,
however, the number of bytes played back is only an estimate (because the number of bytes
played back is updated internally approximately every three seconds).

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

Number of bytes played back. Zero is returned if an error occurred.

Usage:

SSHANDLE xlrDevice;
UINT32 addrHi, addrLow;
UINT64 bytesPlayed;
char errMessage[XLR_ERROR_LENGTH];
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
addrHi = 0;
addrLow = 0xFE120000;

xlrReturnCode = XLRPlayback(xlrDevice, addrLow, addrHi);
 …
XLRStop(xlrDevice);

// Get the number of bytes that were played back.
bytesPlayed = XLRGetPlayLength(xlrDevice);
if (bytesPlayed == 0) {
 printf (“Nothing got played back.\n”);
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("XLRGetPlayLength error: %s\n", errMessage);
}

See Also:

XLRPlayback and XLRSetPlaybackLength.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

74

XLRGetRecordedChannelInfo

Syntax:

XLR_RETURN_CODE XLRGetRecordedChannelInfo(SSHANDLE xlrDevice,
PS_RECDCHANNELINFO pRecdChannelInfo)

Description:

XLRGetRecordedChannelInfo retrieves information about the number of channels
recorded and which channel numbers are recorded on this StreamStor device.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pRecdChannelInfo is a pointer to a S_RECDCHANNELINFO structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_RECDCHANNELINFO channelInfo;
XLR_RETURN_CODE xlrStatus;
int i;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);

xlrStatus = XLRGetRecordedChannelInfo(xlrDevice, &channelInfo);
printf(“Number of Channels recorded %u\n”,
 channelInfo.NumChannelsRecorded);

for(i=0; i < channelInfo.NumChannelsRecorded; i++)
{

printf(“Channel number recorded: %u\n”,
 channelInfo.RecordedChannelNumber[i]);

}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

75

XLRGetSample

Syntax:

XLR_RETURN_CODE XLRGetSample(SSHANDLE xlrDevice, UINT32 bufSize,
PUINT32 pBuffer)

Description:

XLRGetSample retrieves sample data from StreamStor during a recording. Prior to calling
XLRGetSample, you must call XLRSetSampleMode to place the StreamStor in sampling
mode. In order to retrieve samples, data must be actively transferring to the StreamStor.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bufSize is the size of the buffer pointed to by pBuffer. This size must match the size
specified in the call to XLRSetSampleMode.

pBuffer is the pointer to the buffer to hold the sample data.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

#define SAMPLE_SIZE 0x800000
SSHANDLE xlrDevice;
PUINT32 pBuffer = NULL;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

…
pBuffer = (PUINT32)malloc(SAMPLE_SIZE);

// Turn on sampling.
xlrStatus = XLRSetSampleMode(xlrDevice,
 SAMPLE_SIZE, SS_SAMPLEMODE_NORMAL);

// Start recording.
xlrStatus = XLRRecord(xlrDevice, 0, 1);

// Wait a few seconds to get data flowing…

// Request first sample.
xlrStatus = XLRGetSample(xlrDevice, SAMPLE_SIZE, pBuffer);
 …

See Also:

XLRSetSampleMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

76

XLRGetSFPDPInterfaceStatus

Syntax:

XLR_RETURN_CODE XLRGetSFPDPInterfaceStatus(SSHANDLE xlrDevice,
UINT32 portNumber, PS_SFPDPStatus pSFPDPStatus)

Description:

XLRGetSFPDPInterfaceStatus retrieves information from the StreamStor SFPDP
daughterboard indicating the current status of one of the four SFPDP ports. Note: This is
only supported when a SFPDP Daughter Board is present. If your SFPDP Daughter Board
has only two lasers (two SFPDP ports), then the SFDPDP status for SFPDP Ports 3 and 4
is not valid.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

portNumber is the SFPDP port number used to select which SFPDP port data is to be
returned in the S_SFPDPStatus structure. Valid port numbers are 1, 2, 3, and 4.

pSFPDPStatus is a pointer to an S_SFPDPStatus structure that the SFPDP Status data
is returned in.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_SFPDPStatus sfpdpStatus;
XLR_RETURN_CODE xlrStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);

// Retrieve the SFPDP Status for SFPDP Port number 2
xlrStatus = XLRGetSFPDPInterfaceStatus(xlrDevice, 2, &sfpdpStatus);
if(sfpdpStatus.PortOpticalEngPrsnt)
 printf(“SFPDP Port 2 Optical Energy Present”);

See Also:

XLRGetRecordedChannelInfo

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

77

XLRGetSystemAddr

Syntax:

UINT32 XLRGetSystemAddr(SSHANDLE xlrDevice)

Description:

XLRGetSystemAddr returns the kernel address of the recording data window. This
address can be used from device drivers or other kernel level software. The address returned
from this function is NOT a valid user address.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns the physical PCI address as a 32 bit unsigned integer.

Usage:

UINT32 xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 // Error opening StreamStor.
}
else
{
 xlrAddress = XLRGetSystemAddr(xlrDevice);
}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

78

XLRGetUserDir

Syntax:

XLR_RETURN_CODE XLRGetUserDir(SSHANDLE xlrDevice, UINT32
xferLength,
 UINT32 offset, PVOID udirPtr)

Description:

XLRGetUserDir returns the user directory on the StreamStor recorder where the user
directory was previously set with the XLRSetUserDir command.

If the StreamStor is in bank mode, this command will return the user directory of the
currently selected bank.

If the StreamStor is partitioned, this command will return the user directory of the currently
selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

xferLength is the length of the user directory. The maximum size of a user directory is
XLR_MAX_UDIR_LENGTH.

offset is the beginning offset into the user directory.

udirPtr is a pointer to a buffer large enough to hold the expected user directory.

Note: This command can be very slow over the remote interface.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
char userDirBuff[1024];
UINT32 cirLength;

xlrStatus = XLROpen(1, &xlrDevice);
dirLength = XLRGetUserDirLength(xlrDevice);
if (dirLength == 0) {
 printf (“This system does not have a user directory.\n”);
}
else {
 xlrStatus = XLRGetUserDir (xlrDevice, dirLength, 0, userDirBuff);
}
 …
// Close device before exiting

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

79

XLRClose(xlrDevice);

See Also:

XLRSetUserDirectory, XLRGetUserDirLength, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

80

XLRGetUserDirLength

Syntax:

UINT32 XLRGetUserDirLength(SSHANDLE xlrDevice)

Description:

XLRGetUserDirLength returns the length (in bytes) of the user directory on the
StreamStor recorder where the user directory was previously set with the XLRSetUserDir
command.

If the StreamStor is in bank mode, this command will return the length of the user directory
on the currently selected bank.

If the StreamStor is partitioned, this command will return the length of the user directory on
the currently selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

Length of the user directory.

Usage:

UINT32 xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
char userDirBuff[1024];
UINT32 dirLength;
UINT32 offset;

xlrStatus = XLROpen(1, &xlrDevice);
dirLength = XLRGetUserDirLength(xlrDevice);
if (dirLength == 0)
{
 printf (“This system does not have a user directory.\n”);
}
else
{
 offset = 0;
 xlrStatus = XLRGetUserDir(xlrDevice, dirLength, offset, userDirBuff
);
}
 …
// Close device before exiting.
XLRClose(xlrDevice);

See Also:

XLRSetUserDir, XLRGetUserDir, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

81

XLRGetVersion

Syntax:

XLR_RETURN_CODE XLRGetVersion(SSHANDLE xlrDevice, PS_XLRSWREV
pVersion)

Description:

XLRGetVersion gets the API and firmware version information from a StreamStor device.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pVersion is a pointer to an S_XLRSWREV structure to hold the version strings returned.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_XLRSWVER swVersion;
char temp[XLR_ERROR_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRGetVersion(xlrDevice, &swVersion);
if(xlrReturnCode != XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(temp, xlrError);
 printf(“%s\n”, temp);
 exit(1);
}
printf(“Firmware version: %s\n”, swVersion.FirmwareVersion);

See Also:

XLRApiVersion and XLRGetDBInfo.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

82

XLRGetWrapLength

Syntax:

UINT64 XLRGetWrapLength(SSHANDLE xlrDevice)

Description:

XLRGetWrapLength returns the amount of data recorded plus the amount of data
overwritten during a wrapped recording.

If the StreamStor is in bank mode, this command will return the wrap length of data on the
currently selected bank.

If data on the StreamStor was recorded in multi-channel mode, this command will return the
wrap length for the currently selected channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

The wrap length, in bytes, returned as a 64 bit integer.

Usage:

SSHANDLE xlrHandle;
UINT64 wrapLength;
UINT64 recordedLength;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrHandle);

// Record data in wrap mode.
xlrReturnCode = XLRRecord(xlrHandle, 1,1);

 . . . record until the recording wraps . . .

xlrReturnCode = XLRStop(xlrHandle);

// Get the amount of data that is available for reading
recordedLength = XLRGetLength(xlrHandle);

// Get the total amount of data recorded, i.e.,
// recordedLength + the number of overwritten bytes.
wrapLength = XLRGetWrapLength(xlrHandle);

See Also:

XLRGetDirectory, XLRGetLength, XLRGetBankStatus, XLRSelectBank,
XLRSetMode and XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

83

XLRGetWindowAddr

Syntax:

PUINT32 XLRGetWindowAddr(SSHANDLE xlrDevice)

Description:

XLRGetWindowAddr returns the user virtual address of the recording data window. This
address can be used to directly write data to the StreamStor device from a user program.

If using multi-channel PCI Express and virtual channels, call XLRSelectChannel then
bind the channels you want to use. Once all channels have been bound, to get the user
virtual address for a specific virtual channel, call XLRSelectChannel to select the channel,
and then call XLRGetWindowAddr to get the virtual address for the channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns a pointer to the data window mapped into the user virtual address
space.

Usage:

PUINT32 xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn == XLR_SUCCESS)
{
 xlrAddress = XLRGetWindowAddr(xlrDevice);
 *xlrAddress = someData;

 // someData has been written to the StreamStor device. Note that
 // xlrAddress does not need to be incremented for subsequent writes.
}

See Also:

XLRGetBaseAddr, XLRGetBaseRange and XLRSetMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

84

XLRMountBank

Syntax:

XLR_RETURN_CODE XLRMountBank(SSHANDLE xlrDevice, UINT32 bankId)

Description:

XLRMountBank will power up the selected bank. A dismounted bank can also be re-
powered by a key off-on transition.

A mounted bank can be powered off by a key on-off transition or by calling
XLRDismountBank.

If you attempt to mount a bank that is already mounted, no action is taken and
XLR_SUCCESS is returned.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bankID is a constant indicating the bank to be mounted (BANK_A or BANK_B).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
S_BANKSTATUS AbankStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

xlrStatus = XLRSetBankMode (xlrDevice, SS_BANKMODE_NORMAL);
xlrStatus = XLRGetBankStatus (xlrDevice, BANK_A, &AbankStatus);
if (AbankStatus.MediaStatus == MEDIASTATUS_FULL)
{
 printf (“BANK A is full. Wait for bank to dismount\n”);
 printf (“then insert new bank module into BANK A.\n”);
 xlrStatus = XLRDismountBank (xlrDevice, BANK_A);
 … wait for new bank to be inserted …
 xlrStatus = XLRMountBank (xlrDevice, BANK_A);
}

See Also:

XLRDismountBank, XLRGetBankStatus, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

85

XLRNetOpen

Syntax:

XLR_RETURN_CODE XLRNetOpen(UINT32 devType, const char *address,
USHORT port, SSHANDLE *pXlrHandle)

Description:

XLRNetOpen opens a remote StreamStor device over an Ethernet link and initializes the
hardware and firmware in preparation for recording on an external interface. The device is
transitioned to system ready state if required. This function must be called before any other
API function if using an Ethernet interface to StreamStor. After successful completion of
this function, the handle pointed to by pXlrHandle can be used for all subsequent API
calls.

NOTE: You should call XLRClose even if XLRNetOpen returns XLR_FAIL.

Parameters:

devType identifies the type of StreamStor to open, where devType is one of:

 SS_NET_TYPE_LTX2 – indicates the device to be opened is an LTX2.

 SS_NET_TYPE_REMOTE – indicates the device to be opened is a remote
StreamStor server.

address is a pointer to an array with a valid IPv4 address in dotted-quad notation
(xxx.xxx.xxx.xxx), i.e. (“127.0.0.1”).

port indicates which network port the connection to StreamStor should be made on
(default is 10001).

pXlrHandle is a pointer to a system handle for initialization. Successful completion loads
this parameter with a valid handle to the hardware device to use in subsequent API calls.
*pXlrHandle is assigned the value INVALID_SSHANDLE on failure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

86

Usage:

SSHANDLE xlrHandle;
UINT32 xlrError;
char errString[XLR_ERROR_LENGTH];

if(XLRNetOpen(SS_NET_TYPE_LTX2, “127.0.0.1”, 10001, &xlrHandle) !=
XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(errString, xlrError);
 printf(“%s\n”, errString);
 XLRClose(xlrHandle);
 exit(1);
}
.
.
.
XLRClose(xlrHandle);

See Also:

XLRClose.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

87

XLRNetCardReset

Syntax:

XLR_RETURN_CODE XLRNetCardReset(UINT32 devType, const char
*address, USHORT port)

Description:

XLRNetCardReset resets the remote StreamStor device over an Ethernet link and resets
the device. See XLRCardReset for more information. The device is closed after returning
from this function and must be opened normally with XLRNetOpen.

Parameters:

devType identifies the type of StreamStor to reset, where devType is one of:

 SS_NET_TYPE_LTX2 – indicates the device to be opened is an LTX2.

 SS_NET_TYPE_REMOTE – indicates the device to be opened is a remote
StreamStor server.

address is a pointer to an array with a valid IPv4 address in dotted-quad notation
(xxx.xxx.xxx.xxx), i.e. (“127.0.0.1”). It identifies the StreamStor device to reset.

port indicates which network port the connection to StreamStor should be made on
(default is 10001).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

88

Usage:

UINT32 xlrError;
char errString[XLR_ERROR_LENGTH];

if(XLRNetCardReset(SS_NET_TYPE_LTX2, “127.0.0.1”, 10001) !=
XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(errString, xlrError);
 printf(“Reset failed. Error = %s\n”, errString);
 exit(1);
}

See Also:

XLRClose.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

89

XLROpen

Syntax:

XLR_RETURN_CODE XLROpen(UINT32 devIndex, SSHANDLE *pXlrHandle)

Description:

XLROpen opens a StreamStor device and initializes the hardware and firmware in
preparation for recording. The device is transitioned to system ready state if required. This
function must be called before any other API function. After successful completion of this
function, the handle pointed to by pXlrHandle can be used for all subsequent API calls.

NOTE: You should call XLRClose even if XLROpen returns XLR_FAIL.

Parameters:

devIndex identifies the desired StreamStor to open when multiple StreamStor devices are
in use. Use 1 for single card systems. Use XLRDeviceFind to find the number of devices
installed.

pXlrHandle is a pointer to a system handle for initialization. Successful completion loads
this parameter with a valid handle to the hardware device to use in subsequent API calls.
*pXlrHandle is assigned the value INVALID_SSHANDLE on failure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrHandle;
XLR_RETURN_CODE xlrReturnCode;
UINT32 xlrError;
char errString[XLR_ERROR_LENGTH];

xlrReturnCode = XLROpen(1, &xlrHandle);
if(xlrReturnCode != XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(errString, xlrError);
 printf(“%s\n”, errString);
 XLRClose(xlrHandle);
 exit(1);
}
.
.
.
XLRClose(xlrHandle);

See Also:

XLRClose, XLRDeviceFind, XLRSetBankMode, and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

90

XLRPartitionCreate

Syntax:

XLR_RETURN_CODE XLRPartitionCreate(SSHANDLE xlrDevice, UINT64
length)

Description:

XLRPartitionCreate will create a new partition following any previously created
partitions. A maximum of XLR_MAX_PARTITIONS partitions are allowed.

Note that you cannot create a partition at a specific offset on the StreamStor device.
Instead, the StreamStor will determine where to create the partition.

The size of the partition that is created will not be exactly the size requested (i.e., it will not
equal length). Because of hardware limitations, etc. the size of the partition is rounded up
to certain block boundaries, so it will be bigger than length. Also, note that each partition
created has overhead associated with it. Therefore, the total capacity of a system is not
available for partitioning, since a portion of the available space is reserved to manage the
partition overhead. The estimated overhead can be calculated using the number of drives
and the factor XLR_PARTOVERHEAD_BYTES. Please see the example program
XLRPartitionExample.c in the SDK for sample calculations.

You must create the first partition on an empty StreamStor device. That is, if the StreamStor
has data on it that was created when the system was not partitioned, the data must first be
erased. Then you can create partitions. Once a device is partitioned, you can create new
partitions on it at any time.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

length is the size in bytes of the partition to create. On so-called Generation 5 boards
such as the Amazon Express, you can specify a length of all F’s (for example,
0xFFFFFFFFFFFFFFFFULL), to indicate that you want to create the largest partition
possible.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

91

Usage:

SSHANDLE xlrDevice;
S_PARTITIONINFO pInfo;

if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 printf(“Error: Open failed: %u\n”, XLRGetLastError());
 exit(-1);
}

//
// By default, the StreamStor device is not partitioned. To
// determine if the device is partitioned, call XLRGetPartitionInfo.
//
if (XLRGetPartitionInfo(xlrDevice, &pInfo) != XLR_SUCCESS)
{
 printf ("Error: Cannot get partitioning information: %u\n",
 XLRGetLastError());
 exit(1);
}
if(pInfo.Partitioned == TRUE)
{
 printf ("This StreamStor device is partitioned.\n");
 // Since the device is already partitioned, we can create
 // new partitions now – we don’t have to erase pre-existing
 // data.
}
else
{
 printf ("This StreamStor device is NOT partitioned.\n");
 // If the device has any data (or a user directory) on it,
 // it must first be erased before we can begin partitioning the
 // device.
 if(XLRErase(xlrDevice, SS_OVERWRITE_PARTITION) != XLR_SUCCESS)
 {
 printf (“Error: Cannot erase: %u\n”, XLRGetLastError());
 exit(1);
 }
}

// Create a partition. If this is the first partition to be created
// on the device, it will be assigned a partition number of 0.
// If it is not the first partition, XLRPartitionCreate will
// assign it the next available partition number.
if (XLRPartitionCreate(xlrDevice, 0x10000000) != XLR_SUCCESS)
{
 printf(“Error: PartitionCreate failed: %u\n”, XLRGetLastError());
 exit(-1);
}

See Also:

XLRPartitionSelect, XLRPartitionDelete and XLRGetPartitionInfo.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

92

XLRPartitionDelete

Syntax:

XLR_RETURN_CODE XLRPartitionDelete(SSHANDLE xlrDevice, UINT32
partition)

Description:

XLRPartitionDelete will delete the last partition on the StreamStor device.

To delete the last partition, you must first call XLRSelectPartition to select a partition
other than the last partition.

If there is only one partition on the device, select partition 0 (zero) and then call
XLRPartitionDelete. The effect of deleting the only partition on the device is the same
as if XLRErase was called with the SS_OVERWRITE_PARTITION option.

IMPORTANT: XLRPartitionDelete will ignore write protection.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

partition is the number of the last partition on the device.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DIR dir;
S_PARTITIONINFO reported;
UINT32 partitionToDelete;

if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 printf(“Error: Open failed: %u\n”, XLRGetLastError());
 exit(-1);
}

if(XLRGetPartitionInfo(xlrDevice, &reported) != XLR_SUCCESS)
{
 printf(“Error: GetPartitionInfo failed: %u\n”,
 XLRGetLastError());
 XLRClose(xlrDevice);
 exit(-1);
}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

93

if(reported.Partitioned == FALSE) {
 printf(“This device is not partitioned.\n”);
 XLRClose(xlrDevice);
 exit(0);
}

// Partition numbering starts at zero. You can only delete the
// last partition.
partitionToDelete = reported.NumPartitions – 1;

// XLRPartionDelete ignores write protection, so explicitly check for
// write protection on the partition before trying to delete it.
if(XLRPartitionSelect(xlrDevice, partitionToDelete) != XLR_SUCCESS)
{
 printf(“Error: PartitionSelect failed: %u\n”, XLRGetLastError());
 XLRClose(xlrDevice);
 exit(-1);
}
if(XLRGetDirectory(xlrDevice, &dir) != XLR_SUCCESS)
{
 printf(“Error: XLRGetDirectory failed: %u\n”, XLRGetLastError());
 XLRClose(xlrDevice);
 exit(-1);
}
if(dir.WriteProtected == TRUE) {
 printf(“Error: This partition is write protected.\n”);
 XLRClose(xlrDevice);
 exit(-1);
}

// You cannot delete the currently selected partition (unless there is
// only one partition on the device), so to make sure that some
// other partition is selected, we select partition 0.
if(XLRPartitionSelect(xlrDevice, 0) != XLR_SUCCESS)
{
 printf(“Error: PartitionSelect failed: %u\n”, XLRGetLastError());
 XLRClose(xlrDevice);
 exit(-1);
}

// Note how we specify the partition we want to delete in the
// XLRPartitionDelete command.
if(XLRPartitionDelete(xlrDevice, partitionToDelete) != XLR_SUCCESS)
{
 printf(“Error: PartitionDelete failed: %u\n”, XLRGetLastError());
 XLRClose(xlrDevice);
 exit(-1);
}

See Also:

XLRPartitionCreate, XLRPartitionResize, XLRGetPartitionInfo,
XLRPartitionSelect.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

94

XLRPartitionResize

Syntax:

XLR_RETURN_CODE XLRPartitionResize(SSHANDLE xlrDevice, UINT64
newSize)

Description:

XLRPartitionResize will resize the last partition on the StreamStor device.

If the requested newSize would result in the loss of data, the resize will not be done and
XLRPartitonResize will return XLR_FAIL.

To resize the partition, you must first select it with the XLRSelectPartition command.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

newsize is the desired new length for the last partition.

If the partition is not empty:

 If newsize is non-zero, the partition will be resized as close as possible to
newsize. newsize must be greater than the amount of recorded data.

 If newsize is zero, then the partition will be resized as close as possible to the size
of the recorded data.

It the partition is empty:

 newsize must be greater than zero. The partition will be resized as close as
possible to newsize.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

95

Usage:

SSHANDLE xlrDevice;
UINT64 newSize=1048576;

if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 printf(“Error: Open failed: %u\n”, XLRGetLastError());
 exit(-1);
}

// Assume the last partition created was partition 10. You must
// select it before attempting to resize it.

if(XLRPartitionSelect(xlrDevice, 10) != XLR_SUCCESS)
{
 printf(“Error: PartitionSelect failed: %u\n”, XLRGetLastError());
 exit(-1);
}

if(XLRPartitionResize(xlrDevice, newSize) != XLR_SUCCESS)
{
 printf(“Error: PartitionResize failed: %u\n”, XLRGetLastError());
 exit(-1);
}

See Also:

XLRPartitionCreate, XLRPartitionDelete, XLRGetPartitionInfo,
XLRPartitionSelect.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

96

XLRPartitionSelect

Syntax:

XLR_RETURN_CODE XLRPartitionSelect(SSHANDLE xlrDevice, UINT32
partition)

Description:

XLRPartitionSelect will select an already existing partition. Partitions are numbered
starting at 0. Thus, a 5 partition system will contain partitions: 0, 1, 2, 3, and 4.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

partition is the partition number to select.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;

if(XLROpen(1, &xlrDevice) != XLR_SUCCESS)
{
 printf(“Error: Open failed: %u\n”, XLRGetLastError());
 exit(-1);
}

if(XLRPartitionSelect(xlrDevice, 4) != XLR_SUCCESS)
{
 printf(“Error: PartitionSelect failed: %u\n”, XLRGetLastError());
 exit(-1);
}

See Also:

XLRPartitionCreate, XLRPartitionDelete and XLRGetPartitionInfo.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

97

XLRPlayback

Syntax:

XLR_RETURN_CODE XLRPlayback(SSHANDLE xlrDevice, UINT32 Addrhigh,
UINT32 Addrlow)

Description:

XLRPlayback puts StreamStor into playback mode where data is made available for
transfer to an outside device. The supplied address will be used to set the starting point of
the data to be made available for transfer.

Playback continues until:

• XLRStop is called to halt the playback or
• all data is played back or
• a play limit (see XLRSetPlaybackLength) is reached.

This function can be used for streaming data out the external (FPDP or SFPDP) port or it
can be used in conjunction with XLRSetReadLimit to allow a PCI device to source data
from StreamStor.

The playback address must be an eight-byte aligned value.

If the StreamStor is in bank mode, this command will play back data from the currently
selected bank.

If data was recorded on multiple channels:

• Before playing back data, you must first select the channel upon which the data was
recorded and then bind it as the input channel.

• If you are playing back a single channel, you can specify a non-zero starting point
with XLRPlayback. However, if you are attempting to playback more than one
channel simultaneously, you cannot specify a non-zero starting point. Instead, you
must set AddrHigh and AddrLow to zero.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

AddrHigh is the upper 32-bit value of the 64-bit address to begin reading.

AddrLow is the lower 32-bit value of the 64-bit address to begin reading.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

98

Usage:

// This example shows how you can stream data out the external
// (FPDP) port.

#include <stdio.h>
#include <stdlib.h>
#include "xlrapi.h"

int main(int argc, char *argv[])
{
 SSHANDLE xlrDevice;
 S_DEVINFO devInfo;
 UINT64 bytesPlayed;
 UINT64 offset;
 UINT64 recordingLength;
 UINT32 AddrHi;
 UINT32 AddrLo;
 XLR_RETURN_CODE xlrStatus;
 char errMessage[XLR_ERROR_LENGTH];

 xlrStatus = XLROpen(1, &xlrDevice);
 if(xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error opening device: %s\n", errMessage);
 exit(1);
 }

 xlrStatus = XLRGetDeviceInfo(xlrDevice, &devInfo);
 if(xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error getting device information: %s\n", errMessage);
 XLRClose(xlrDevice);
 exit(1);
 }

 // Use the external port for playback.
 xlrStatus = XLRSetMode(xlrDevice, SS_MODE_SINGLE_CHANNEL);
 if(xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error setting the mode: %s\n", errMessage);
 XLRClose(xlrDevice);
 exit(1);
 }

 xlrStatus = XLRBindInputChannel(xlrDevice, 0);
 if(xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error setting the mode: %s\n", errMessage);
 XLRClose(xlrDevice);
 exit(1);
 }

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

99

 xlrStatus = XLRBindOutputChannel(xlrDevice, 0);
 if(xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error setting the mode: %s\n", errMessage);
 XLRClose(xlrDevice);
 exit(1);
 }

 recordingLength = XLRGetLength(xlrDevice);
 if (recordingLength == 0)
 {
 printf ("No data to playback.\n");
 XLRClose(xlrDevice);
 exit(0);
 }
 // Set the FPDP mode. SS_FPDP_XMIT does not drive the clock.
 xlrStatus = XLRSetDBMode(xlrDevice,SS_FPDP_XMIT,0);
 if (xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error setting FPDP mode: %s\n", errMessage);
 XLRClose(xlrDevice);
 exit(1);
 }

 // An offset of zero starts playback at the beginning.
 offset= 0;

 AddrHi = offset >> 32;
 AddrLo = offset & 0xFFFFFFFF;

 // Start the playback.
 xlrStatus = XLRPlayback(xlrDevice, AddrHi, AddrLo);
 if (xlrStatus != XLR_SUCCESS)
 {
 XLRGetErrorMessage(errMessage, XLRGetLastError());
 printf("Error with playback: %s\n", errMessage);
 XLRClose(xlrDevice);
 exit(1);
 }

 ... Sleep, allowing playback to continue...

 // Stop playback.
 XLRStop (xlrDevice);

 bytesPlayed = XLRGetPlayLength(xlrDevice);
 printf ("Number of bytes played = %llu\n", bytesPlayed);

 XLRClose(xlrDevice);
}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

100

See Also:

XLRStop, XLRRead, XLRSetPlaybackLength, XLRGetPlayLength,
XLRSetMode, XLRSetDBMode, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

101

XLRPlaybackLoop

Syntax:

XLR_RETURN_CODE XLRPlaybackLoop(SSHANDLE xlrDevice, UINT32
startHigh, UINT32 startLow, UINT32 lengthHigh, UINT32 lengthLow)

Description

XLRPlaybackLoop starts data playback and loops back to the start position when the end
of data is reached or when the requested playback length is reached.

startHigh and startLow designate the start position, i.e., the requested offset into the
device at which to begin playback.

lengthHigh and lengthLow designate the playback length, i.e., the requested number of
bytes to play. If the playback length is zero, the StreamStor will play back all of the data and
then “loop”, playing back data beginning at the start position. Playback will continue
looping until XLRStop is called. If the playback length is not zero, then looping will occur
when the number of bytes played equals the requested playback length.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

startHigh is the upper 32 bits of the 64 bit value that identifies the start position for the
playback.

startLow is the lower 32 bites of the 64 bit value that identifies the start position for the
playback.

lengthHigh is the upper 32 bits of the 64 bit value that identifies the playback length.

lengthLow is the lower 32 bits of the 64 bit value that identifies the playback length.

The playback length must be an eight byte-aligned value.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

XLROpen(1, &xlrDevice);

 … Set up channel for playback …

//
// Start playing data beginning at offset 0. Then, after all data has
// been played, automatically loop back to offset 0 and continue
// playback.

xlrStatus = XLRPlaybackLoop(xlrDevice, 0, 0);

See Also:

XLRPlayback and XLRSetPlaybackLength.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

103

XLRPlayTrigger

Syntax:

XLR_RETURN_CODE XLRPlayTrigger(SSHANDLE xlrDevice)

Description

XLRPlayTrigger starts read data flowing.

When XLRPlayback is called, preparations are made internally on the StreamStor to begin
playback. When preparations are complete, the data begins to flow. So, there is a delay
between the call to XLRPlayback and the flow of data. To minimize the delay, you can call
XLRSetOption to set the SS_OPT_PLAYARM option. Setting this option causes the
preparations for playback to be made, but playback does not start until XLRPlayTrigger
is called.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

// Example showing how to arm the StreamStor for playback.

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

XLROpen(1, &xlrDevice);

// Set up channel for playback …

// Arm the playback trigger.
xlrStatus = XLRSetOption(xlrDevice, SS_OPT_PLAYARM);

//
// Since SS_OPT_PLAYARM has been set, this call to XLRPlayback
// will not cause the data to flow yet.
//
xlrStatus = XLRPlayback(xlrDevice, 0, 0);

//
// If we do not sleep here, then the playback will work as
// it does ordinarily. If instead we sleep, the internal
// playback buffer will fill up. This should take no
// longer than three seconds.
//
 ... sleep, allowing playback buffer to fill ...

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

104

//
// The playback buffer should now be full. Start the data flowing
// out of the buffer.
//
xlrStatus = XLRPlayTrigger(xlrDevice);

 ... playback the desired length of time . . .

// Stop the playback.
XLRStop(xlrDevice);

See Also:

XLRSetOption,XLRGetPlayBufferStatus, and XLRPlayback.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

105

XLRRead

Syntax:

XLR_RETURN_CODE XLRRead(SSHANDLE xlrDevice, PS_READDESC
pReadDesc)

Description:

XLRRead reads data from the StreamStor device.

The address of the requested data must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will read data from the currently selected
bank.

If data was recorded on multiple channels, you must first select the channel upon which the
data was recorded and then bind that channel to the output channel, which in the case of
XLRRead should always be the PCI bus (channel 0). The StreamStor SDK has multi-
channel examples in the example directory which demonstrate channel binding.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pReadDesc is a pointer to an S_READDESC structure that holds the read address, length
and buffer address for the read data.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
UINT32 myBuffer[40000];
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
//AddrHi and AddrLo must represent an appropriately aligned address.
readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLRRead(xlrDevice, &readDesc);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

106

See Also:

XLRPlayback, XLRSetMode, XLRSetDBMode, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

107

XLRReadData

Syntax:

XLR_RETURN_CODE XLRReadData(SSHANDLE xlrDevice, PUINT32 Buffer,
UINT32 AddrHigh, UINT32 AddrLow, UINT32 XferLength)

Description:

XLRReadData reads data from the StreamStor device. This function is identical to
XLRRead without the structure to pass request parameters.

The address of the requested data must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will read data from the currently selected
bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Buffer is the address of the user memory buffer to hold the requested data.

AddrHigh is the upper 32 bits of a 64-bit byte address of the requested data.

AddrLow is the lower 32 bits of a 64-bit byte address of the requested data.

XferLength is the number of bytes requested.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;
UINT32 myBuffer[40000];

xlrReturnCode = XLROpen(1, &xlrDevice);

…
//AddrHigh and AddrLow must represent an appropriately aligned address.
xlrReturnCode = XLRReadData(xlrDevice, myBuffer, 0, 0xFE120000,
sizeof(myBuffer));

See Also:

XLRRead, XLRSetMode, XLRSetDBMode, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

108

XLRReadFifo

Syntax:

XLR_RETURN_CODE XLRReadFifo(SSHANDLE xlrDevice, PUINT32 Buffer,
UINT32 Length, BOOLEAN Direct)

Description:

XLRReadFifo reads data from the StreamStor device during a FIFO operation. Data can
continue to be read with this function until the FIFO is empty or XLRStop is called. Note
that the device must be in record mode when XLRReadFifo is called. A second call to
XLRStop is required to take the StreamStor out of record mode.

For general information on FIFOs, please refer to the Forking and Passthru chapter of this
manual. XLRGetFIFOLengthExample.c (which is in the StreamStor SDK example
directory) shows how to use various FIFO commands.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Buffer is the address of the buffer to receive the read data.

Length is the length of data to transfer in bytes.

Direct is a flag that indicates if the supplied Buffer address is a physical address for
direct transfer. For normal transfer to a user memory buffer this flag should be FALSE (0).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;
UINT32 myBuffer[40000];

xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRReadFifo(xlrDevice, myBuffer, sizeof(myBuffer),
FALSE);

See Also:

XLRGetFifoLength, XLRRecord, XLRSetDBMode, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

109

XLRReadImmed

Syntax:

XLR_RETURN_CODE XLRReadImmed(SSHANDLE xlrDevice, PS_READDESC
pReadDesc)

Description:

XLRReadImmed reads data from the StreamStor device without waiting for completion.
You must receive XLR_READ_COMPLETE status from XLRReadStatus before any other
commands can be issued. Note that only a single outstanding request is allowed per
execution thread.

The address of the requested data must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will read data from the currently selected
bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pReadDesc is a pointer to an S_READDESC structure that holds the read address, length
and buffer address for the read data.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

110

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
UINT32 myBuffer[40000];
XLR_READ_STATUS readStatus;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…

//AddrHi and AddrLo must represent an appropriately aligned address.
readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLRReadImmed(xlrDevice, &readDesc);

/* DO SOME NON-STREAMSTOR RELATED WORK HERE */

readStatus = XLRReadStatus(TRUE);
if(readStatus != XLR_READ_COMPLETE)
{
 /* PROCESS ERROR! */
}

See Also:

XLRReadStatus, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

111

XLRReadSmartThresholds

Syntax:

XLR_RETURN_CODE XLRReadSmartThresholds(SSHANDLE xlrDevice,
S_SMARTTHRESHOLDS values[], UINT32 Bus, UINT32 MasterSlave)

Description:

XLRReadSmartThresholds returns the SMART threshold values that are provided by
the disk drive vendor’s self monitoring facility. To interpret the values returned, please refer
to the ATA specifications or to the disk drive vendor’s documentation.

If the StreamStor is in bank mode, this command will return the values for the specified
drives on the currently selected bank.

This function is only supported on disk drives that support self monitoring. You can call
XLRGetDriveInfo then examine the returned SMARTCapable value to determine this.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

values is a pointer to an array of S_SMARTTHRESHOLDS structures. The array must be
large enough to hold at least XLR_MAX_SMARTVALUES structures.

Bus is the ATA bus number of the drive.

MasterSlave is XLR_MASTER_DRIVE (0) or XLR_SLAVE_DRIVE (1) to select the master
or slave drive on the ATA bus.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_SMARTTHRESHOLDS thresholds[XLR_MAX_SMARTVALUES];

xlrStatus = XLROpen(1, &xlrDevice);

…
if(XLRReadSmartThresholds(hTarget, thresholds, 3, XLR_MASTER_DRIVE !=
XLR_SUCCESS)
{
 printf(“Threshold information not available for Bus 3 Master
drive.\n”);
}
else
{
 … Interpret the thresholds …
}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

112

See Also:

XLRReadSmartValues, XLRGetDriveInfo, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

113

XLRReadSmartValues

Syntax:

XLR_RETURN_CODE XLRReadSmartValues(SSHANDLE xlrDevice,
PUSHORT version, S_SMARTTHRESHOLDS values[], UINT32 Bus, UINT32
MasterSlave)

Description:

XLRReadSmartValues returns the SMART values that are provided by the disk drive
vendor’s self monitoring facility. To interpret the values returned, please refer to the ATA
specifications or to the disk drive vendor’s documentation.

If the StreamStor is in bank mode, this command will return the values for the specified
drives on the currently selected bank.

This function is only supported on disk drives that support self monitoring. You can call
XLRGetDriveInfo then examine the returned SMARTCapable value to determine
this.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

version is the SMART attributes data structure revision number, as reported by the disk
drive vendor.

values is a pointer to an array of S_SMARTVALUES structures. The array must be large
enough to hold XLR_MAX_SMARTVALUES structures.

Bus is the ATA bus number of the drive.

MasterSlave is XLR_MASTER_DRIVE (0) or XLR_SLAVE_DRIVE (1) to select the master
or slave drive on the ATA bus.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

114

Usage:

SSHANDLE xlrDevice;
USHORT version;
XLR_RETURN_CODE xlrStatus;
S_SMARTVALUES smartVals[XLR_MAX_SMARTVALUES];

xlrStatus = XLROpen(1, &xlrDevice);

…
if(XLRReadSmartValues(hTarget, &version, smartVals,
 1, XLR_MASTER_DRIVE != XLR_SUCCESS)
{
 printf(“Smart values not available for Bus 1 Master drive.\n”);
}
else
{
 … Interpret the SMART values …
}

See Also:

XLRReadSmartThresholds, XLRGetDriveInfo, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

115

XLRReadStatus

Syntax:

XLR_RETURN_CODE XLRReadStatus(BOOLEAN Wait)

Description:

XLRReadStatus checks status of a read request issued with XLRReadImmed data from
the StreamStor device.

If the StreamStor is in bank mode, this command will check the status of the currently
selected bank.

Parameters:

Wait is a flag to indicate whether to wait for completion of the read request. If TRUE, the
function will not return until the read is complete or an error has occurred.

Return Value:

If the read request has completed: XLR_READ_COMPLETE
If the read request is waiting to execute: XLR_READ_WAITING
If the read request is currently executing: XLR_READ_RUNNING
If an error occurred during execution of the request: XLR_READ_ERROR

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
UINT32 myBuffer[40000];
XLR_READ_STATUS readStatus;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLRReadImmed(xlrDevice, &readDesc);

while(moreWork)
{
 /* DO OTHER WORK HERE */
 readReturnCode = XLRReadStatus(FALSE);
 if(readStatus == XLR_READ_ERROR)
 {
 /* PROCESS ERROR! */
 }
 else if(readStatus == XLR_READ_COMPLETE)
 break;
}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

116

See Also:

XLRReadImmed, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

117

XLRReadToPhy

Syntax:

XLR_RETURN_CODE XLRReadToPhy(SSHANDLE xlrDevice, PS_READDESC
pReadDesc)

Description:

XLRReadToPhy reads data from the StreamStor device and writes directly to a supplied
physical hardware address. This function is intended only for moving data between
StreamStor and another device on the bus. The buffer address supplied MUST be a physical
address and the entire transfer size must be available. The supplied address and length will
be used to directly program the StreamStor DMA to transfer the data. Specifying incorrect
addresses to this function can cause system crashes and instability.

The address of the requested data must be an eight byte-aligned value.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pReadDesc is a pointer to an S_READDESC structure that holds the read address, length
and physical address for the read data.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
//AddrHi and AddrLo must represent an appropriately aligned address.
readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = XLRGetBaseRange(xlrDevice);
readDesc.BufferAddr = myDeviceAddress;

xlrReturnCode = XLRReadToPhy(xlrDevice, &readDesc);

See Also:

XLRPlayback.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

118

XLRRecord

Syntax:

XLR_RETURN_CODE XLRRecord(SSHANDLE xlrDevice, BOOLEAN
WrapEnable, SHORT ZoneRange)

Description:

XLRRecord starts the record mode of the StreamStor device. After a successful call of this
function, the StreamStor device will record to disk any data written to its data window on
PCI or to its external data port. Recording will continue until the device is full or until
XLRStop is called (whichever occurs first.)

Note:

 If the StreamStor is in bank mode, this command will record on the currently
selected bank.

 If the StreamStor is partitioned, this command will record on the currently selected
partition.

 If the StreamStor is in multi-channel mode, this command will record on all channels
that you have bound for input (with XLRBindInputChannel).

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

WrapEnable should be set to 1 to allow StreamStor to operate as a circular buffer. The
oldest data will be overwritten if more data is received than is available on the disk drives.
To force StreamStor to stop accepting data at the disk storage limits, set this parameter to 0.

ZoneRange is not currently supported and should be set to 1.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
// Start recording data but ensure that no captured data is
// overwritten.
xlrReturnCode = XLRRecord(xlrDevice, 0, 1);

/* System is now recording . . . */

// End the recording.
XLRStop(xlrDevice);

See Also:

XLRAppend, XLRWrite, XLRStop, XLRSetBankMode, XLRSelectBank,
XLRPartitonSelect, XLRSetMode and XLBBindInputChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

120

XLRRecoverData

Syntax:

XLR_RETURN_CODE XLRRecoverData(SSHANDLE xlrDevice, IN UINT32
Mode)

Description:

XLRRecoverData attempts to recover data.

If partitioning was used on the system, prior to calling XLRRecoverData, you should call
XLRPartitionSelect to select the partition that was in use prior to the failure (or prior
to the overwrite).

XLRRecoverData does not recover the user directory or label - it will only attempt to
recover the main data area. The last partial block of data may be truncated upon recovery,
so you may lose up to 64K bytes of data.

Note that in some cases, no recovery or only partial recovery of data is possible. It is the
user’s responsibility to verify the integrity of any recovered data and, if necessary, truncate
any corrupted data from the recording.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Mode is the type of recovery that is to be performed.
 If a recording has ended without calling XLRStop (as might happen if the

StreamStor’s power fails), StreamStor’s directory may be corrupted. To recover data
in this case, set Mode to SS_RECOVER_POWERFAIL.

 If a recording has been partially overwritten, the data that has not been overwritten
may be recoverable. To recover data in this case, set Mode to
SS_RECOVER_OVERWRITE.

 If a recording has been accidentally erased, but not overwritten, the data may still be
recoverable. To recover data in this case, set Mode to SS_RECOVER_UNERASE.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…

// Attempt to repair StreamStor directory and recover data.
xlrReturnCode = XLRRecoverData(xlrDevice, SS_RECOVER_POWERFAIL);

See Also:

XLRPartitionSelect.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

122

XLRReset

Syntax:

XLR_RETURN_CODE XLRReset(SSHANDLE xlrDevice)

Description:

XLRReset will attempt to reset a StreamStor device and re-initialize the hardware and
firmware. This function should be used only as a last resort.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRReset(xlrDevice);

See Also:

XLRCardReset.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

123

XLRRetrieveEvents

Syntax:

XLR_RETURN_CODE XLRRetrieveEvents(SSHANDLE xlrDevice, UINT64
EventLog[])

Description:

XLRRetrieveEvents downloads an array of 64 bit integers into the EventLog array.
Each integer is an offset into the current recording. An “event” is recorded for each FPDP
*SYNC pulse if the SS_OPT_FPDPEVENTLOG option is set in XLRSetDBMode. A
maximum of MAX_EVENTS events can be captured. Positions in the EventLog array that
do not contain an event are set to 0.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

EventLog[] is an array of 64 bit integers.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;
UINT64 Events[MAX_EVENTS];
UINT32 i=0;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRRetrieveEvents(xlrDevice, Events);
if(xlrReturnCode != XLR_SUCCESS)
{
 printf(“ERROR\n”);
 return 1;
}

for(i = 0; i < MAX_EVENTS; i++)
{
 if(Events[i] == 0)
 {
 // No more events recorded.
 break;
 }
 printf(“Event %d: %ull\n”, i, Events[i]);
}

See Also:

XLRGetEvents, XLRGetEventsLength and XLRSetDBMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

124

XLRSdkVersion

Syntax:

void XLRSdkVersion(char *versionstring)

Description:

XLRSdkVersion returns the SDK version as a string formatted as a major.minor version
number. Note that the SDK is a collection of the various components that make up the
software, hardware and firmware of the StreamStor system. The SDK version may not
reflect independent updates of these components.

Parameters:

versionstring is a pointer to a character string to hold the returned version. It must be
of minimum length XLR_VERSION_LENGTH.

Return Value:

The SDK version is returned in versionstring.

Usage:

/* Read XLR API version into string */
char xlrstring[XLR_VERSION_LENGTH];

XLRSdkVersion(xlrstring);
printf(“StreamStor SDK version is %s”, xlrstring);

See Also:

XLRGetVersion and XLRApiVersion.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

125

XLRSelectBank

Syntax:

XLR_RETURN_CODE XLRSelectBank(SSHANDLE xlrDevice, UINT32 bankID
)

Description:

XLRSelectBank will select the specified bank. Subsequent calls to bank aware commands
will then perform their operations on the selected bank. For example, if BANK_B is the
currently selected bank, then a subsequent call to XLRSetLabel will label BANK_B.

Once a bank is selected, that bank remains selected until the other bank is explicitly selected
or the StreamStor mode is changed. For example, say BANK_B was selected, a record was
performed, and then XLRClose was called. Upon reopening the StreamStor with
XLROpen, unless XLRSetBankMode was called to take the system out of bank mode or the
select bank was changed with XLRSelectBank, the system would still be in bank mode
and BANK_B would be the selected bank.

The StreamStor must be in bank mode to select a bank. When calling XLRSelectBank, the
drive module to be selected must be mounted in the selected bank and be in the “ready”
state.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bankID is the bank to be selected (BANK_A or BANK_B).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

126

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

xlrStatus = XLRSetBankMode (xlrDevice, SS_BANKMODE_NORMAL);

// Clear the write protection on Bank A.
xlrStatus = XLRSelectBank (xlrDevice, BANK_A);
xlrStatus = XLRClearWriteProtect(xlrDevice);
// Set the write protection on Bank B.
xlrStatus = XLRSelectBank (xlrDevice, BANK_B);
xlrStatus = XLRSetWriteProtect(xlrDevice);

See Also:

XLRSetBankMode and XLRGetBankStatus.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

127

XLRSelectChannel

Syntax:

XLR_RETURN_CODE XLRSelectChannel(SSHANDLE xlrDevice, UINT32
channel)

Description:

XLRSelectChannel selects the channel that future commands will operate on. A channel
can be selected and operated on regardless of whether or not it’s bound.

Please refer to the hardware manual for your StreamStor controller or daughterboard for the
list of channels it supports.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

channel is the number of the channel to select.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

…

xlrStatus = XLRSelectChannel(xlrDevice, 30);
 …

xlrStatus = XLRSetDBMode(xlrDevice, SS_FPDP_RECVMASTER, 0);
 …

See Also:

XLRClearChannels, XLRBindInputChannel, and XLRSetDBMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

128

XLRSelfTest

Syntax:

XLR_RETURN_CODE XLRSelfTest(SSHANDLE xlrDevice,
 SS_SELFTEST test)

Description:

XLRSelfTest performs an internal self-test on the StreamStor device. After self testing
has completed, you should reset the StreamStor card.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

test is a constant specifying what kind of test you wish to perform. Possible values are:
 XLR_BIST_PCI – test communications with PCI bus.
 XLR_BIST_BUFFER – write and then read all 512 MB of RAM – checks for bit

errors.
 XLR_BIST_DISKx – x represents the bus number (0-7). This will test all disks

present on the specified bus (i.e. master and slave if present).
 XLR_BIST_ALL – performs complete self-test (PCI, buffer, and all disks present on

the system).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL. Call XLRGetLastError and
XLRGetErrorMessage (as demonstrated below) to find which component(s) failed the
test.

Diagnostic Error Messages:

Action: Error Message:
Test of drive that isn’t present Invalid command
Drive fails self test Drive missing or failing
Test of non XF/XF2 StreamStor Invalid request for system mode
Buffer test failed Device command failed execution
PCI test failed Device command failed execution

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

129

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;
Char temp[XLR_ERROR_LENGTH];

xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRSelfTest(xlrDevice, XLR_BIST_DISK5);
if(xlrReturnCode != XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(temp, xlrError);
 printf(“%s\n”, temp);
 exit(1);
}
// Reset the card.
XLRCardReset(1);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

130

XLRSetBankMode

Syntax:

XLR_RETURN_CODE XLRSetBankMode(SSHANDLE xlrDevice, S_BANKMODE
mode)

Description:

XLRSetBankMode sets the banking mode for the StreamStor. By default, the StreamStor
device is not in bank mode, i.e., a call to XLROpen will set the bank mode to
SS_BANKMODE_DISABLED. (Exceptions to this are the StreamStor PCI-816V100 and PCI-
816VXF2 boards, which XLROpen automatically places in bank mode).

The StreamStor remains in the selected mode until a call to XLRSetBankMode is made to
change the mode.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

mode is the constant that defines the banking mode for the StreamStor.
 SS_BANKMODE_NORMAL – puts the StreamStor into normal bank mode. If
BANK_A is ready, it is selected as the current bank. If BANK_A is not ready, then if
BANK_B is ready, it is selected as the current bank.

 SS_BANKMODE_DISABLED – disables bank mode.
 SS_BANKMODE_AUTO_ON_FULL – automatically switches between banks when one

fills up during a recording.

Autoswitch Notes:
Recording:
When using SS_BANKMODE_AUTO_ON_FULL, StreamStor will switch to the other bank
when the current bank becomes full. This transition requires that the bank being switched to
is ready, and has not been previously recorded on. For example, if recording begins on Bank
A, fills Bank A, and switches to Bank B, StreamStor will not switch back to Bank A unless
Bank A has been replaced. If Bank A has been replaced with a new bank, StreamStor will
switch back to Bank A when Bank B is full. If Bank A has not been replaced, the recording
will end because there is no free space left. Unless the write protect option is set, each call to
XLRRecord will prepare each bank present in the system for recording. If the banks have
been recorded on before, they will be overwritten. In other words, StreamStor losses its
ability to track which banks have been “used” (i.e. written) between calls to XLRRecord. If
data written to the bank should not be overwritten, the write protect option should be set on
that bank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

131

Playback:
Auto bank switching is not available in playback mode. Any recordings made with auto bank
switching will be considered separate recordings for playback. In other words, from a
playback perspective (offset and length), each bank begins at an offset of 0. For example, if
both banks have been recorded on (such that an autoswitch occurred to Bank B when Bank
A filled up), each bank’s recording will start at an offset of 0. To start playback at the
beginning of Bank A, select Bank A with a call to XLRSelectBank, and then begin
playback at an offset of 0. To start playback at the beginning of Bank B, select Bank B with a
call to XLRSelectBank, and then begin playback at an offset of 0.

Note that if you are in bank mode and are using partitions, the bank mode
SS_BANK_AUTO_ON_FULL is not allowed. The only way to begin operations on a different
bank is to explicitly select the bank to be used.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

xlrStatus = XLRSetBankMode (xlrDevice, SS_BANKMODE_NORMAL);

//The default bank is Bank A and it is ready, so this call will clear
//write protection on BANK_A.
xlrStatus = XLRClearWriteProtect(xlrDevice);

//Turn bank mode off.
xlrStatus = XLRSetBankMode (xlrDevice, SS_BANKMODE_DISABLED);

See Also:

XLRGetChassisType and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

132

XLRSetDBMode

Syntax:

XLR_RETURN_CODE XLRSetDBMode(SSHANDLE xlrDevice, FPDPMODE Mode,
FPDPOP option)

Description:

XLRSetDBMode is used to set the operating mode of the external port on the Amazon
daughterboard (if one exists) or on the FPDP interface for other StreamStor board types.
For details on FPDP, please refer to the “External Port” chapter of this manual.

Please refer to the hardware manual for your StreamStor controller or daughterboard for the
list of modes it supports.

IMPORTANT: When setting the operating mode for FPDP/FPDP-II connections on a
given bus, do not configure more than one connector as a transmitter (FPDP/TM or
FPDP/T) on that bus at a time. Otherwise, bus drivers may be permanently damaged.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

mode is a constant that defines the mode of operation.

option is used to modify the operation of the FPDP port.

Please refer to the hardware manual for your StreamStor controller or daughterboard for the
list of modes and options it supports.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

133

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

//
// This example shows how to set various modes and options. Note that
// the manifest constants used differ based on the type of device.
// For example, FPDP/R is SS_FPDPMODE_RECVM for an Amazon daughter
// and is SS_FPDP_RECVMASTER for a PCI-816XF2.
//
xlrStatus = XLROpen(1, &xlrDevice);
…
//
// Select channel 30. Subsequent XLRSetDBMode calls will set
// the options and the modes for the selected channel.
//
xlrStatus = XLRSelectChannel(xlrDevice, 30);

// Example 1: Set the FPDP port mode to FPDP/R and use the default
// options on a PCI-816XF2.
xlrStatus = XLRSetDBMode(xlrDevice, SS_FPDP_RECV, 0);

// Example 2: Enable the data strobe clock and "Not Ready"
// assert options on a PCI-816XF2 and use FPDP/RM.
xlrReturnCode = XLRSetDBMode(xlrDevice,
 SS_FPDP_RECVMASTER, SS_OPT_FPDPSTROB|SS_OPT_NRASSERT);

// Example 3: Enable data strobe clock and use FPDP/R on a
// PCI-816XF2.
XLRSetDBMode(xlrDevice, SS_FPDP_RECV, SS_OPT_FPDPSTROB);

// Example 4: Enable FPDP/RM mode on a PCI-816XF2, using the
// default options.
xlrStatus = XLRSetDBMode(xlrDevice, SS_FPDP_RECVMASTER, 0);

// Example 5: Enable data strobe clock on an Amazon daughterboard
// using FPDP/RM.
xlrStatus = (xlrDevice, SS_FPDPMODE_RECVM, SS_DBOPT_FPDPSTROB);

// Example 6: Enable "Not Ready" assert options on an Amazon
// daughterboard and use FPDP/RM.
xlrReturnCode = XLRSetDBMode(xlrDevice,
 SS_FPDPMODE_RECVM, SS_DBOPT_FPDPNRASSERT);

See Also:

XLRSetMode and XLRSelectChannel.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

134

XLRSetDriveStandbyMode

Syntax:

XLR_RETURN_CODE XLRSetDriveStandbyMode(SSHANDLE xlrDevice,
BOOLEAN StandbyEnable)

Description:

XLRSetDriveStandbyMode is used to put the drives into power standby mode and to
take the drives out of power standby mode.

Standby mode is a power management feature that spins-down disk drives. The spindle
motor is stopped, and most of the electronics are powered off. Placing drives in standby
mode when they are not in use will reduce the power consumption of the drives. This mode
also reduces the chance of head-to-disk contact, which greatly decreases the probability of
disk damage.

When drives are placed in standby mode, the recovery time when exiting standby mode
depends on the disk drive model and other factors.

This command only affects drives that support standby mode, such as 2.5” notebook drives.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

StandbyEnable sets the mode. If StandbyEnable is TRUE, the drives are put into
standby mode. Otherwise, the drives are taken out of standby mode. By default, the drives
are not in standby mode.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

//
// If the enable parameter is TRUE, standby mode will be enabled,
// which means drives should spin down.
//
xlrStatus = XLRSetDriveStandbyMode(xlrDevice, TRUE);

// Do whatever you need to do while the drives are spun down.
 . . .

//

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

135

// Now you want to access the drives (for a record or playback,
// for example). Spin the drives up.
//
xlrStatus = XLRSetDriveStandbyMode(xlrDevice, FALSE);

// Sleep 5 seconds, giving the drives time to spin up.
Sleep(5);

xlrStatus = XLRRecord (xlrDevice, 0, 1);
 . . .

// Close device before exiting
XLRClose(xlrDevice);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

136

XLRSetLabel

Syntax:

XLR_RETURN_CODE XLRSetLabel(SSHANDLE xlrDevice, char *label,
UINT32 labelSize)

Description:

XLRSetLabel sets the label on the StreamStor recorder. The drives must be idle (i.e., not
in record or playback mode) to set a label.

Note that if you call XLRErase to erase a recorder, whether or not the label is erased
depends on the erase option you specify. Also, note that the length returned by
XLRGetLength and by XLRGetDirectory does not include the length of the label.

If the StreamStor is in bank mode, this command will set the label for the currently selected
bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

label is a pointer to a null terminated string no more than XLR_LABEL_LENGTH in size
(including the NULL).

labelSize is the length of label, not including the NULL terminator. If labelSize is 0
(zero), the label on the device will be null’ed out.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

137

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
char label[XLR_LABEL_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);

strcpy (label, “Volume 1, 19-April-2004”);
xlrStatus = XLRSetLabel(xlrDevice, “Volume 1, label, strlen(label));
 …
xlrStatus = XLRGetLabel(xlrDevice, label);
printf (“This disk set is labeled %s\n”, label);
 …
// Null out the label.
xlrStatus = XLRSetLabel(xlrDevice, “”, 0);
 …
// Close device before exiting
XLRClose(xlrDevice);

See Also:

XLRGetLabel, XLRErase, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

138

XLRSetMode

Syntax:

XLR_RETURN_CODE XLRSetMode(SSHANDLE xlrDevice, SSMODE Mode)

Description:

XLRSetMode is used to set the input/output path and functionality of StreamStor.

Please refer to the hardware manual for your StreamStor controller or daughterboard for the
list of modes it supports.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Mode is a constant that defines the mode of StreamStor operation. Possible mode values
are:

 SS_MODE_SINGLE_CHANNEL - This is the default mode that receives and sends
data over one channel – i.e. the PCI bus, or one of the external ports.

 SS_MODE_FORK - This mode allows data to be recorded and simultaneously output.
For example, data can be coming in over one of the external ports, recorded, and sent
out the other external port.

 SS_MODE_PASSTHRU - This mode is identical to SS_MODE_FORK except that the
data is not recorded; data merely passes in one port and out the other.

 SS_MODE_MULTI_CHANNEL - This mode allows StreamStor to record data from
multiple input channels simultaneously. For example, data can be coming in from the
external port and the PCI bus at the same time.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Note: CHANGING MODES CLEARS ALL INPUT AND OUTPUT CHANNELS.
CHANNELS MUST BE BOUND AFTER THE MODE IS SELECTED.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
// Set StreamStor to use the external port
xlrReturnCode = XLRSetMode(xlrDevice, SS_MODE_SINGLE_CHANNEL);

See Also:

XLRSetDBMode, XLRBindInputChannel, XLRBindOutputChannel

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

139

XLRSetOption

Syntax:

XLR_RETURN_CODE XLRSetOption(SSHANDLE xlrDevice,
 UINT32 options_to_set)

Description

XLRSetOption sets one or more options. To set an option, the drives must be idle (i.e.,
not in record or playback mode).

Please refer to the hardware manual for your StreamStor controller or daughterboard for the
list of options it supports.

The options are:

 SS_OPT_FSMAPPED – When set, the StreamStor is enabled to read while recording.
Note that you cannot read while recording if you are recording in wrap mode. By
default, this option is not set.

 SS_OPT_PLAYARM - When set, the StreamStor is armed for a two-stage playback.
You set this option and then call XLRPlayback. Data will be buffered up for
playback, but no data will play until triggered. (See XLRPlayTrigger.) By
default, this option is not set.

When XLROpen is called, all options are set to their default value.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• options_to_set is a vector containing one or more of the above options.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

// Set the desired option.
xlrStatus = XLRSetOption(xlrDevice, SS_OPT_PLAYARM);
 . . . record some data . . .
XLRStop(xlrDevice);

// Clear the option.
xlrStatus = XLRClearOption(xlrDevice, SS_OPT_PLAYARM);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

140

See Also:

XLRClearOption, XLRGetOption,and XLRPlayTrigger.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

141

XLRSetPlaybackLength

Syntax:

XLR_RETURN_CODE XLRSetPlaybackLength(SSHANDLE xlrDevice, UINT32
lenHigh, UINT32 lenLow)

Description:

XLRSetPlaybackLength is used to stop playback after a specified number of bytes have
been played. When a playback length is set, playback continues until the number of
specified bytes has been played, XLRStop is called or all data has been played. The playback
length remains in effect until the next XLROpen or until XLRSetPlaybackLength is
called again.

The playback length is used by the XLRPlayback, XLRRead and XLRReadToPhy
commands. Playback length is initially set to zero by XLROpen. A playback length of zero
causes playback or reading to continue until all data is played or read. Note that each time
you call XLRPlayback, XLRRead or XLRReadToPhy, the count of the number of bytes
that have already played returns to zero.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

lenHigh is the upper 32 bits of the 64 bit value that identifies the playback length.

lenLow is the lower 32 bits of the 64 bit value that identifies the playback length.

The playback length must be an eight byte-aligned value.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

142

Usage:

SSHANDLE xlrDevice;
UINT64 bytesToPlay;
UINT32 lenHigh;
UINT32 lenLow;
S_DEVSTATUS devStatus;
XLR_RETURN_CODE xlrStatus;

bytesToPlay = 1048576;

xlrStatus = XLROpen(1, &xlrDevice);

…

//lenHigh and lenLow must represent an 8 byte aligned address.
lenHigh = bytesToPlay >> 32;
lenLow = bytesToPlay & 0xFFFFFFFF;
xlrReturnCode = XLRSetPlaybackLength(xlrDevice, lenHigh, lenLow);

// Start playback (at the beginning of the recording in this example).
// Poll every 10 seconds to see if playback has stopped.
// Note: if you use polling to check status, the more often you poll,
// the greater the impact on performance.

XlrReturnCode = XLRPlayback(xlrDevice, 0,0);

do {
 … sleep for 10 seconds, then poll device status …

XlrReturnCode = XLRGetDeviceStatus (xlrDevice, &devStatus);
} while (devStatus.Playing == TRUE);

See Also:

XLRPlayback, XLRGetPlayLength, XLRSetMode, XLRSetDBMode,
XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

143

XLRSetPortClock

Syntax:

XLR_RETURN_CODE XLRSetPortClock(SSHANDLE xlrDevice, UINT32 clock
)

Description:

XLRSetPortClock is used to set the operating frequency of the external port if
applicable. Before calling XLRSetPortClock, you must call XLRSelectChannel to
select the desired channel.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

clock is a constant that defines the desired clock frequency. Possible values are defined in
the header file xlrdbcommon.h as SS_PORTCLOCK_xMHz values. The FPDP clock is
programmable from 6 MHz up to 50 MHz.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

// Set the external clock frequency
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…

xlrReturnCode = XLRSelectChannel(xlrDevice, 30);
xlrReturnCode = XLRSetPortClock(xlrDevice, SS_PORTCLOCK_40MHZ);

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

144

XLRSetReadLimit

Syntax:

XLR_RETURN_CODE XLRSetReadLimit(SSHANDLE xlrDevice, UINT32 Limit
)

Description:

XLRSetReadLimit sets the size of the address range an outside device will be using when
reading data from StreamStor during playback (XLRPlayback). This is required to prevent
StreamStor hardware from discarding cached read data when an external DMA engine
recycles to a new starting read address on the PCI bus.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Limit is the address range size that the outside device will use when reading from
StreamStor during playback operations.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
UINT32 DMA_size = 0x2000;
PUINT32 pBuffer;
PUINT32 pSSAddr;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
// Put StreamStor into Playback mode at beginning of recording
xlrReturnCode = XLRSetReadLimit(xlrDevice, DMA_size);
xlrReturnCode = XLRPlayback(xlrDevice, 0, 0);

// Outside device can now DMA data from StreamStor within an
// address range size defined by DMA_size.
// The following simulates this by reading from StreamStor to memory.
pBuffer = (PUINT32)malloc(DMA_size);
pSSAddr = XLRGetWindowAddr(xlrDevice);

for(j = 0; j < loops; j++)
{
 for(i = 0; i < DMA_size; i += 4)
 {
 *pBuffer++ = *pSSAddr++;
 }
}

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

145

XLRSetSampleMode

Syntax:

XLR_RETURN_CODE XLRSetSampleMode(SSHANDLE xlrDevice, UINT32
bufSize, S_SAMPLEMODE mode)

Description:

XLRSetSampleMode turns sampling mode on/off and configures the buffer size of
sampling.

To start sampling, call XLRSetSampleMode with bufSize set to the size of the sample
and mode set to SS_SAMPLEMODE_NORMAL or SS_SAMPLEMODE_PASSTHRU.

To end sampling, call XLRSetSampleMode with a bufSize set to zero and mode set to
SS_SAMPLEMODE_DISABLED.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

bufSize is the size of the sample (in bytes) to grab from StreamStor. bufSize must be
an eight byte-aligned value. The maximum sample size is 8 megabytes.

mode is the constant that defines the sampling mode for the StreamStor.
 SS_SAMPLEMODE_NORMAL – puts the StreamStor into normal sample mode. In

this mode, you can retrieve samples while data is recorded to the StreamStor drives.
 SS_SAMPLEMODE_PASSTHRU – puts the StreamStor into passthru sample mode.

In this mode, data is not recorded to the StreamStor drives. Instead, the StreamStor
performs simultaneous input and real-time output of the data. This mode is used in
situations where the data must be sampled in real-time and recording of the data is
not necessary.

 SS_SAMPLEMODE_DISABLED – disables sampling mode.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

146

Usage:

#define SAMPLE_SIZE 0x100000
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
// Configure sampling mode
xlrReturnCode = XLRSetSampleMode(
 xlrDevice, SAMPLE_SIZE, SS_SAMPLEMODE_NORMAL);

See Also:

XLRGetSample.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

147

XLRSetUserDir

Syntax:

XLR_RETURN_CODE XLRSetUserDir(SSHANDLE xlrDevice, PVOID udirPtr,
 UINT32 udirSize)

Description:

XLRSetUserDir sets the user directory on the StreamStor recorder. The drives must be
idle (i.e., not in record or playback mode) to set the user directory.

If the StreamStor is in bank mode, this command will set the user directory only on the
selected bank. If the StreamStor is partitioned, this command will create a user directory on
the selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

udirPtr is a pointer to the buffer containing the user directory. The buffer can contain
any type of data (string, binary, etc.). The maximum size of the user directory is
XLR_MAX_UDIR_LENGTH. On Generation 5 boards such as the Amazon Express,
udirPtr must be a multiple of eight (or sixteen on a 64-bit system). Therefore, you should
dynamically allocate the memory (for instance, use malloc() which returns suitably aligned
addresses).

udirSize is the size (in bytes) of the buffer pointed to by udirPtr. If udirSize is
zero, then udirPtr is ignored and any existing user directory will have its length set to
zero. The user directory must be 8 byte aligned (i.e., its udirSize must be a multiple of 8).

Note: This command can be very slow over the remote interface.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

148

Usage:

#include <stdlib.h>

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
char * udirBuffPtr = NULL;
UINT32 dirLength = 0;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

// Dynamically allocate the address space for the user directory.
udirBuffPtr = (char *)malloc(XLR_MAX_UDIR_LENGTH);

strcpy (udirBuffPtr, “1234567”);

//Add 1 to length for the NULL terminating character.
dirLength = strlen(udirBuffPtr) + 1;

xlrStatus = XLRSetUserDir(xlrDevice, udirBuffPtr, dirLength);

See Also:

XLRGetUserDir, XLRGetUserDirLength, XLRSetBankMode,
XLRCreatePartition and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

149

XLRSetWriteProtect

Syntax:

XLR_RETURN_CODE XLRSetWriteProtect(SSHANDLE xlrDevice)

Description:

XLRSetWriteProtect marks a StreamStor recorder as write protected. After write
protection is set, subsequent attempts to alter the recorded data (i.e., calls to XLRRecord,
XLRAppend or XLRErase) will return an error. The drives must be idle (i.e., not in record
or playback mode) to set the write protection.

Physical removal and reinsertion of the drives will not change the write protection. The only
way to remove the write protection is to call XLRClearWriteProtect.

By default, drives are not write protected. The drives must be idle (i.e., not in record mode
or playback mode) to set the write protection.

If the StreamStor is in bank mode, this command will set write protection only on the
selected bank.

If the StreamStor is partitioned, this command will set write protection only on the selected
partition.

IMPORTANT: the XLRPartitionDelete command ignores write protection.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

150

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

//
//We know we want to reuse these disks and that they were previously
//write protected. Clear the protection so we can erase the drives
//and start a fresh recording.
xlrStatus = XLRClearWriteProtect(xlrDevice);
xlrStatus = XLRErase(xlrDevice, SS_OVERWRITE_NONE);

//Start recording.
xlrStatus = XLRRecord (xlrDevice, 0,1);

…
xlrStatus = XLRStop(xlrDevice);

//Write protect this recording.
xlrStatus = XLRSetWriteProtect(xlrDevice);
 …
// Close device before exiting
XLRClose(xlrDevice);

See Also:

XLRClearWriteProtect, XLRGetBankStatus, XLRSetBankMode,
XLRSelectBank, XLRGetDirectory, XLRPartitionCreate, and
XLRPartitionDelete.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

151

XLRStop

Syntax:

XLR_RETURN_CODE XLRStop(SSHANDLE xlrDevice)

Description:

XLRStop will halt a recording operation and make sure all data is flushed to disk. This
function should always be used to end a recording.

XLRStop can also be used to halt a playback initiated by XLRPlayback.

If the StreamStor is in multi-channel mode, calling XLRStop stops all recording (or
playback) on all channels.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRStop(xlrDevice);

See Also:

XLRRecord, XLRAppend, XLRPlayback and XLRSetMode.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

152

XLRTruncate

Syntax:

XLR_RETURN_CODE XLRTruncate(SSHANDLE xlrDevice, UINT32 AddrHigh,
UINT32 AddrLow)

Description:

XLRTruncate will truncate an existing recording at the address provided. The address
must fall within the bounds of the currently recorded data set.

The truncation address must be an eight byte-aligned value.

If the StreamStor is in bank mode, this command will truncate data from the currently
selected bank. If the StreamStor is partitioned, this command will truncate data from the
currently selected partition.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

AddrHigh is the upper 32 bits of the 64-bit truncation address.

AddrLow is the lower 32 bits of the 64-bit truncation address.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
UINT32 AddrHi;
UINT32 AddrLo;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

// Append data
xlrStatus = XLRAppend(xlrDevice);
.
.
.
// Stop recording
XLRStop(xlrDevice);

//AddrHi and AddrLo must represent an appropriately aligned address.
AddrHi = 0;
AddrLo = 0xFE120000;

// Truncate the recording.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

153

xlrStatus = XLRTruncate(xlrDevice, AddrHi, AddrLo);

// Close device before exiting
XLRClose(xlrDevice);

See Also:

XLRDeleteAppend, XLRSetBankMode and XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

154

XLRWrite

Syntax:

XLR_RETURN_CODE XLRWrite(SSHANDLE xlrDevice, PS_READDESC
pWriteDesc)

Description:

XLRWrite writes data from a user memory buffer to StreamStor. The StreamStor must be
in record mode (XLRRecord or XLRAppend) before calling this function.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

pWriteDesc is a pointer to an S_READDESC structure that holds the length and buffer
address of the write data. Note that the AddrHigh and AddrLow parameters are ignored.

If the StreamStor is in bank mode, this command will write data to the currently selected
bank.

If the StreamStor is partitioned, this command will write to the currently selected partition.

XLRWrite is not supported in multi-channel mode (since multi-channel mode is not
supported over PCI.)

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_READDESC writeDesc;
UINT32 myBuffer[40000];

writeDesc.XferLength = sizeof(myBuffer);
writeDesc.BufferAddr = myBuffer;

// Open StreamStor.
if(XLROpen(&xlrDevice, 1) != XLR_SUCCESS)
 return(1);

//Put StreamStor into record mode.
if(XLRRecord(xlrDevice, 0, 1) != XLR_SUCCESS)
 return(1);

/* Fill the memory here . . . */

// Write the buffer to StreamStor.
if(XLRWrite(xlrDevice, &writeDesc) != XLR_SUCCESS)

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

155

 return(1);

See Also:

XLRRecord, XLRAppend, XLRWriteData, XLRSetMode, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

156

XLRWriteData

Syntax:

XLR_RETURN_CODE XLRWriteData(SSHANDLE xlrDevice, PVOID BufAddr,
UINT32 TransferSize)

Description:

XLRWriteData is identical to XLRWrite except that the parameters are not passed in a
structure.

If the StreamStor is in bank mode, this command will write data from the currently selected
bank.

Parameters:

xlrDevice is the device handle returned from a previous call to XLROpen.

BufAddr is a pointer to the buffer to be written to StreamStor.

TransferSize is the number of bytes to write.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
UINT32 myBuffer[40000];
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRWriteData(xlrDevice, myBuffer, sizeof(myBuffer));

See Also:

XLRRecord, XLRAppend, XLRWrite, XLRSetMode, XLRSetBankMode and
XLRSelectBank.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

157

Structure S_BANKSTATUS

typedef struct _BANKSTATUS
{
 char Label[XLR_LABEL_LENGTH];
 UINT32 State;
 UINT32 Selected;
 UINT32 PowerRequested;
 UINT32 PowerEnabled;
 UINT32 MediaStatus;
 UINT32 WriteProtected;
 UINT32 ErrorCode;
 UINT32 ErrorData;
 UINT64 Length;
 UINT64 TotalCapacity;
 UINT64 TotalCapacityBytes;
} S_BANKSTATUS, *PS_BANKSTATUS;

Purpose

This structure is used by the XLRGetBankStatus function to return information about the
StreamStor bank status of the specified bank.

Members

Label - String holding the bank label.

Length - Length of the bank’s recording (in bytes).

State – A bank can be in any of 3 states: STATE_READY, STATE_NOT_READY, and
STATE_TRANSITION. If the state is STATE_READY, the bank is ready for use. Otherwise,
it is not ready, or it is transitioning to or from a ready or not ready state.

Selected – If TRUE, the specified bank is the currently selected bank.

PowerRequested - If TRUE, a power up request has been received for the bank.
Otherwise, a request has not been received.

PowerEnabled – If TRUE, the bank has power. Otherwise, it does not.

MediaStatus – There are four possible values:

 MEDIASTATUS_EMPTY – indicates that the bank has no data recorded on it.

 MEDIASTATUS_NOT_EMPTY – indicates that the bank has some data recorded on it
but it is not full.

 MEDIASTATUS_FULL – indicates that the bank is full.

 MEDIASTATUS_FAULTED – indicates that there is data on the bank, but for some
reason the directory structure is corrupted. The bank must be erased before it can be
used.

WriteProtected – If TRUE, the bank is write protected. Otherwise, the bank is not
write protected.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

158

ErrorCode – If 0 (zero), an error has not been detected on the bank. Otherwise, it is set to
the error code.

ErrorData – If ErrorCode is non-zero, ErrorData holds any additional data about the
error.

TotalCapacity – The bank’s capacity in system pages.

TotalCapacityBytes – Same as TotalCapacity, expressed in bytes instead of pages.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

159

Structure S_DBINFO

typedef struct _DBINFO
{
 UINT32 SerialNum;
 char PCBVersion[XLR_VERSION_LENGTH];
 char PCBType[XLR_MAX_NAME];
 char PCBSubType[XLR_MAX_NAME];
 char FPGAConfig[XLR_MAX_NAME];
 char FPGAConfigVersion[XLR_VERSION_LENGTH];
 UINT32 NumChannels;
 UINT32 Param[8];
} S_DBINFO, *PS_DBINFO;

Purpose

This structure is used by the XLRGetDBInfo function to return information about the
daughterboard.

Members

SerialNum – the daughterboard serial number.

PCBVersion – the daughterboard version.

PCBType – the daughterboard type.

PCBSubType – the daughterboard subtype.

FPGAConfig – the function type of the code loaded in the FPGA on the daughterboard.

FPGAConfigVersion – the version of the code loaded in the FPGA on the
daughterboard.

NumChannels – the number of channels on the daughterboard.

Param - Reserved for future use.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

160

Structure S_DEVINFO

typedef struct _DEVINFO
{
 char BoardType[XLR_MAX_NAME];
 UINT32 SerialNum;
 UINT32 NumDrives;
 UINT32 NumBuses;
 UINT32 MaxBandwidth;
 UINT32 PciBus;
 UINT32 PciSlot;
 UINT32 NumExtPorts;
 UINT64 TotalCapacity;
 UINT64 TotalCapacityBytes;
}S_DEVINFO, *PS_DEVINFO;

Purpose

This structure is used by the XLRGetDeviceInfo function to return information about the
StreamStor system configuration.

Members

BoardType - the board type (model name).

SerialNum - the serial number of the StreamStor board.

NumDrives - the number of drives currently connected and configured on the StreamStor
controller.

NumBuses – the number of ATA buses in use.

MaxBandwidth – Reserved.

PciBus - the PCI bus number to which the StreamStor is connected.

PciSlot – the PCI slot number to which the StreamStor is connected.

NumExtPorts – the number of external ports.

TotalCapacity - the total recording capacity of the StreamStor system in system pages (a
page is 4096 bytes typically on Intel based Windows systems). Note that if the StreamStor is
partitioned, the reported TotalCapacity is the capacity of the currently selected partition.

TotalCapacityBytes – Same as TotalCapacity, expressed in bytes instead of pages.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

161

Structure S_DEVSTATUS

typedef struct _DEVSTATUS
{
 BOOLEAN SystemReady;
 BOOLEAN BootmonReady;
 BOOLEAN Recording;
 BOOLEAN Playing;
 BOOLEAN Reserved1;
 BOOLEAN Reserved2;
 BOOLEAN Reserved3;
 BOOLEAN Reserved4;
 BOOLEAN RecordActive[XLR_MAX_VRS];
 BOOLEAN ReadActive[XLR_MAX_VRS];
 BOOLEAN FifoActive;
 BOOLEAN DriveFail;
 UINT32 DriveFailNumber;
 BOOLEAN SysError;
 UINT32 SysErrorCode;
 BOOLEAN Booting;
 BOOLEAN FifoFull;
 BOOLEAN Overflow[XLR_MAX_VRS];
 BOOLEAN PrefetchComplete;
}S_DEVSTATUS, *PS_DEVSTATUS;

Purpose

This structure holds various system status flags as returned by the XLRGetDeviceStatus
function.

Note: The array index value is always 0 for RecordActive, ReadActive, VRActive, and
Overflow

Members

SystemReady – System ready flag, indicates the system firmware and hardware have been
initialized successfully.

BootmonReady – Power on boot flag, indicates that the system boot succeeded and the
system is ready for initialization (XLROpen).

Recording – Indicates that the system is currently in a record mode.

Playing – Indicates that the system is currently in a playback mode.

Reserved1, Reserved2, Reserved3 and Reserved4 – not used.

RecordActive – If not in bank mode, element 0 indicates that the system is currently
recording. If in bank mode, element 0 indicates that BANK A is currently recording and
element 1 indicates that BANK B is currently recording.

ReadActive – If not in bank mode, element 0 indicates that the system is currently
reading. If in bank mode, element 0 indicates that BANK A is currently reading and element
1 indicates that BANK B is currently reading.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

162

FifoActive – Indicates that the system is currently in FIFO mode.

DriveFail – Indicates that a drive has failed.

DriveFailNumber – Indicates the drive that has failed. Valid when DriveFail is TRUE.

SysError – Indicates that system initialization failed.

SysErrorCode – Holds initialization error code if SysError is TRUE.

Booting – For Conduant internal use only.

FifoFull – Indicates the system is at capacity while in FIFO mode.

Overflow – Indicates the disk drives reached capacity during a record operation. When in
mode SS_MODE_FORK or SS_MODE_PASSTHRU (see XLRSetMode), Overflow gets set
when the external port data has overflowed the available FIFO space.

PrefetchComplete - Indicates that initial prefetch of data from a read command has
completed.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

163

Structure S_DIR

typedef struct _DIR
{
 UINT64 Length;
 UINT64 AppendLength;
 BOOLEAN Full;
 BOOLEAN WriteProtected;
}S_DIR, *PS_DIR;

Purpose

This structure holds the directory information for the current recording. The structure is
filled with a call to XLRGetDirectory. Use XLRGetLengthPages for environments
that can’t support 64 bit integers (UINT64).

Members

Length – The length of the current recording in bytes. Note that this parameter is a 64 bit
number.

AppendLength - The length of the last set of data recorded using XLRAppend. Note that
this parameter is a 64-bit number.

Full – This flag will be TRUE (non-zero) when the system has been filled to capacity.

WriteProtected – If not in bank mode, this flag will be TRUE (non-zero) if the system is
write protected. If the system is in bank mode, this flag will be TRUE if the currently
selected bank is write protected.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

164

Structure S_DRIVEINFO

typedef struct _DRIVEINFO
{
 char Model[XLR_MAX_DRIVENAME];
 char Serial[XLR_MAX_DRIVESERIAL];
 char Revision[XLR_MAX_DRIVEREV];
 BOOLEAN SMARTCapable;
 BOOLEAN SMARTState;
 UINT64 Capacity;
}S_DRIVEINFO, *PS_DRIVEINFO;

Purpose

This structure is used by the XLRGetDriveInfo function to return information about the
disk drives on the StreamStor system.

Members

Model – Model name as reported by the disk drive identify command.

Serial – Drive serial number as reported by the disk drive identify command.

Revision – Drive revision level as reported by the disk drive identify command.

SMARTCapable – Indicates whether the drive has “SMART” capabilities. SMART is Self-
Monitoring Analysis and Reporting Technology. You can query drives with this technology
and determine if they are faulty. If SMARTCapable is TRUE, the drive has this feature.
Otherwise, the drive does not have this feature.

SMARTState - On drives that are SMARTCapable, this structure member is used to
indicate the drive’s state. If SMARTState is TRUE, the drive is good. Otherwise, the drive
is faulty. The value of this structure member is only valid if SMARTCapable is TRUE.

Capacity – Drive capacity as reported by identify command. Value is number of 512 byte
sectors.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

165

Structure S_EVENTS

typedef struct _EVENTS
{
 UINT32 Source;
 UINT32 AddressHigh;
 UINT32 AddressLow;
 UCHAR Reserved[4];
} S_EVENTS, *PS_EVENTS;

Purpose

This structure is used by the XLRGetEvents function to return information about events
that have been captured as a result of setting one or more event options when calling the
XLRSetDBMode function.

Members

Source – Indicates the source of the event. It is bit significant, as follows:

 Bit 0 on = PIO1

 Bit 1 on = PIO2

 Bit 3 on = Sync

AddressHigh - Upper 32 bits of location in bit stream where event occurred.

 AddressLow - Lower 32 bits of location in bit stream where event occurred.

Reserved – Not used.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

166

Structure S_PARTITIONINFO

typedef struct _PARTITIONINFO{
 BOOLEAN Partitioned;
 UINT32 NumPartitions;
 UINT32 SelectedPartition;
 UINT64 SpaceAllocatedBytes;
 UINT64 SpaceAvailableBytes;
 UINT64 PartitionCapacityBytes;
}S_PARTITIONINFO, *PS_PARTITIONINFO;

Purpose

This structure is used by the XLRGetPartitionInfo function to return information
about partitions.

Members

Partitioned – Indicates whether StreamStor is currently partitioned or not.

NumPartitions – The number of partitions currently on StreamStor.

SelectedPartition – Currently selected partition.

SpaceAllocatedBytes – The number of system bytes currently allocated in partitions
(all partitions not just the currently selected partition).

SpaceAvailableBytes – The number of bytes of unpartitioned space available.

PartitionCapacityBytes – Size of the selected partition, in bytes.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

167

Structure S_READDESC

typedef struct _READDESC{
 PUINT32 BufferAddr;
 UINT32 AddrHi;
 UINT32 AddrLo;
 UINT32 XferLength;
}S_READDESC, *PS_READDESC;

Purpose

This structure is used to define the parameters for a read from or a write to the StreamStor.
(See, for example, XLRRead and XLRWrite).

Members

BufferAddr – Address of buffer to hold data read from StreamStor. Must be at least
XferLength bytes.

AddrHi – High word (32 bit) of starting byte address.

AddrLo – Low word (32 bit) of starting byte address.

XferLength – Number of bytes to transfer from StreamStor.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

168

Structure S_RECDCHANNELINFO

typedef struct _RECDCHANNELINFO
{
 UINT32 NumChannelsRecorded;
 UINT32 RecordedChannelNumber[MAX_NUM_CHANNELS];
}S_RECDCHANNELINFO, *PS_RECDCHANNELINFO;

Purpose

This structure is used by the XLRGetRecordedChannelInfo function to return
information about the number of channels recorded and which channel numbers are
recorded on this StreamStor device.

Members

NumChannelsRecorded – the number of channels recorded. This is also the number of
valid RecordedChannelNumber[] array members.

RecordedChannelNumber[] – this array contains the list of channels that data was
recorded on. The member NumChannelsRecorded indicates how many array members
contain channel number data. As an example, if two channels of data were recorded on the
StreamStor device, then NumChannelsRecorded would be set to 2 and only the first two
array members in RecordedChannelNumber[] would have channel number data in them.
The remaining array members would all be zero.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

169

Structure S_SFPDPSTATUS

typedef struct _SFPDPSTATUS
{
 BOOLEAN PortOpticalEngPrsnt;
 BOOLEAN PortRXDataActive;
 BOOLEAN PortTXDataActive;
 BOOLEAN PortRcvProtocolOK;
 BOOLEAN PortNearEndFlowCtrlActive;
 BOOLEAN PortFarEndFlowCtrlActive;
 BOOLEAN PortCRCErrorDetected;
 BOOLEAN PortCRCErrPrevFrame;
}S_SFPDPSTATUS, *PS_SFPDPSTATUS;

Purpose

This structure holds various SFPDP (Serial FPDP) interface status flags as returned by the
XLRGetSFPDPInterfaceStatus function for a specific port.

Members

PortOpticalEngPrsnt – A value of TRUE indicates the SFPDP daughter board has
detected optical energy on this port.

PortRXDataActive – A value of TRUE indicates data is currently passing through the
RX side of this port.

PortTXDataActive – A value of TRUE indicates data is currently passing through the TX
side of this port.

PortRcvProtocolOK – A value of TRUE indicates Link up and receiving SFPDP
protocol correctly on this port.

PortNearEndFlowCtrlActive – A value of TRUE indicates near end flow control
active on this port.

PortFarEndFlowCtrlActive – A value of TRUE indicates Far end flow control active
on this port.

PortCRCErrorDetected – A value of TRUE indicates a CRC Error has been detected
on this SFPDP port at some time in the past.

PortCRCErrPrevFrame – A value of TRUE indicates a CRC Error was detected in the
previous frame received on this SFPDP port.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

170

Structure S_SMARTTHRESHOLDS

typedef struct _SMARTTHRESHOLDS{
 UCHAR ID;
 UCHAR Threshold;
 UCHAR Reserved[10];
}S_SMARTTHRESHOLDS, *PS_SMARTTHRESHOLDS;

Purpose

This structure is used by the XLRReadSmartThresholds function to return SMART
threshold values retrieved from SMART-capable disk drives.

Members

For information on interpreting the members of this structure, please refer to the ATA
specifications or to the disk drive vendor’s documentation.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

171

Structure S_SMARTVALUES

typedef struct _SMARTVALUES{
 UCHAR ID;
 USHORT Status;
 UCHAR Current;
 UCHAR Worst;
 UCHAR raw[6];
 UCHAR Reserved;
}S_SMARTVALUES, *PS_SMARTVALUES;

Purpose

This structure is used by the XLRReadSmartValues function to return SMART values
retrieved from SMART-capable disk drives.

Members

For information on interpreting the members of this structure, please refer to the ATA
specifications or to the disk drive vendor’s documentation.

C H A P T E R 2 : F U N C T I O N R E F E R E N C E

172

Structure S_XLRSWREV

typedef struct _XLRSWREV
{
 char ApiVersion[XLR_VERSION_LENGTH];
 char ApiDateCode[XLR_DATECODE_LENGTH];
 char FirmwareVersion[XLR_VERSION_LENGTH];
 char FirmDateCode[XLR_DATECODE_LENGTH];
 char MonitorVersion[XLR_VERSION_LENGTH];
 char XbarVersion[XLR_VERSION_LENGTH];
 char AtaVersion[XLR_VERSION_LENGTH];
 char UAtaVersion[XLR_VERSION_LENGTH];
 char DriverVersion[XLR_VERSION_LENGTH];
}S_XLRSWREV, *PS_XLRSWREV;

Purpose

This structure is used by XLRGetVersion to return software/hardware version strings.

Members

ApiVersion – Version of the StreamStor API library.

ApiDateCode – Build date of the StreamStor API library.

FirmwareVersion – StreamStor firmware version.

FirmDateCode – Build date of the firmware.

MonitorVersion – Boot monitor firmware version.

XbarVersion – Controller logic version.

AtaVersion – ATA controller version.

UAtaVersion – Ultra ATA controller version.

DriverVersion – Driver version.

Chapter 3
PCI Integration

C H A P T E R 3 : P C I I N T E G R A T I O N

174

PCI Integration
To allow maximum bandwidth for recording digital data over the PCI bus,
StreamStor is designed for direct card-to-card data transfers. Since many
data acquisition cards already perform DMA operations directly to system
memory, the StreamStor controller uses this capability for the direct transfer
of data. The software development kit provides the necessary control
functions for integration of StreamStor into user applications.

Initialization and Setup

Initialization requires a call to the XLROpen function. This function will lock
the device for exclusive access and initialize the recording system. The
initialization routine includes locating the StreamStor controller on the PCI
bus, downloading software and initializing required data structures, etc.

PCI Bus Interfacing

Although the PCI bus itself has been designed for card-to-card transactions,
most operating systems have no provisions for this functionality. In
addition, most operating systems do not have provisions for real-time event
management, which is required when recording data at high bandwidths. For
these reasons, there may be a requirement to modify existing device drivers
for the PCI card that is to send data to the StreamStor system.

The StreamStor controller requests a memory mapped window during
computer booting providing a memory space for writing data to be recorded.
The default size of this window is 8MB although you should use the
XLRGetBaseRange to verify this in your application. The StreamStor SDK
provides two functions that return the physical and logical addresses of this
window.

The address returned by XLRGetBaseAddr is the physical address that is
assigned to the StreamStor data window during the boot process. The
StreamStor PCI interface chip will respond to any memory writes on the PCI
bus in this address range. Note, however, that the StreamStor system does
not utilize the address to determine where to store the data. Any data writes
are recorded to disk in the order they are received. This physical address can
be used directly for programming DMA hardware on the PCI data source
device. Various techniques can be used for programming the DMA
hardware but generally you will need to set up a DMA block transfer that
continuously recycles back to the original starting address. If the DMA
hardware supports chaining (scatter/gather) then a looping transfer can be
set up. Consult the documentation for your PCI data acquisition card for
more information.

C H A P T E R 3 : P C I I N T E G R A T I O N

175

 CAUTION: The physical address returned by XLRGetBaseAddr cannot be
used in place of a buffer memory address. Use
XLRGetWindowAddr instead.

The address returned by XLRGetWindowAddr is a logical address created
by the operating system to “map” the physical address space of the
StreamStor controller into the application memory space. This address can
sometimes be used with software provided by PCI card vendors in place of
the address of a memory buffer. Check with Conduant about your specific
environment for more details. In addition, “writing” to this address space
from an application is an effective method to save application specific
directory or indexing information about the recording. It is the responsibility
of the user application to manage this type of data.

Multi-Card Operation

Multiple StreamStor cards can be used in a single system either on the same
bus or on “bridged” PCI buses. If multiple StreamStor cards are installed
into the same bus there will be contention for ownership of the bus during
data transfers and the effective bandwidth will be reduced. If multiple
StreamStor cards are installed on opposite sides of a PCI-PCI bridge than
there is no loss in bandwidth as long as the data capture card is co-located on
the same bus as the StreamStor card it is streaming data to.

Software applications gain exclusive access to a StreamStor card after calling
the XLROpen function. Until the application exits or calls XLRClose, no
other application may connect to that StreamStor card. A single application
can connect to and control multiple StreamStor cards but must manage the
unique handles returned from multiple calls to the XLROpen function. The
index number passed into XLROpen determines which card is to be
controlled by the handle returned. If multiple applications (or multiple
instances of the same application) are used to control StreamStor cards, they
must each connect to a unique StreamStor card. The XLRDeviceFind
function returns the number of StreamStor devices found in the system. The
index number cannot be larger than this number. In most cases, the higher
value index indicates a card that is on a bus or slot further from the main
bus. The PCI bus number and slot number are available from the
XLRGetDeviceInfo command. The command can be used to identify the
appropriate card in a multi-card system.

Chapter 4
Operation

C H A P T E R 4 : O P E R A T I O N

178

Operation
The operation of StreamStor for recording data is very similar to the familiar
interface of a tape recorder. The XLRRecord function puts the recorder
into record mode and the XLRStop function ends the recording. Data
reading is more like a traditional computer storage device since the data can
be retrieved randomly. The StreamStor recorder also has a special “wrap”
mode to allow continuous recording past the capacity limits of the disks by
overwriting the oldest data.

Data Recording

After getting the base address of the data window using XLRGetBaseAddr,
it is used to setup the DMA hardware on the data acquisition card for direct
slave writing to the StreamStor controller. Because the capacity available on
StreamStor is much larger than the 32 bit PCI address scheme (4 GB) will
allow, the system is designed to ignore PCI addressing and assume any data
written within the PCI address range is data to be recorded sequentially. The
actual size of the data window can be found with a call to
XLRGetBaseRange (default: 8MB). The PCI data source card is required
to maintain a destination address within this range. This can easily be
accomplished with DMA chaining or other techniques. For example, the
data acquisition card can be programmed to start at the base address, write
64kB, than start over again at the base address for the next 64kB, etc.

Recording Data

To start a recording the application must call the XLRRecord function.
Once XLR_SUCCESS status has been returned from this function,
StreamStor will record all data written to its data address range. This function
should be called BEFORE starting the flow of data to prevent overflow on
the data source device. The user application can periodically sample the
device status using XLRGetDeviceStatus to check for errors that
occurred during recording. Note that this function call generates PCI traffic
and can impact data transfer bandwidth if used excessively.

Many data acquisition cards have operating modes that allow the capture of a
specific number of data points. Unfortunately, the software does not usually
allow specifying a number larger than a 32-bit integer (4,294,967,295). For
this reason it may be necessary to use the data acquisition card in a “pre-
trigger” mode where data is captured continuously until the trigger and then
a specified number of data points are captured after the trigger. The data
acquisition card will then continuously cycle through its “memory buffer”
until receiving the trigger. StreamStor will continuously record all of the data,
however, up to its full capacity. To use the recorder in this fashion, you
should enable the “Wrap” feature in the XLRRecord function so that
StreamStor will overwrite the oldest data if the disk system is full.

C H A P T E R 4 : O P E R A T I O N

179

In order to capture the maximum amount of data without overwriting old
data the StreamStor system is designed to “exit” record mode when the disk
subsystem is filled to capacity (unless “Wrap” has been set). The user
application can poll the device status using XLRGetDeviceStatus
watching for Recording to go FALSE. A normal XLRStop command
should then be used to end record mode. Note that the StreamStor controller
is designed to accept data on the PCI bus even after the disk subsystem is full
to prevent system errors and allow you to shut down the data source after
completely filling the available disk space.

Data Wrap

In some recording applications, it is desirable to continue recording past the
capacity of the recording system by overwriting the oldest recorded data.
This is sometimes called “pretrigger” or “circular” recording. The
StreamStor system supports this recording mode by setting the “Wrap” bit in
the XLRRecord command. The recorder will continue to record after the
disk capacity is exhausted by overwriting the oldest data on the disks. Once
the recording is finally stopped, the XLRGetLength command can be used
to determine how much data has been recorded. If your data is blocked in
anything other than 4 byte blocks, you will need to index back from the end
of the data to find an aligned start point of your data. Contact technical
support for more information on using this feature.

Ending the Recording

If storage wrapping mode has not been enabled, StreamStor will continue to
record data until all recording space has been exhausted or the XLRStop
function has been called. If the XLRStop function is not used, any data
written to the StreamStor data range after space is exhausted will be lost.

If data wrapping has been enabled, StreamStor will continue to record data
indefinitely until the XLRStop function is called. When free storage space
has been exhausted, the system will begin to overwrite the oldest data so that
the newest data is kept.

 NOTE: A data acquisition system can stop recording by simply ceasing
any writes to the StreamStor data address range. The XLRStop
function should still be used to flush all data to the disk drives and
to prepare for reading of the data.

Data Read

Because operating systems cannot handle the massive file sizes resulting from
a long recording, the SDK provides a read function for retrieving data from
the recorder. The user application must supply a memory buffer sufficient to
hold the data requested. Note that the StreamStor system will have optimum
read performance when reading is performed sequentially from the device.

C H A P T E R 4 : O P E R A T I O N

180

Read Setup

The StreamStor device must be previously opened with XLROpen before
reading data or performing other operations.

If the recording was done with wrapping enabled (old data may be
overwritten), use the XLRGetLength command to get an accurate count of
the bytes recorded. This number can then be used for indexing into the data.

Read Positioning

A structure is used to set the read pointer with a byte-offset count. A high
and low value is used to overcome the 32 bit limitations of some
programming environments.

Reading Data

An XLRRead command is used to request a data transfer from StreamStor to
system memory.

Chapter 5
External Port

C H A P T E R 5 : E X T E R N A L P O R T

182

External Port
Some models of StreamStor include additional connectors and electronics to
provide an alternate method of transferring data into and out of StreamStor.
These additional paths offer several advantages, including:

 freedom from interaction with other devices on an arbitrated bus such as
PCI;

 the reduction or elimination of bus FIFOs that may otherwise be
required to interface with an arbitrated bus;

 full isolation of data path from operating system and computer hardware
facilitates predictable and repeatable behavior;

 better or additional control over timing and other parameters;

 higher bus utilization efficiency due to non-arbitrated nature;

 access to interface signals without risk of crashing host computer;

 higher data rates than the most common PCI buses support; and

 the potential for dual-port operation (simultaneous transfers on both PCI
bus and external ports) while recording or playing back.

C H A P T E R 5 : E X T E R N A L P O R T

183

FPDP

Overview

The FPDP (Front Panel Data Port) external port feature is included on a
variety of StreamStor controllers. The hardware manual for your StreamStor
controller or daughterboard will indicate if FPDP is supported on it and will
provide any other model-specific details.

FPDP is a 32-bit synchronous data bus that allows data to be transferred at
high speeds between devices. Simple and low-cost in its implementation,
FPDP supports the necessary flow controls to manage transfers between
devices of different speeds. The sustained speed on the StreamStor interface
varies, depending on the StreamStor controller model.

In reading the following sections on using this feature, it is important to be
familiar with the American National Standard for Front Panel Data Port
Specifications (ANSI/VITA 17-1998). This manual is intended to clarify
StreamStor’s operation as it relates to the standard, not to educate one on the
standard itself. For additional information about the standard, other FPDP
products and manufacturers, and other technical details regarding FPDP,
please visit www.fpdp.com.

The StreamStor FPDP interface is designed to meet and exceed the basic
capabilities of FPDP as defined in the FPDP ANSI standard. The following
sections describe:

 any optional FPDP features StreamStor has implemented;

 any features that StreamStor has implemented as a superset to the
standard;

 any known deviations form the ANSI standard;

 any clarifications that might otherwise be left open to interpretation;
and

 the API functions necessary to configure an external port.

Interface Electronics

Interface electronics and termination values on StreamStor are those
recommended by the ANSI standard, though some signals and terminations
can be electronically connected or isolated with crossbar switching devices in
order to support electronic reconfiguration.

C H A P T E R 5 : E X T E R N A L P O R T

184

Data Formats

The FPDP is a multi-drop bus intended to carry either framed or unframed
data. StreamStor currently supports only the unframed data mode. The
SYNC* (Sync Pulse) signal is driven to an inactive state while StreamStor is a
data transmitter on the FPDP bus.

Contact Conduant for more information on using framed data.

PIO Signals

PIO signals are programmable lines for I/O for user-defined functions.
These are ancillary signals and are not required for the FPDP function.
StreamStor currently does not drive or act on received PIO signals. Contact
Conduant for more information on using PIO signals.

Interface Functions

To ready StreamStor to transfer data using FPDP, the API routine
XLRBindxxxChannel must be called. The FPDP port’s channel number
will depend on the board type. (For details on channel numbers, see the
XLRSelectChannel function in the Function Reference section of this
manual.) The bind function is called as follows (xxx stands for “Input” or
“Output” depending on intended usage):

 XLRBindxxxChannel (device, 0);

After StreamStor is in external port mode, an API call to XLRSetDBMode is
used to configure the port. This command allows you to set the mode to one
of:

 FPDP Transmit Master (FPDP/TM)

 FPDP Transmit (FPDP/T, StreamStor unique)

 FPDP Receive (FPDP/R)

 FPDP Receive Master (FPDP/RM).

 FPDP Receive Master Clock Master (FPDP/RMCM, StreamStor
unique)

The hardware manual for your StreamStor controller or daughterboard
describes which FPDP modes are available for your board type.

In FPDP/T mode, StreamStor drives the FPDP DATA, DVALID* (Data
Valid), DIR* (direction), and SYNC* (Sync Pulse) signals but uses the FPDP
clock that is driven to the FPDP bus by some other source. In this mode,

C H A P T E R 5 : E X T E R N A L P O R T

185

StreamStor does not provide any termination for signals other than DATA1.
To use this mode properly, StreamStor should NOT be positioned at either
end of the FPDP bus. Note also that the maximum useable frequency in this
mode will decay more rapidly as the cumulative distance from the clock
source to the data source to the data destination increases.

In FPDP/RMCM mode, StreamStor acts as a Receive Master, excepting that
StreamStor also drives the FPDP clock signals on the FPDP bus. In
addition, StreamStor terminates the clock signals (PSTROBE, PSTROBE*,
and STROB) as would a traditional FPDP/TM while terminating the
remaining signals as would a FPDP/RM. To use this mode StreamStor
should be physically positioned at an end of the FPDP bus. Note also that
the maximum useable frequency in this mode will decay more rapidly as the
cumulative distance from the clock source to the data source to the data
destination increases.

When configuring StreamStor as a recorder, it may be desirable to prevent a
transmitter from sending data until the StreamStor recording function is fully
enabled. XLRSetDBMode can be used to assert the FPDP NRDY* (Not
Ready) signal when StreamStor is activated as a FPDP receiver. NRDY* will
remain asserted until the StreamStor data recording process is ready to
proceed. An example of this is (for a PCI-816XF2):

XLRSetDBMode(device,SS_FPDP_RECVMASTER,
SS_OPT_FPDPNRASSERT);

IMPORTANT: When connecting and configuring FPDP/FPDP-II
connections on a given bus, do not configure more than one connector as a
transmitter (FPDP/TM or FPDP/T) on that bus at a time. Otherwise, bus
drivers may be permanently damaged.

1 StreamStor always provides series termination on the DATA signals as described in Permission 6.4.1 of the ANSI
specification.

C H A P T E R 5 : E X T E R N A L P O R T

186

PSTROBE/PSTROBE* and STROB Signals

When in FPDP/TM and FPDP/RMCM modes, StreamStor will drive and
terminate both the differential clock pair of PSTROBE, PSTROBE* (±
PECL Data Strobe) and the single-ended STROB (Data Strobe) TTL clock.
When in any other mode, the user will select which of the two FPDP clock
sources StreamStor should use from the FPDP bus. The clock can be
selected by calling XLRSetDBMode with the desired clock option. For
example, to enable the data strobe clock (TTL) on a PCI-816XF2:

XLRSetDBMode(device,SS_FPDP_RECV,
SS_OPT_FPDPSTROB);

Refer to the FPDP ANSI standard for recommendations and observations
about the use of these signals.

I N T R O D U C T I O N

187

Chapter 6
Channel Description and

Selection

I N T R O D U C T I O N

188

Channel Description and Selection
StreamStor boards have one or more data paths or channels that can be used to
input and output data to/from the StreamStor board. The number of channels
available depends on the board type. For example, the PCI-816XF2 has three
channels - the PCI Bus, the FPDP top connector, and the FPDP front
connector. The hardware manual for your StreamStor controller or
daughterboard describes what channels are available for the specific board type.

A single channel or multiple channels may be selected to record from. Only one
channel at a time can be selected to playback with the FPDP board type. The
SFPDP board type allows up to four channels to be played back at a time. This
section describes the commands that should be used to set up the StreamStor
channels for recording and playback.

For StreamStor users who have software that was written prior to SDK 7.0 and
currently use the PCI Bus to transfer data to/from the StreamStor card, your
software does not need to be modified to support the new channel options.
That is, calls to the following API functions do not need to be added to your
software since the defaults are set to single channel mode using the PCI Bus
channel 0.

 XLRSetMode

 XLRBindInputChannel

 XLRBindOutputChannel

 XLRClearChannels

 XLRSelectChannel

Calls to these functions only need to be added if:

 you want to use the multi-channel options or

 you want to use a channel other than the default channel (for example, if
you want to use the FPDP front connector on a PCI-816XF2 instead of
the FPDP top connector).

Channel Description

The hardware manual for your StreamStor controller or daughterboard
describes the available channels on your board type.

I N T R O D U C T I O N

189

Selecting an Operating Mode

The StreamStor operating mode is set by calling XLRSetMode. The hardware
manual for your StreamStor controller or daughterboard describes the operating
modes that are available for your board type. The default operating mode is
SS_MODE_SINGLE_CHANNEL (single channel mode).

Clearing, Selecting, and Binding Channels

The XLRSelectChannel function is used to select a channel that future
functions will act on. One example is XLRSelectChannel needs to be called
to select the FPDP channel before a call to XLRSetDBMode is made.
XLRSelectChannel should always be called to select a channel before calling
XLRBindInputChannel or XLRBindOutputChannel.
XLRClearChannels should be called once before setting up the channels to
clear the default channels or to clear the previous setting of channels. Since
XLRClearChannels clears the previous settings of channels, when setting up
multiple channels XLRClearChannels should be called just once before the
setting up of the channels.

If you do not want to use the default channels, then you must identify which
channels you want to use. The process of identifying a channel is called binding a
channel. Binding a channel is analogous to choosing the data path. The function
XLRBindInputChannel is used to bind a channel for input into StreamStor
and the function XLRBindOutputChannel is used to bind a channel for
output from StreamStor. These functions should be called before data is
transferred to or from the StreamStor board. The default channel for record and
playback is the PCI Bus channel 0.

To record and playback a single channel, call XLRSelectChannel and then
XLRBindInputChannel passing it the channel to record on. Then to
playback, call XLRSelectChannel and then XLRBindOutputChannel,
passing it a parameter of the channel to playback through.

The SFPDP daughter board supports a maximum of four channels that can be
recorded simultaneously by the StreamStor board and four channels can be
played simultaneously. To record multiple channels simultaneously, the
function XLRBindInputChannel must be called once for each channel to be
recorded upon. Note that all the channels you are going to use for recording
must be bound and configured (with XLRSetDBMode) before you call
XLRRecord.

Channels that are recorded in multi-channel mode retain the channel number
they were recorded on, so when a channel needs to be played back, this channel
number must be selected using XLRSelectChannel. On playback, both the
channel and data output path need to be selected. The channel of data to be
played back is selected using XLRSelectChannel and the data output path is

I N T R O D U C T I O N

190

selected using XLRBindOutputChannel. This method allows the data to be
output on a different channel than it was recorded on.

This is a typical calling sequence to playback data recorded using multiple
channels:

1. Call XLRClearChannels once.

2. For each channel, call XLRSelectChannel to select the channel
number to playback.

3. Call XLRBindOutputChannel to select the output path.

4. Call XLRSetDBMode to setup the daughterboard mode.

The order of calling these functions is very important. See the coding examples
at the end of this chapter.

Since a recorded channel retains the channel number it is recorded on, only one
channel number can recorded over each physical channel. This means only one
channel number can be recorded over the PCI bus (channel 0).

Forking and passthru are not supported when in multi-channel mode.

SFPDP Multi-channel Commands

The StreamStor Amazon Real-time Disk Controller Installation and User
Manual lists the available commands for the Amazon controller. Of the list of
API commands in the Amazon User Manual, these commands are not
supported if using the SFPDP daughterboard in multi-channel mode:

• XLRAppend
• XLRDeleteAppend
• XLREdit/XLREditData
• XLRGetFIFOLength
• XLRGetSample
• XLRPlaybackLoop
• XLRPlayTrigger
• XLRReadFifo
• XLRRecoverData
• XLRSetPlaybackLength
• XLRSetReadLimit
• XLRSetSampleMode
• XLRTruncate

The API command XLRSetPortClock is not available on the SFPDP
daughter board, regardless of the mode.

I N T R O D U C T I O N

191

Some API commands are “channel specific.” This means that the command
operates on the currently selected (or selected and bound) channel. Examples of
channel specific commands are:

• XLRGetDirectory
• XLRGetLength
• XLRGetLengthPages

In the case of XLRGetLength, if data on the StreamStor was recorded in
multi-channel mode, it will return the length of data recorded on the currently
selected channel.

Programming examples of multi-channel recording and playback can be found
in the Examples directory of the SDK distribution.

I N T R O D U C T I O N

192

Example 1

/* The following C code shows how to set up the PCI Bus channel 0 as
 * an input channel to record, and then read the data back
 * through the PCI Bus channel 0. For simplicity, error handling
 * is not shown.
 */

/** include files **/
#include <stdio.h>
#include "xlrapi.h"
#define START_ADDRESS 0x100000

void main()
{
 SSHANDLE xlrDevice;
 S_READDESC sRead;
 PUINT32 pBuf = NULL;
 UINT64 dwAddress = 0;
 XLR_RETURN_CODE xlrStatus;

 xlrStatus = XLROpen(1, &xlrDevice);

…
 // Set StreamStor mode to Single Channel
 xlrStatus = XLRSetMode(xlrDevice, SS_MODE_SINGLE_CHANNEL);

 // Channels must be cleared prior to binding. XLRClearChannels
 // clears the input and the output channels.
 xlrStatus = XLRClearChannels(xlrDevice);

 // Select channel zero to begin recording on.
 xlrStatus = XLRSelectChannel(xlrDevice, 0);

 // Input will be done over the PCI Bus, which is channel zero.
 xlrStatus = XLRBindInputChannel(xlrDevice, 0);

-
 // Record for a while on channel zero.
 xlrStatus = XLRRecord(xlrDevice, 0, 1);

 printf("Recording...");
 … record for a while …
 printf("Recording done!\n");

 // Stop recording.
 XLRStop(hTarget);

 // Select Channel to read – channel 0
 xlrStatus = XLRSelectChannel(xlrDevice , 0);

 // Bind PCI Bus channel 0 as output channel.
 xlrStatus = XLRBindOutputChannel(xlrDevice, 0);

 pBuf = (PUINT32)malloc(BUFFER_SIZE);

I N T R O D U C T I O N

193

 // Build the read descriptor.
 dwAddress = (UINT64)(START_ADDRESS);
 sRead.AddrHi = (UINT32)(dwAddress << 32);
 sRead.AddrLo = (UINT32)(dwAddress);
 sRead.BufferAddr = pBuf;
 sRead.XferLength = BUFFER_SIZE;

 xlrStatus = XLRRead(xlrDevice, &sRead);

 printf("Read Complete.\n");
 XLRClose(xlrDevice) ;

 if(pBuf)
 {
 free(pBuf);
 pBuf = NULL;
 }
}

I N T R O D U C T I O N

194

Example 2

/*
 * The following C code shows how to set up the top FPDP connector as
 * an input channel to record, then read the data back through the
 * PCI Bus Channel 0.
 */

/** include files **/
#include <stdio.h>
#include <string.h>
#include "xlrapi.h"

#ifndef WIN32
#include <stdlib.h> // for malloc
#endif

#define BUFFER_SIZE 131072

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

#define START_ADDRESS 0x100000

void PrintXLRError();
int main(int argc, char *argv[])
{
 SSHANDLE hTarget;
 S_READDESC sRead;
 S_DEVINFO devInfo;
 UINT64 dwStartAddress=0;
 PUINT32 pBuf = NULL;
 XLR_RETURN_CODE xlrStatus;

 xlrStatus = XLROpen(1, &hTarget);
 xlrStatus = XLRSetMode(hTarget, SS_MODE_SINGLE_CHANNEL);
 xlrStatus = XLRClearChannels(hTarget);

 // Bind the top port (channel 30) as the input channel.
 xlrStatus = XLRSelectChannel(hTarget, 30);
 xlrStatus = XLRBindInputChannel(hTarget, 30);

 xlrStatus = XLRGetDeviceInfo(hTarget, &devInfo);
 if (strncmp(devInfo.BoardType, "AMAZON", 6) == 0) {
 xlrStatus = XLRSetDBMode(hTarget, SS_FPDPMODE_RECVM, 0);
 }
 else {
 xlrStatus = XLRSetDBMode(hTarget, SS_FPDP_RECVMASTER, 0);
 }

 // Start recording.

I N T R O D U C T I O N

195

 xlrStatus = XLRRecord(hTarget, FALSE, TRUE);

 printf("Recording...\n");

 // ... Record some data ...

 printf("Recording done!\n");
 XLRStop(hTarget);

 // Set up to read the data we just recorded.
 xlrStatus = XLRSetMode(hTarget, SS_MODE_SINGLE_CHANNEL);
 xlrStatus = XLRClearChannels(hTarget);

 // Select Channel to read - channel 0.
 xlrStatus = XLRSelectChannel(hTarget, 0);

 // Bind PCI Bus channel 0 as output channel.
 xlrStatus = XLRBindOutputChannel(hTarget, 0);

 pBuf = (PUINT32)malloc(BUFFER_SIZE);

 // Build the read descriptor to read some data.
 dwStartAddress = 4096;
 sRead.AddrHi = (UINT32)(dwStartAddress >> 32);
 sRead.AddrLo = (UINT32)(dwStartAddress & 0xFFFFFFFF);
 sRead.BufferAddr = pBuf;
 sRead.XferLength = BUFFER_SIZE;

 // Read a buffer.
 xlrStatus = XLRRead(hTarget, &sRead);

 printf("Read Complete.\n");

 XLRClose(hTarget);

 free(pBuf);
 pBuf = NULL;
 exit(0);
}

I N T R O D U C T I O N

196

Using Multiple PCI Express Sources

Overview

The StreamStor system can record data from multiple sources simultaneously
and aggregate the data onto the media for maximum performance. This means
that the data is interleaved on the media but is tracked to allow separation by
channel when played back or retrieved to system memory. Recording from
multiple channels using one of the StreamStor mezzanine boards provides an
obvious distinction for the StreamStor system to identify the source channel in
order to properly track data from each independent channel. Unfortunately,
when recording from multiple sources on the PCI Express fabric there is no
independent physical interface to provide this channel distinction. In order to
provide this functionality the StreamStor system implements multiple channels
on the PCI Express fabric by partitioning the address space assigned for data
recording. These “virtual” address spaces provide a means to identify the data
source if the source restricts its data writes to stay within its assigned address
space.

The StreamStor multi-channel recording capability on PCI Express should not
be confused with multi-channel data sources such as A/D cards. A StreamStor
channel provides the capability to distinguish between PCI Express data sources
(cards) but does not distinguish individual channels from one source. For
example, a high speed digitizer card might support the connection of 2 signals
for digitizing and streaming to system memory. The digitizer and/or its
software determine how this data is combined into the single data stream that is
written to system memory. This data stream represents a single “channel” to
the StreamStor. The system currently supports 16 virtual channels, as defined
by MAX_VIRTUAL_CHANNELS in xlrtypes.h.

Address Allocation

The StreamStor address space is allocated at system boot time and the requested
size is pre-configured. In general, the StreamStor PCI Express products are
allocated a total memory address space of 16MB (0x1000000) for data
recording. For single source recording applications, the entire memory address
space is usable for recording. When operating in multi-channel mode, the
StreamStor device will partition this space according to how many PCI Express
input channels are bound for recording. The space allocation is done on binary
multiples (1, 2, 4, 8, and 16, etc.).

 If, for example, there are 5 PCI Express input channels bound, the memory will
be partitioned into 8 equal size pieces. If 4 input channels are configured then
the memory space will be split into 4 equal size pieces. See the example in
Figure 1. The example assumes the StreamStor default total memory allocation
size of 16MB.

I N T R O D U C T I O N

197

Figure 1 - PCI Express Multi-Channel Recording Address Space Example

Number of Channels

Configured

Address

Space

Range (each space)

2 2 0x800000 (8 MB)

3 or 4 4 0x400000 (4 MB)

5, 6, 7, or 8 8 0x200000 (2 MB)

9 through 16 16 0x100000 (1 MB)

The functions XLRGetBaseAddr, XLRGetBaseRange and
XLRGetWindowAddr can be used to query the configured addresses for each
recording channel. Note that XLRSelectChannel must be used to select the
channel before calling these functions since the values returned are channel
specific.

Configuration

For recording multiple sources on the PCI Express interface, the StreamStor
system must be configured for multi-channel mode using the XLRSetMode
function. The functions XLRSelectChannel and XLRBindInputChannel
functions must then be called to configure a channel for each unique PCI
Express source device.

Virtual channel numbers start at 0. The channel numbers you use must start at
0 and must be contiguous.

Examples of valid virtual channel combinations:

0

0, 1, 2, 3

0, 1, 2, 3, 4

I N T R O D U C T I O N

198

Examples of invalid virtual channel combinations:

 1, 2, 3 # does not start at 0

 0, 1, 4 # numbers are not contiguous

 13 # does not start at 0

It is left to the user to assign channels and associated address ranges to each PCI
Express data source being utilized.

As in any recording operation, the StreamStor system must be placed into
record mode using XLRRecord or XLRAppend. To record data from a PCI
Express source, the device software must be programmed to stream data to the
StreamStor physical address assigned to the channel for that device. The
programmer must also ensure that the data transfers stay within the address
range assigned for the channel. In many cases, the device software is designed
to allow streaming of acquired data directly to system memory buffers. The
address returned from the XLRGetWindowAddr function can be used in place
of an allocated system memory address. The address returned is a logical
address in the user address space that will be remapped to the StreamStor
physical address by the operating system and device driver when the source
device is programmed for the transfer. If the programmer has direct access to
the device hardware, it is often desirable to utilize direct programming of the
device hardware to minimize OS overhead by using the physical address
returned by the XLRGetBaseAddr function.

For detailed information on the StreamStor API functions described above
please refer to the StreamStor User Guide.

Chapter 7
Bank Switching

C H A P T E R 7 : B A N K S W I T C H I N G

200

Bank Switching
The Big River TK200 (“TK200”) is a rack mounted StreamStor storage
system. It features two hot-swappable 8-drive modules that can be used to
record continuously. The bank switching feature is available only on the Big
River TK200.

Bank switching is used to control drive modules in separate banks as if they
were contiguous units in a recording. A bank is a rack containing a drive
module. The TK200 has two banks, referred to as Bank A and Bank B.
Each bank can hold a drive module, and each drive module can hold up to
four pairs of master/slave drives for a total of eight drives. Therefore, a
TK200 can support a maximum of 16 drives. You can play or record data
from the drive module in one bank while the other bank is idle or
dismounted.

Setting Bank Mode

The TK200 can operate in bank mode or non-bank mode. When in non-
bank mode, the TK200 operates the same as a non-TK200 system; namely,
the drives in the drive modules are read and written as if they were a single
set.

Only StreamStor systems with a TK200 chassis support bank mode. The
chassis type can be determined by calling the API function
XLRGetChassisType. Currently, the chassis type returned is either
TK200 or UNKNOWN_CHASSIS_TYPE.

When in bank mode, the drives in each drive module are recorded
independently. That is, a recording made on the drives on Bank A is
independent of the recording made on the drives on Bank B. In this mode,
you can load a single bank with a drive module or both banks with drive
modules and begin recording or playback.

The API function XLRSetBankMode is used to enable or disable bank
mode on the TK200. By default, bank mode is disabled - you must call
XLRSetBankMode to enable it. (StreamStor PCI-816V100 and PCI-
816VXF2 boards are an exception. By default, they are bank mode enabled.)
To enable bank mode, the StreamStor recorder must be idle (not recording
or playing data).

When a StreamStor is in bank mode, it stays in bank mode until
XLRSetBankMode is called to take it out of bank mode or the StreamStor
card is reset.

Assume both banks are loaded with drive modules. When the drive module
in Bank A is full, you could switch recording to Bank B. While Bank B is

C H A P T E R 7 : B A N K S W I T C H I N G

201

recording, you could replace the full drive module in Bank A with a new
drive module. In this way, you could continue recording as long as you want,
switching out full drives with empty drives indefinitely.

If bank mode is disabled, or if the chassis or board type does not support
bank mode, all API functions operate on the drives as if the drives were a
single device rather than two independent banks.

Selecting a Bank

Some API functions are "bank aware", which means that when the TK200 is
in bank mode, the API function will be performed on the selected bank. The
selected bank is identified by bank aware API functions as follows:

• If the system is not in bank mode and then XLRSetBankMode is
called to enable it, Bank A, if it is available, is by default the selected bank. If
Bank A is not available (i.e., there is no drive module in Bank A or Bank A's
drive module is faulty), then Bank B, if it is available, becomes the selected
bank.

• If the system is in bank mode and then XLRSelectBank is called,
the bank specified in the XLRSelectBank call becomes the selected bank.
It remains the selected bank until XLRSelectBank is called to select a
different bank.

• If the system is in bank mode and the StreamStor is closed by calling
XLRClose, then the next time XLROpen is called, it will still be in bank
mode. The selected bank will be the bank that was selected at the time of the
last call to XLRClose.

For example, assume that the StreamStor is in bank mode and
XLRSelectBank has been called to select Bank B. Then XLRRecord is
called. In this case, recording will begin on Bank B. If XLRGetDirectory
is then called, the length returned will be the length of the recording on Bank
B.

To determine which bank is selected, call XLRGetBankStatus and
examine the selected member of the S_BANKSTATUS structure.

Recording a Drive Module

When the TK200 is in bank mode, API routines such as XLRRecord and
XLRWrite can be used to put the recorder into record mode. If both banks
contain drive modules, data will be written on the drive module in the
selected bank until the drive module is full. When full, recording ceases on
the selected bank. Your application may then explicitly select the other bank
to resume recording.

C H A P T E R 7 : B A N K S W I T C H I N G

202

Recording continues on the newly selected bank until its drive module, too, is
full. As long as full drive modules are replaced by modules that are not full,
recording can continue in this fashion, with recording alternating between
the two banks, until XLRStop is called.

Playing back from a Drive Module

In bank mode, the standard XLRPlayback, XLRRead or XLRReadData
functions can be used to playback or read data into memory. If both banks
contain drives with data, data will be played back from the drive module in
the selected bank until all data from the selected bank has been played (or a
set play length is reached). Then, playback ceases on the selected bank.
Your application may then select the other bank to continue playback.
Playback continues on that bank until all data has been played. Playback can
continue in this fashion, with data retrieval alternating between the two
banks, until all data is played, a play length is reached, or XLRStop is called.

Labeling Drive Modules

By default, drives modules are not labeled. You can use the XLRSetLabel
function to label idle drive modules with a null terminated string. When in
non-bank mode, the label applies to the entire collection of drives that are
mounted. When in bank mode, the label applies only to the drive module in
the selected bank. For example, to label the drives in both banks you would:

1. Call XLRSelectBank with bankID set to BANK_A.

2. Call XLRSetLabel with the desired label for Bank A.

3. Call XLRSelectBank with bankID set to BANK_B.

4. Call XLRSetLabel with the desired label for Bank B.

The label can be up to XLR_DRIVEMODULE_LABEL_LENGTH bytes long.

Because the label is a NULL terminated string, you can "remove" a label
from a drive module by calling XLRSetLabel with the desired label set to a
null string.

You can call XLRSetLabel on an idle StreamStor to add or modify a label
any time after a drive module has been selected. Labels need not be unique,
i.e., the drive module in Bank A and the drive module in Bank B can have
the same label.

To retrieve a label from a drive module, select the desired bank and then call
XLRGetLabel. The buffer you read the label into must be large enough to
hold the label and the NULL terminator.

C H A P T E R 7 : B A N K S W I T C H I N G

203

Writing a User Directory

A user directory is a reserved area on a StreamStor recording that can only be
written to by calling the function XLRSetUserDir. The user directory can
be any type of data, including binary data. The user directory can be up to
XLR_MAX_UDIR_LENGTH bytes long. When in non-bank mode, there is
only one user directory. When in bank mode, each drive module can have a
user directory.

Because of firmware limitations, the size of the user directory must be a
multiple of eight bytes.

Writing a user directory on a bank is similar to writing a label on a bank.
You first select the bank by calling XLRSelectBank and then call
XLRSetUserDir to write the directory to it.

Since user directories are variable length and may or may not be NULL
terminated, you must first get the user directory length before retrieving the
user directory. For example, to get the user directory on Bank B, you would:

1. Call XLRSelectBank with bankID set to BANK_B.

2. Call XLRGetUserDirLength to get the length of the user directory
on Bank B.

3. Call XLRGetUserDir to retrieve the user directory on Bank B,
passing it the length that was returned by the call to
XLRGetUserDirLength.

The Length of Drive Modules

The amount of data recorded on a drive module can be obtained by using
any of the following API functions:

• XLRGetLength - the length is returned as a function value.

• XLRGetDirectory - the length is returned in the Length member
of the S_DIR structure.

• XLRGetBankStatus - the length is returned in the Length
member of the S_BANKSTATUS structure.

All three of the above functions are bank aware, which means that the length
returned is the length on the selected bank.

Note that regardless of the bank mode, the length returned by the functions
does not include the size of the label (if any) or the size of the user directory
(if any).

C H A P T E R 7 : B A N K S W I T C H I N G

204

Write Protecting Drive Modules

By default, drive modules are not write protected. You can use the
XLRSetWriteProtect function to write protect idle drive modules.
When in non-bank mode, the write protection applies to the entire collection
of drives that are mounted. When in bank mode, the write protection applies
only to the drive module in the selected bank.

The write protection remains from recording session to recording session,
even if the drive module has been removed from the system and then
reinserted. Write protection can be removed by calling the function
XLRClearWriteProtect. When in non-bank mode, the write protection
will be cleared from the entire collection of drives that are mounted. When
in bank mode, the write protection is cleared only from the drive module in
the selected bank.

Note that the write protection is only recognized by StreamStor recorders - it
is not recognized by other systems.

Erasing Drive Modules

The command XLRErase is used to erase data on the StreamStor recorder.
When in non-banking mode, the entire collection of drives is erased. When
in bank mode, the erasure applies only to the drive module in the selected
bank. The drives must be idle in order to perform the erase.

There are several options to XLRErase. When in bank mode, note that:

• If the drive module in the selected bank is write protected,
XLRErase will have no effect on it.

• If the XLRErase option SS_OVERWRITE_DIRECTORY is used, the
user directory on the selected drive module will be deleted. The label on the
selected drive module will be replaced with the default label.

Getting Bank Status

Use XLRGetBankStatus to get the status of selected bank. This function
will return the selected bank's status in a structure of type S_BANKSTATUS.
For details on this structure, see the structure definition at the end of the
Function Reference section of this manual.

Replacing a Drive Module

As drive modules fill up during a recording, you may want to replace the full
modules with empty (or otherwise writable) drive modules. This becomes
necessary, for instance, when Bank A becomes full, recording is in progress

C H A P T E R 7 : B A N K S W I T C H I N G

205

on Bank B and a switch will be done back to Bank A. In this case, follow
these steps to replace the full drive module with a new module:

1. Power off the bank containing the full drive module. When
successfully powered down, all lights on the bank will go off.

2. Once the lights are off, remove the full drive module from the bank.

3. Put the new (write-enabled) drive module in the empty bank.

4. Power up the bank containing the new drive module. On power up,
StreamStor will initialize the drive module. When the initialization
has completed the READY light on the bank will light.

The same procedure can be applied to playback. If a recording spans more
than two drive modules, when playback switches to the second drive module,
once all data on the first drive module has been played, you can replace it
with the third module in the set, etc.

You can also use the functions XLRMountBank and XLRDismountBank
to mount and dismount banks.

Chapter 8
Drive Partitioning

C H A P T E R 8 : D R I V E P A R T I T I O N I N G

208

Drive Partitioning
Partitioning allows you to logically divide the StreamStor drives into isolated
sections. The partitioning feature is included on a variety of StreamStor
controllers. The hardware manual for your StreamStor controller or
daughterboard will indicate if partitioning is supported on it and will provide
any other model-specific details.

 The StreamStor can operate with or without partitions. By default, the
drives are not partitioned. When the drives are not partitioned, they are
operated upon as if they were a single unit. If the drives are partitioned,
StreamStor operations are performed on the currently selected partition.

Creating a Partition

A StreamStor device is classified as not partitioned or partitioned. A
partitioned system has one or more partitions and an undefined area that has
not yet been partitioned. The API function XLRPartitionCreate is used
to create a partition. You pass the function the length of the partition you
want to create. The length must be a multiple of a page size, where a page is
4096 bytes. The function will attempt to create a partition of approximately
the requested size. The actual size of the partition that is created is
determined by the state of the disks and other internal boundary restrictions.
The API function XLRGetPartitionInfo will return the actual size of
the partition that was created in the PartitionCapacity member of the
S_PARTITIONINFO structure.

When a partition is created, it is assigned a partition number. Partition
numbers start at 0 (zero). The maximum number of allowed partitions may
be hardware specific and is defined by the constant
XLR_MAX_PARTITIONS.

If the StreamStor has data recorded on it that was written in a non-
partitioned mode, that data must first be erased before you can create any
partitions.

Note that you cannot create a partition at a specific offset on the StreamStor
device. Instead, the StreamStor will determine where to create the partition.

Once a device has been partitioned, in order to perform operations on the
partitions, you must first select the partition, using the partition number that
was assigned to it when it was created.

Selecting a Partition

The API function XLRPartitionSelect is used to select the partition
that is to be used for subsequent StreamStor partition-specific operations.

C H A P T E R 8 : D R I V E P A R T I T I O N I N G

209

To select a partition, call XLRPartitionSelect, specifying the partition
number that was assigned to it when it was created.

Some examples of partition-specific operations are:

• XLRRecord records only on the selected partition.

• XLRSetWriteProtect applies write protection only to the
selected partition.

• XLRErase with any option (other than the option to destroy all
partitions), erases the data only in the selected partition.

• XLRGetDirectory returns information that pertains only to the
selected partition. For instance, the Full structure member of S_DIR will be
set to TRUE if the selected partition is full.

• XLRSetLabel applies the requested label only to the selected
partition.

If a partition has not been selected by calling XLRPartitionSelect, then
partition 0 (zero) will be selected by default.

See the section "Bank Mode and Partitioning" in this chapter for details on
how the selected bank works in conjunction with the selected partition.

Getting Partition Information

The API function XLRGetPartitionInfo is used to retrieve information
from the StreamStor about the currently selected partition. To obtain this
information, you pass XLRGetPartitionInfo a pointer to a structure of
type S_PARTITIONINFO. The structure is returned, populated with the total
number of partitions on the StreamStor, the partition number of the selected
partition, the capacity of the selected partition, etc. Full details of the
S_PARTITIONINFO structure can be found at the end of the Function
Reference chapter.

To determine the amount of data that has been recorded in a partition, you
first select the partition of interest. Next, call XLRGetDirectory (if the
device is idle) or XLRGetLength (if the device is not idle).

Deleting a Partition

Partition deletion is supported only on the Amazon board types. For details,
see the XLRPartitionDelete description in the Function Reference
chapter of this manual.

C H A P T E R 8 : D R I V E P A R T I T I O N I N G

210

Bank Mode and Partitioning

Partitioning can be used in conjunction with bank mode. When in bank
mode, you can optionally partition one or both modules. In practice, when
you are using bank mode, you will probably always want to partition both
modules.

If in bank mode, the selected bank and the selected partition are used to
determine where subsequent StreamStor operations are performed. For
example, if you call XLRSelectBank to select Bank B, then call
XLRPartitionSelect to select partition six, if you should then call
XLRSetLabel, that label will be applied only to partition six on Bank B.

Note that if you are in bank mode and are using partitions, the bank mode
SS_BANK_AUTO_ON_FULL is not allowed. The only way to begin
operations on a different bank is to explicitly select the bank to be used.

Recording using Partitions

If a StreamStor has any partitions on it, subsequent operations on the
StreamStor will be partition-specific. The following example illustrates this.

Assume you had previously created several partitions and that partition three
had been created as one megabyte long. If you then select partition three
with XLRPartitionSelect, and then begin a recording with wrap mode
disabled, that data will be recorded only in partition three. When one
megabyte has been recorded, that partition is "full" and recording will cease.
To begin recording on partition number four, you must call
XLRPartitionSelect to select it.

Using the same partitioning described above, if recording was started with
wrap mode enabled, then once partition three had been recorded to its
capacity, the recording would "wrap around" and start recording over the
previously written data in partition three.

In a similar fashion, to play back recorded data you must first select the
partition to be played.

Wrap Mode

You can record to partitions using non-wrap mode or using wrap mode.
You can also append data to partitions using XLRAppend.

C H A P T E R 8 : D R I V E P A R T I T I O N I N G

211

If a partition was recorded in wrap mode, you can append to it if it has not
yet wrapped around. If the partition was recorded in wrap mode and the
data has wrapped, you cannot append to it.

Removing Partitioning

Once a system has been partitioned, it remains partitioned until the system is
erased using the XLRErase function with the
SS_OVERWRITE_PARTITION option set. XLRErase will erase all data,
partitions, user directories and labels. If in bank mode, the erasure will be
applied to the currently selected bank.

Reusing Partitions

You can delete the data within the partition. You can then reuse the
partition. To accomplish this, first call XLRPartitionSelect to select
the partition that contains the data to be deleted. Then call XLRErase with
the SS_OVERWRITE_NONE option.

Resizing Partitions

Partition resizing is supported only on the Amazon board types.

User Directories and Partitions

User directories can be created as follows:

 If the StreamStor device is not partitioned and is not in bank mode, then
you can only create one user directory.

 If the StreamStor device is not partitioned and is in bank mode, then you
can create a user directory for each bank.

 If the StreamStor device is partitioned, then you can create a user
directory for each partition.

These user directory functions are partition-specific:

 XLRSetUserDirectory

 XLRGetUserDirLength

 XLRGetUserDir

So, you must first select the partition to be operated upon and then call the
user directory functions.

C H A P T E R 8 : D R I V E P A R T I T I O N I N G

212

Examples

The StreamStor SDK’s example directory has several examples that
demonstrate how to create partitions.

Chapter 9
Forking and Passthru

C H A P T E R 9 : F O R K I N G A N D P A S S T H R U

214

Forking and Passthru
StreamStor cards have the capability of real time “passing” and “forking” of
data streams.

Overview

Data “forking” is the simultaneous recording and output of data. This is a
real time operation which allows for the manipulation of data as well as
recording of that same data stream simultaneously. Forking requires input
from one source (PCI bus, top or front FPDP connector) and a different
output channel. For example, data could be received over the front FPDP
port, recorded to disk, and sent out the top FPDP port.

“Passthru” is the input of data over 1 channel (PCI bus, top or front FPDP
port) and the simultaneous output (over a different channel) of that data without
being recorded to disk. When StreamStor is operating in passthru mode, no
disk drives are required; any drives that are connected are ignored by
StreamStor.

 NOTE: Both passthru and fork modes are REALTIME ONLY. Thus, the
data must go out at the same speed as it is coming in. If not, an
overflow condition will be signaled (see Overflow section below)
and the data order OF THE OUTPUT STREAM can no longer be
guaranteed. However, in forking mode - even an overflow
condition - WILL NOT JEPORDIZE THE DISK RECORDING
in any way.

Forking

Forking is used in situations where the data must be used in real-time and
recorded to disk simultaneously. Forking mode is set by a call to
XLRSetMode using the SS_MODE_FORK parameter for the mode. Input and
output streams are set by calls to XLRBindInputChannel and
XLRBindOutputChannel.

 NOTE: The bound input and output channels must be different.

A call to either XLRRecord or XLRAppend will start the data flow. Make
sure that the FPDP port(s) are configured before record/append is called.

C H A P T E R 9 : F O R K I N G A N D P A S S T H R U

215

Passthru

Data “passthru” is the simultaneous input and real-time output of data.
Passthru is used in situations where the data must be used in real-time and
recording that data is not necessary or desired. Passthru is configured the
same way forking is except that XLRSetMode is passed the
SS_MODE_PASSTHRU parameter. XLRRecord is called to start data flowing
even though no disk recording takes place.

Output over the PCI bus

Using the PCI bus as an output channel differs from single channel reads in
that calls to XLRReadFIFO are required. XLRReadFIFO retrieves data from
StreamStor to the user provided buffer (similar in operation to
XLRReadData). XLRReadFIFO first ensures that the amount of data
available in StreamStor’s FIFO is greater than or equal to the amount of data
requested. If there is not enough data present, XLRReadFIFO will wait up to
5 seconds for enough data to complete the request. Should not enough data
be present after 5 seconds, XLRReadFIFO will return status XLR_FAIL.
Subsequent calls to XLRGetLastError and XLRGetErrorMessage will
yield a “no data” error.

 NOTE: A “no data” error does not necessarily mean that there are 0 bytes to
be read, only that there are fewer bytes than the requested size.

Checking the FIFO length

The StreamStor SDK provides the XLRGetFIFOLength function to
provide the real time ability to check the amount of data that is available for
output. This function returns a 64 bit integer that is the number of bytes
available for reading at that time. This function is provided for informational
purposes and is primarily used in the situation where input data flow is slow
enough that the XLRReadFIFO timeout of 5 seconds is not adequate. In that
case, user applications can make calls to XLRGetFIFOLength to ensure
there is enough data present before the call XLRReadFIFO.

Ending a FIFO operation

Stopping data forking or passthru requires the use of two calls to XLRStop.
The first XLRStop will shutdown the receiving hardware, but leave the
sending operation (over the PCI bus) still running. After the first stop, call
XLRGetFIFOLength to find out exactly how much data is left in the FIFO
to read. Next, call XLRReadFIFO (with the amount returned from
XLRGetFIFOLength – make sure the buffer is big enough) to read out
the remaining data. Note that after XLRStop is called, you are only allowed

C H A P T E R 9 : F O R K I N G A N D P A S S T H R U

216

to call XLRReadFifo once. Finally, call XLRStop for the final time to take
the StreamStor out of record mode.

For an example of how to use FIFOs please see the example
XLRGetFIFOLengthExample.c in the SDK example directory.

Overflows

Data forking and passthru operate in a real time fashion. If data is coming in
faster than it is leaving, StreamStor’s on board RAM buffer will eventually fill
and an overflow condition will arise. Overflow conditions are signaled by the
Overflow member of the S_DEVSTATUS structure. This structure is filled by
calls to XLRGetDeviceStatus. See the function reference for more
information.

 CAUTION: Once an overflow condition arises, the integrity and order of output
data can no longer be guaranteed. The only way to “recover” from
an overflow situation is to stop and restart StreamStor.

 NOTE: In forking mode, the recording to disk will continue accurately and uninterrupted – only the
order of the output data stream will be inaccurate.

Chapter 10
Technical Support

(303) 485-2721

support@conduant.com
www.conduant.com/support

C H A P T E R 1 0 : T E C H N I C A L S U P P O R T

218

Technical Support
Conduant wants to be sure that your StreamStor system works correctly and
stays working correctly. In the unlikely event, however, that you are unable
to get your new system to work properly, or if a working system ceases to
function, we will do all that we can to get your system back online.

Solving the problem is largely a matter of data collection and steps that must
be taken one at a time. In order for us to better serve you, we ask that you
take the time to perform the following steps prior to calling us. This way,
you can provide us with the most meaningful information possible that will
help us solve the problem.

Is the problem one that obviously requires replacement parts due to physical damage to the
system? If yes, then please gather the information described below and report the problem to
tech support, by phone or through the Conduant web site.

Have you confirmed that no cabling has been inadvertently disconnected or damaged while
working around the equipment?

Is the card properly seated in the PCI slot?

Do all the disk drives have good power connections and voltages?

Does the confidence test sscfg.exe (on Windows) or ssopen/sstest (on Linux) run OK?

Has the software installation been corrupted? Try re-installing software.

Have you checked the Conduant web site for technical bulletins?

Have you recently installed a new Linux kernel or compiler or a new Windows Service
Pack?

If the above steps did not resolve the problem, then please call Technical
Support or open a support ticket. To open a support ticket, go to
www.conduant.com, click on “Support” and then click on “Submit a ticket.”

Please provide the following information:

• StreamStor Card Serial Number

• Software Revision(s)

• Configuration (816XF, 816XF2, disk drive model numbers, etc.)

C H A P T E R 1 0 : T E C H N I C A L S U P P O R T

219

• Description of third party equipment that StreamStor is working with
(i.e. Manufacturer and model numbers, etc.)

• Description of third party software being used with StreamStor

• Computer model and type (Pentium, Pentium II, etc.)

• Operating system version.

We will do all that we can to resolve the problem as quickly as possible.

Contacting Technical Support

E-mail: support@conduant.com

Phone: (303) 485-2721

Fax: (303) 485-5104

Web: www.conduant.com

Mail: Conduant Corporation

 Technical Support

 1501 South Sunset Street, Suite C

 Longmont, CO 80501

Appendix A – Error Codes
If you are experiencing one of these errors and are unable to determine the cause, please
contact Conduant technical support for assistance.

Number Error Title Description
2 XLR_ERR_NODEVICE StreamStor device was not found in

system.
3 XLR_ERR_NOINFO Undefined error occurred.
4 XLR_ERR_WDOPEN Cannot open device driver.
5 XLR_ERR_SYSERROR The controller reported a system

error.
6 XLR_ERR_NOXLR No StreamStor cards located.
7 XLR_ERR_INVALID_CMD An invalid command was received by

the controller.
8 XLR_ERR_HANDLE Invalid handle.
9 XLR_ERR_DMAREADFAIL A DMA read failure occurred.
10 XLR_ERR_SYSTATUS Request is incompatible with

current system status.
11 XLR_ERR_NOCMDSTATUS The command did not complete.

Communication with controller
timed out.

12 XLR_ERR_DMAINCOMPLETE The data transfer timed out and
did not complete.

13 XLR_ERR_APPSTART The controller failed to
initialize RAM application.

14 XLR_ERR_OUTOFMEMORY The DLL failed to allocate
sufficient memory.

15 XLR_ERR_WIN32FAIL A Win32 API failure occurred.
16 XLR_ERR_WRITENOTACTIVE System not ready to receive data.
17 XLR_ERR_WDVERSION Incorrect driver version detected.
18 XLR_ERR_OPENHANDLE Device reference by handle already

opened.
19 XLR_ERR_INVALIDINDEX Invalid card index value.
20 XLR_ERR_DEVICELOCK Could not lock device for

exclusive access.
21 XLR_ERR_DETECTCARD Card configuration invalid.
22 XLR_ERR_BUFLOCK Could not lock user memory buffer.
23 XLR_ERR_READFAIL Data read error.

A P P E N D I X A – E R R O R C O D E S

221

24 XLR_ERR_WRITERAM Firmware write to device memory
failed.

101 XLR_ERR_INVALID_LENGTH An invalid or unaligned transfer
length was requested (must be 64
bit aligned).

102 XLR_ERR_SYSBUSY System is busy. Use XLRStop to
before sending other commands.

103 XLR_ERR_CMDFAIL The controller has failed to
execute the command.

104 XLR_ERR_FILENOTFOUND A required file was not found.
105 XLR_ERR_LOADKEY A required registry key was not

found.
106 XLR_ERR_DLDCHECKSUM A required file is corrupted or

upload failed.
107 XLR_ERR_DRVFAIL A disk drive is failing to

respond.
108 XLR_ERR_NODRIVER Device driver not found or device

already open.
109 XLR_ERR_FIFO_INACTIVE Invalid command, FIFO inactive.
110 XLR_ERR_INVALIDVR An unconfigured or invalid VR was

selected.
111 XLR_ERR_NOTENABLED Optional feature not enabled.
112 XLR_ERR_OUTOFRANGE Request was not in the recorded

data range.
113 XLR_ERR_NOTINFIFO Command valid only in FIFO mode.
114 XLR_ERR_KERNELMEM Unable to allocate kernel memory.
115 XLR_ERR_INTENABLE Unable install device interrupt.
116 XLR_ERR_READCOLLISION Attempt to start multiple reads

from single thread.
117 XLR_ERR_READIDLE Attempted to check status on non-

existent read request.
118 XLR_ERR_FIFODRIVES Current drive configuration

incompatible with FIFO mode.
119 XLR_ERR_FWVERSION Hardware firmware incompatible

with API version.
120 XLR_ERR_OSFAIL A system call failed.
121 XLR_ERR_THREADCREATE Process thread creation failed.
122 XLR_ERR_EXPECTEDDISKS_

MATCH
The number of expected disks
doesn’t equal the actual number of
disks.

123 XLR_ERR_BOARDTYPE Unknown board type found.
124 XLR_ERR_FULL Insufficient disk space.
127 XLR_ERR_INVOPT Invalid option value.
142 XLR_ERR_INVALID_

PORTMODE
Port in wrong mode for this
operation.

143 XLR_ERR_NOAPPEND Attempt to delete non-existent
append.

144 XLR_ERR_EMPTY No data.
145 XLR_ERR_INVALID_BANK Invalid bank name specified.
146 XLR_ERR_NOTINBANKMODE Command only valid in bank mode.

A P P E N D I X A – E R R O R C O D E S

222

148 XLR_ERR_DRIVEMODULE_
NOTREADY

Drive module is not ready.

153 XLR_ERR_CANNOT_RECOVER
_DATA

No recovery of data possible.

154 XLR_ERR_NO_RECOVERABLE
_DATA

No recoverable data.

155 XLR_ERR_BAD_DISKSET A disk is missing from a recording
or a disk is mounted that was not
part of the set when the recording
was originally made.

156 XLR_ERR_INVALID_PLAY
_LENGTH

Playback length is beyond the end
of the recording or is not aligned
on an eight-byte boundary.

157 XLR_ERR_INVALID_
WDLICENSE

Invalid driver license.

158 XLR_ERR_WRITE_
PROTECTED

Command invalid on write protected
drive modules.

159 XLR_ERR_MAX_CARDS Maximum number of StreamStor cards
exceeded.

160 XLR_ERR_DRVFAIL_BUS0_
MASTER

Master drive on Bus 0 missing or
failing.

161 XLR_ERR_DRVFAIL_BUS0_
SLAVE

Slave drive on Bus 0 missing or
failing.

162 XLR_ERR_DRVFAIL_BUS1_
MASTER

Master drive on Bus 1 missing or
failing.

163 XLR_ERR_DRVFAIL_BUS1_
SLAVE

Slave drive on Bus 1 missing or
failing.

164 XLR_ERR_DRVFAIL_BUS2_
MASTER

Master drive on Bus 2 missing or
failing.

165 XLR_ERR_DRVFAIL_BUS2_
SLAVE

Slave drive on Bus 2 missing or
failing.

166 XLR_ERR_DRVFAIL_BUS3_
MASTER

Master drive on Bus 3 missing or
failing.

167 XLR_ERR_DRVFAIL_BUS3_
SLAVE

Slave drive on Bus 3 missing or
failing.

168 XLR_ERR_DRVFAIL_BUS4_
MASTER

Master drive on Bus 4 missing or
failing.

169 XLR_ERR_DRVFAIL_BUS4_
SLAVE

Slave drive on Bus 4 missing or
failing.

170 XLR_ERR_DRVFAIL_BUS5_
MASTER

Master drive on Bus 5 missing or
failing.

171 XLR_ERR_DRVFAIL_BUS5_
SLAVE

Slave drive on Bus 5 missing or
failing.

172 XLR_ERR_DRVFAIL_BUS6_
MASTER

Master drive on Bus 6 missing or
failing.

173 XLR_ERR_DRVFAIL_BUS6_
SLAVE

Slave drive on Bus 6 missing or
failing.

174 XLR_ERR_DRVFAIL_BUS7_
MASTER

Master drive on Bus 7 missing or
failing.

175 XLR_ERR_DRVFAIL_BUS7_ Slave drive on Bus 7 missing or

A P P E N D I X A – E R R O R C O D E S

223

SLAVE failing.
176 XLR_ERR_NOTIN_RECMODE Command only valid when in record

mode.
177 XLR_ERR_EXT_TO_PCI_

OVERFLOW
External port to PCI overflow.

178 XLR_ERR_INVALID_
INTERFACE

Command is not available for the
currently in use interface (PCI
bus, Ethernet, or Serial port).

179 XLR_ERR_INVALID_RETURN
_FORMAT

Data returned from command is
formatted incorrectly (Ethernet
and Serial port interfaces only).

180 XLR_ERR_INVALID_
CHANNEL

The channel being selected or
bound is invalid.

181 XLR_ERR_INVALID_OP_ON_
CHANNEL

Operation is not permitted on this
channel.

182 XLR_ERR_USE_SELECT_
CHANNEL

SS_OPT_FPDPEXTCONN is no longer
valid for selecting the front FPDP
port. XLRSelectChannel must be
used.

183 XLR_ERR_INVALID_SYSTEM
_MODE

Requested mode is invalid.

184 XLR_ERR_TOO_MANY_
CHANNELS

Only 1 input or output channel is
allowed in this mode.

185 XLR_ERR_NO_INPUT_
CHANNELS

Must have at least 1 input
channel.

186 XLR_ERR_NO_OUTPUT_
CHANNELS

Must have at least 1 output
channel.

187 XLR_ERR_NOT_VALID_IN_
MULTI

Operation not valid in mutli-
channel mode.

188 XLR_ERR_PARTITION_SIZE Partition size must be multiple of
page size.

189 XLR_ERR_INVALID_
PARTITION

Invalid partition.

190 XLR_ERR_TOO_MANY_
PARTITIONS

Only 256 partitions are permitted.

191 XLR_ERR_NOT_EMPTY System must be empty for this
command.

192 XLR_ERR_UNKNOWN_DIR_
VERSION

The directory version found is
newer than the current firmware
can handle.

193 XLR_ERR_DATA_INTEGRITY Data integrity check failed.
194 XLR_ERR_HWVERSION XBAR version incompatible with

Firmware version.
195 XLR_ERR_ARRAY_TOO_SMALL User supplied array is too small.
196 XLR_ERR_READFAIL_FORK Read failure during fork.
197 XLR_ERR_INVALID_

ALIGNMENT
Offset or transfer length of read
request is not aligned on the
required 4 or 8 byte boundary.

198 XLR_ERR_CMD_DRIVE_ERROR Invalid command for this drive.
199 XLR_ERR_INVALID_MAPOPT SS_OPT_FSMAPPED option invalid for

wrap mode.

A P P E N D I X A – E R R O R C O D E S

224

200 XLR_ERR_NOT_LAST_
PARTITION

Command valid only on the last
partition on the device.

201 XLR_ERR_RESIZE_EXCEEDS_
DEVCAP

Resize value requested exceeds the
device capacity.

202 XLR_ERR_RESIZE_ZERO_
INVALID

Resize value of zero is invalid on
an empty partition.

203 XLR_ERR_RESIZE_IN_DATA_
RANGE

Resize value requested is within
the recorded data range.

204 XLR_ERR_NOT_PARTITIONED Command invalid on unpartitioned
device.

205 XLR_ERR_REMOTEVERSION Remote Protocol Version is not
supported.

300 XLR_ERR_PORT_NOT_FOUND Port is unavailable
(Serial/Ethernet interfaces only).

301 XLR_ERR_PORT_ACCESS_
DENIED

Port access is denied
(Serial/Ethernet interfaces only).

302 XLR_ERR_PORT_TIMEOUT Port operation has timed out.
303 XLR_ERR_CONNECT_

REFUSED
Connection refused by target.

304 XLR_ERR_IPADDRCONVERT_
FAILED

IP address conversion failed.

305 XLR_ERR_EACCESS Permission denied.
306 XLR_ERR_SOCKET_

EAFNOSUPPORT
Address family not supported.

307 XLR_ERR_SOCKET_EINVAL Unknown protocol or family.
308 XLR_ERR_EMFILE Process file table overflow.
309 XLR_ERR_SOCKET_ENOBUFS Insufficient buffer memory.
310 XLR_ERR_SOCKET_ENOMEM Insufficient memory.
311 XLR_ERR_SOCKET_

EPROTONOSUPPORT
Protocol type not supported.

312 XLR_ERR_SOCKET_CREATE_
FAILED

Cannot create socket.

313 XLR_ERR_SOCKET_CONNECT
_FAILED

Cannot connect to socket.

314 XLR_ERR_SOCKET_EADDRIN
USE

Local address already in use.

315 XLR_ERR_SOCKET_EAGAIN No more free local ports.
316 XLR_ERR_SOCKET_

EALREADY
Connection attempt incomplete.

317 XLR_ERR_EBADF Bad File descriptor.
318 XLR_ERR_SOCKET_EFAULT Invalid socket address.
319 XLR_ERR_SOCKET_

EINPROGRESS
Socket connection in progress.

320 XLR_ERR_EINTR Interrupted system call.
321 XLR_ERR_SOCKET_EISCONN Socket already connected.
322 XLR_ERR_ENETUNREACH Network is unreachable.
323 XLR_ERR_SOCKET_

ENOTSOCK
File descriptor not associated
with a socket.

324 XLR_ERR_ENFILE Open file limit reached.
325 XLR_ERR_REMOTEPROTOCOL Remote protocol error.

A P P E N D I X A – E R R O R C O D E S

225

326 XLR_ERR_REMOTEINIT Cannot initiate communication with
remote device.

327 XLR_ERR_SOCKET_RECV_
MSG

Socket receive message error.

A P P E N D I X A – E R R O R C O D E S

226

End of Document

