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ABSTRACT

Context. IRAS 2012644104 is a well studied B0.5 protostar that is surrounded by a ~1000 au Keplerian disk and is where a large-
scale outflow originates. Both 6.7-GHz CH3;OH masers and 22-GHz H,0O masers have been detected toward this young stellar object.
The CH3;OH masers trace the Keplerian disk, while the H,O masers are associated with the surface of the conical jet. Recently, obser-
vations of dust polarized emission (350 um) at an angular resolution of 9 arcsec (~15 000 au) have revealed an S -shaped morphology
of the magnetic field around IRAS 20126+4104.

Aims. The observations of polarized maser emissions at milliarcsecond resolution (~20 au) can make a crucial contribution to under-
standing the orientation of the magnetic field close to IRAS 20126+4104. This will allow us to determine whether the magnetic field
morphology changes from arcsecond resolution to milliarcsecond resolution.

Methods. The European VLBI Network was used to measure the linear polarization and the Zeeman splitting of the 6.7-GHz
CH;O0H masers toward IRAS 20126+4104. The NRAO Very Long Baseline Array was used to measure the linear polarization and
the Zeeman splitting of the 22-GHz H,0O masers toward the same region.

Results. We detected 26 CH3;OH masers and 5 H,O masers at high angular resolution. Linear polarization emission was ob-
served toward three CH3;OH masers and toward one H,O maser. Significant Zeeman splitting was measured in one CH;OH maser
(AVz = =9.2 + 1.4 ms™!). No significant (50) magnetic field strength was measured using the H,O masers. We found that in
IRAS 2012644104 the rotational energy is less than the magnetic energy.
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1. Introduction

In the past years, the formation of high-mass stars has been at the
center of numerous studies, both observational and theoretical.
The observations reveal that the structure of massive protostars
is probably similar to that of their less massive counterpart (e.g.,
Tang et al. 2009; Keto & Zhang 2010; Johnston et al. 2013), and
the theoretical simulations match the observations as long as the
magnetic field is taken into consideration (e.g., Peters et al. 2011;
Seifried et al. 2012a; Myers et al. 2013).

One of the typical characteristics of low-mass protostars that
has also been observed around high-mass protostars (B-type
stars) is the presence of circumstellar disks (e.g., Cesaroni et al.
2006, 2007). Seifried et al. (2011) show that Keplerian disks
with sizes of a few 100 au are easily formed around massive
protostars when a weak magnetic field is considered in the simu-
lations. The Keplerian disks are also formed if a strong magnetic
field is present but only if a turbulent velocity field is introduced
(Seifried et al. 2012b).

Determining the morphology of magnetic fields close to cir-
cumstellar disks or tori in the early stages of massive star for-
mation is very difficult mainly because the massive protostars
are distant, rare, and quick to evolve. However, it was possi-
ble in some cases, for instance in Cepheus A (Vlemmings et al.
2010) and in NGC 7538 (Surcis et al. 2011a), where the 6.7-GHz
CH3O0H maser emission was used to probe the magnetic field at
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milliarcsecond (mas) resolution (i.e., ~10 au). In both cases, the
masers trace the infalling gas but not the disk/torus material di-
rectly. A suitable case where the magnetic field can be measured
on the surface of a disk may instead be IRAS 20126+4104.

IRAS 20126+4104 is a well studied B0.5 protostar (M =
7 M) at a distance of 1.64 + 0.05 kpc (Moscadelli et al. 2011,
hereafter MCR11). A disk of ~1000 au (PAgsx = 53° + 7°,
Cesaroni et al. 2005), which is undergoing Keplerian rotation,
was imaged by Cesaroni et al. (1997, 1999, 2005). In addi-
tion, a jet/outflow perpendicular to the disk (PAj, = 115°,
MCRI11), which shows a precession motion around the rotation
axis of the disk (e.g., Shepherd et al. 2000), was also detected
from small- (~10? au) to large-scale (~10* au) (e.g., Cesaroni
et al. 1997, 1999, 2013; Hofner et al. 2007; Caratti o Garatti
2008; MCR11). The three maser species 6.7-GHz CH;OH,
1.6-GHz OH, and 22-GHz H,0 were detected (Edris et a. 2005;
Moscadelli et al. 2005; MCRI11). The former can be divided
into two groups, i.e. Groups 1 and 2. While Group 1 is as-
sociated to the Keplerian disk, Group 2 shows relative proper
motions, indicating that the masers are moving perpendicularly
away from the disk (MCR11). The OH masers have an elon-
gated distribution and trace part of the Keplerian disk (Edris
et al. 2005). Edris et al. (2005) also identified one Zeeman pair of
OH masers that indicates a magnetic field strength of ~+11 mG.
The H,O masers are instead associated with the surface of the
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Table 1. Parameters of the 6.7-GHz CH3;OH maser features detected in IRAS 20126+4104.

(1) (2) (3) (4) (%) (6) @) (8) ©) (10) (11) (12) (13) (14)

Maser  Group RA“ Dec? Peak flux Vigr Aoy Pb X’ NS TpAQC Py AV, !
offset offset density(I)
(mas) (mas) (Jy/beam) (kms™")  (kms™!) (%) ©) (kms™)  (logKsr) (%) (ms™!) ©)

MO1 2 —14.869 5.734 0.917 + 0.003 -6.72 0.29 - - - - - -
MO02 2 —11.405 3.063 0.964 + 0.003 -6.72 0.36 - -
MO03 2 -2.797 19.127 0.265 + 0.009 —6.10 0.20 - - - - - - -
MO04 2 —1.743 —16.438 0.275 + 0.007 -5.97 0.25 - - - - - - -
MOS 2 0 0 27.838 = 0000 610 036  16+04 -65+3 2001 8898 06 92+14 75
MO06 2 0.129 —7.450 0.316 + 0.007 —6.14 0.30 - - - - - - -
MO7 2 0.947 8.122 0.543 + 0.008 -6.01 0.31 - - - - - - -
MO8 2 9.382 —4.685 0.428 + 0.007 -5.97 0.25 - - - - - - -
M09 2 19.883 -7.031 0.199 + 0.007 -6.23 0.20 - - - - - - -
MI10 2 19.904 —11.261 0.049 + 0.003 -5.66 0.23 - - - - - - -
M1l 2 52.634 —48.145 0.068 + 0.002 -5.13 0.28 - - - - - - -
MI12 2 56.313 -21.915 0.308 + 0.002 -5.57 0.38 - - - - - - -
MI13 2 62.231 —15.331 0.861 + 0.003 -6.41 0.27 - - - - - - -
Ml14 2 81.877 —10.986 0.919 + 0.003 -6.67 0.28 - - - - - - -
M15 83.835 244.766 0.070 + 0.003 -6.50 0.19 - - - -
Ml6 1 166917 -77.072 0.048 + 0.002 -5.18 0.19 - - - - - - -
M17 1 155.448 —104.588 0.178 + 0.002 -4.87 0.23 - - - - - - -
M8 I 191556 37796 1851 0003  —7.64 027  14+01 T1+s5 14702 g3 - 8576,
MI19 1 192.782 25.593 0.117 + 0.003 —7.68 0.23 - - - - - -
M20 1 204.295 7.683 0.309 + 0.003 -7.11 0.21 - — - — - — —
M21 1 207.436 33.264 0.072 + 0.003 -7.51 0.19 - - - - - - -
M22 1 210.965 16.399 0.114 + 0.003 -6.50 0.21 - - - - - - -
M23 1 215.312 8.267 0.402 + 0.003 -6.98 0.36 - - - - - - -
M24 I 237153 4383 2154 %0003  —698 030  06+02 56+43 1602 84704 79711
M25 1 261.232 4.707 0.166 + 0.003 -7.72 0.28 - - - - - - -
M26 1 277.392 3.834 0.644 + 0.002 -8.25 0.26 - — - — - — —

Notes. @ The reference position is @z = 20" 14265046 + 05001 and G900 = 41°137327690 + 07009 (see Sect. 4). ® P, and y are the mean values
of the linear polarization fraction and the linear polarization angle measured across the spectrum, respectively. ) The best-fitting results obtained
by using a model based on the radiative transfer theory of methanol masers for I' + I', = 1 s' (Vlemmings et al. 2010; Surcis et al. 2011a). The
errors were determined by analyzing the full probability distribution function. ” The angle between the magnetic field and the maser propagation
direction is determined by using the observed P; and the fitted emerging brightness temperature. The errors were determined by analyzing the full

probability distribution function.

conical jet (opening angle =9°), with speed increasing for in-
creasing distance from the protostar (Moscadelli et al. 2005;
MCR11).

Shinnaga et al. (2012) measured the polarized dust emis-
sion at 350 um at arcsec resolution (~10* au) by using the
SHARC II Polarimeter (SHARP) with the 10.4 m Leighton tele-
scope at the Caltech Submillimeter Observatory (CSO). They
determined that the global magnetic field is oriented north-south,
but it changes its direction close to the protostar becoming paral-
lel to the Keplerian disk; i.e., here the field is nearly perpendic-
ular to the rotation axis of the disk. The apparent jet precession
could be explained by the misalignment of the magnetic field
and the rotation axis (Shinnaga et al. 2012).

The observations of polarized emissions of 6.7-GHz
CH;OH and 22-GHz H,0 masers offer a possibility to bet-
ter determine the morphology of the magnetic field close to
the circumstellar disk and to the jet. For this reason, here we
present both European VLBI Network (EVN) observations of
CH3O0H masers and Very Long Baseline Array (VLBA) obser-
vations of H,O masers that were carried on in full polarization
mode.

2. Observations
2.1. 6.7-GHz EVN data

IRAS 20126+4104 was observed at 6.7-GHz in full polariza-
tion spectral mode with seven of the EVN! antennas (Effelsberg,

! The European VLBI Network is a joint facility of European, Chinese,

South African, and other radio astronomy institutes funded by their na-
tional research councils.
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Jodrell, Onsala, Medicina, Torun, Westerbork, and Yebes-40 m),
for a total observation time of 5.5 h, on October 30, 2011 (pro-
gram code ES066). The bandwidth was 2 MHz, providing a ve-
locity range of ~100 kms~!. The data were correlated with the
EVN software correlator (SFXC) at the Joint Institute for VLBI
in Europe (JIVE) using 2048 channels and generating all four
polarization combinations (RR, LL, RL, LR) with a spectral res-
olution of ~1 kHz (~0.05 kms™).

The data were edited and calibrated using the Astronomical
Image Processing System (AIPS). The bandpass, delay, phase,
and polarization calibration were performed on the calibra-
tor J2202+4216. Fringe-fitting and self-calibration were per-
formed on the brightest maser feature (MO05 in Table 1). Then the
I, Q, U, and V cubes were imaged (rms = 2.4 mJy beam™') using
the AIPS task IMAGR. The beam size was 7.47 mas X 3.38 mas
(PA =76°). The Q and U cubes were combined to produce cubes

of polarized intensity (POLI = +/Q? + U?) and polarization an-
gle (v = 1/2 x atan(U/Q)). We calibrated the linear polariza-
tion angles by comparing the linear polarization angle of the
polarization calibrator measured by us with the angle obtained
by calibrating the POLCAL observations made by NRAO?.
IRAS 20126+4104 was observed between two POLCAL ob-
servations runs during which the linear polarization angle of
J2202+4216 was constant, with an average value of —31° + 1°.
We were therefore able to estimate the polarization angle with a
systemic error of no more than ~1°. The formal errors on y are
due to thermal noise. This error is given by o, = 0.5 op/P X
180°/m (Wardle & Kronberg 1974), where P and op are the po-
larization intensity and corresponding rms error, respectively.

2 http://www.aoc.nrao.edu/~smyers/calibration/
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Table 2. Parameters of the 22-GHz H,O maser features detected in IRAS 20126+4104.

(H (2) (3) ) (5) (6) (N ) ) (10) an a1z 13
Maser  RA¢ Dec Peak flux Vier Avp P’ $% AVi€ TpAQ¢ Py, AV, ¢
offset offset density(I)
(mas) (mas) (Jy/beam)  (kms™') (kms™") (%) ) (kms™) (ogKsr) (%) (mfs) (°)
WOl -0.818 -0.656 0.37 + 0.05 -2.05 0.74 - - - - - - -
W02 0 0 24.77 £ 0.06  —-4.61 1.37 1.3+02 -37+13 <0.5 9.lf8;i - - 90fg
W03  403.317 -212.020 0.19 + 0.04 -5.61 0.73 - - - - -
W04  403.898 -212.452 0.39 + 0.05 -6.23 0.55 - - - - - - -
W05  542.648 -201.458 0.23 + 0.05 -15.51 0.39 - - - - - - -

Notes. (¥ The reference position is azyo = 20714™25%966 + 05002 and 65000 = 41°13'32”7738 + 0014 (see Sect. 4). ® P, and y are the mean
values of the linear polarization fraction and the linear polarization angle measured across the spectrum, respectively. ) The best-fitting results
obtained by using a model based on the radiative transfer theory of H,O masers for T+T, = 1 s™! (Surcis et al. 2011b). The errors were determined
by analyzing the full probability distribution function. ” The angle between the magnetic field and the maser propagation direction is determined
by using the observed P; and the fitted emerging brightness temperature. The errors were determined by analyzing the full probability distribution

function.

2.2. 22-GHz VLBA data

The star-forming region was also observed in the 6;6—5,3 tran-
sition of H,O (rest frequency:22.23508 GHz) with the NRAO?
VLBA on June 24, 2012. The observations were made in full po-
larization mode using a bandwidth of 4 MHz to cover a velocity
range of ~54 kms~!. The data were correlated with the DiFX
correlator using 2000 channels and generating all four polariza-
tion combinations (RR, LL, RL, LR) with a spectral resolution
of 2 kHz (~0.03 kms™!). Including the overheads, the total ob-
servation time was 8 h.

The data were edited and calibrated using AIPS follow-
ing the method of Kemball et al. (1995). The bandpass, the
delay, the phase, and the polarization calibration were per-
formed on the calibrator J2202+4216. The fringe-fitting and the
self-calibration were performed on the brightest maser feature
(W02 in Table 2). Then we imaged the I, Q, U, and V cubes
(rms = 20 mly beam™") using the AIPS task IMAGR (beam
size 0.75 mas X 0.34 mas, PA = —9.4°). The Q and U cubes
were combined to produce cubes of POLI and y. Because
IRAS 20126+4104 was observed ten days before a POLCAL
observations run, we calibrated the linear polarization angles of
the H,O masers by comparing the linear polarization angle of
J2202+4216 measured by us with the angles measured during
that POLCAL observations run (yjon+4216 = —15°%0 = 023).
Also in the case of the H,O masers, the o, is due to thermal
noise.

3. Analysis

The CH30H and H,O maser features were identified by using
the process described in Surcis et al. (2011b). We determined
the mean linear polarization fraction (P;) and the mean linear
polarization angle (y) of each CH3;OH and H,O maser feature
by only considering the consecutive channels (more than two)
across the total intensity spectrum for which POLI > 5¢.

We fitted the total intensity and the linearly polarized spec-
tra of HoO and CH3OH maser features, for which we were
able to detect linearly polarized emission, by using the full ra-
diative transfer method (FRTM) code for 22-GHz H,O masers

3 The National Radio Astronomy Observatory (NRAO) is a facility of
the National Science Foundation operated under cooperative agreement
by Associated Universities, Inc.

(Vlemmings et al. 2006; Surcis et al. 2011b) and the adapted ver-
sion of the code for 6.7-GHz CH3OH masers (Vlemmings et al.
2010; Surcis et al. 2011a). The code is based on the models of
Nedoluha & Watson (1992), who solved the transfer equations
for the polarized radiation of 22-GHz H,O masers in the pres-
ence of a magnetic field causing a Zeeman splitting (AVy) that
is much smaller than the spectral line breadth.

We modeled the observed spectra by gridding the intrinsic
thermal linewidth (AV;) in the case of H,O masers from 0.5
to 3.5 kms~! in steps of 0.025 km s~! and in the case of the
CH;3O0H masers from 0.5 to 2.4 kms~'in steps of 0.05 kms™!, by
using a least-square fitting routine. The output of the codes pro-
vides estimates of the emerging brightness temperature (75AQ)
and of AV;. From the fit results, we were able to determine the
best estimates of the angle between the maser propagation direc-
tion and the magnetic field (), because both shape and strength
of the linear polarization spectrum depend (nonlinearly) on the
maser saturation level and 6. If 0 > 0.5 = 55°, where 6. 1S
the Van Vleck angle, the magnetic field appears to be perpen-
dicular to the linear polarization vectors; otherwise, it is parallel
(Goldreich et al. 1973). To better determine the orientation of
the magnetic field with respect to the linear polarization vectors,
Surcis et al. (2013) introduced a method that takes the errors as-
sociated to 6 into consideration (i.e., Hgf in Tables 2 and 1). We
state that if |9* — 55°| > |6~ — 55°|, where 6 = 6 + &%, the
magnetic field is most likely perpendicular to the linear polar-
ization vectors; otherwise, the magnetic field is assumed to be
parallel. Of course, if 6~ and 6* are both larger or smaller than
55° the magnetic field is perpendicular or parallel to the linear
polarization vectors, respectively.

Moreover, the best estimates for TgAQ and AV; are included
in the corresponding code to produce the / and V models that
were used for fitting the total intensity and circular polarized
spectra of the corresponding maser feature.

4. Results

Tables 1 and 2 list the 26 6.7-GHz CH3;OH maser fea-
tures (named M01-M26) and the 5 22-GHz H,O maser fea-
tures (named WO1-WO05), respectively, that we detected towards
IRAS 20126+4104. They are all shown in Fig. 1. Because we
did not observe in phase-referencing mode, we do not have in-
formation for the absolute position of both maser species. Still,
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Fig. 1. Left panel: a view of the 6.7-GHz CH;OH maser features detected around IRAS 20126+4104, the reference position is azp0 =
20M14M26%046 and 65000 = 41°137327690 (see Sect. 4). Right panel: a view of the 22-GHz H,0 maser features detected around IRAS 20126+4104,
the reference position is a9 = 20" 14™25%966 and 65000 = 41°13732"738 (see Sect. 4). The triangles and the octagonal symbols are the identified
CH;OH and H,O maser features, respectively, scaled logarithmically according to their peak flux density (Tables 1 and 2). The maser LSR radial
velocity is indicated by color. (The systemic velocity of IRAS 20126+4104 is Vi, = —3.5 kms~!, MCR11.) A 3 Jybeam™' symbol is plotted
for illustration in both panels. The linear polarization vectors, scaled logarithmically according to polarization fraction Py, are overplotted. In
the right bottom corner of both panels, the error-weighted orientation of the magnetic field (®p, see Sect. 5.3) is also reported, the two dashed
segments indicate the uncertainties. The two arrows indicate the direction but not the absolute position of the red- and blue-shifted lobes of the jet
(PAje; = 115°; MCRI11). The dotted line is the best linear fit of the H,O maser features (PAy,o0 = 114° £ 4°).

we were able to estimate the absolute position of the brightest
features of both maser species (M05 and W02) through fringe
rate mapping using the AIPS task FRMAP. The absolute po-
sition errors are AaM® = 6 mas and A6M% = 9 mas for the
CH;OH maser feature, and AaV? = 24 mas and AV =
14 mas for the H,O maser feature. The position of the bright-
est CH30H maser feature M05, which is Feature 1 in MCR11,
agrees within 20 with the position of Feature 1 after consid-
ering the change in position due to the proper motion of the
CH;30H masers (—4 mas yr~! both in RA and in Dec, MCR11).

The description of the maser distribution and the polarization
results are reported for each maser species separately below.

4.1. CH;0OH masers

The CH30H maser features can be divided into two groups, 1
and 2, following the naming convention of MCR11. An addi-
tional maser feature M 15, which is undetected by MCRI11, is
about 200 mas north from the other maser features and cannot
be included in any of these two groups. The spatial distribution
and the velocity ranges of the two groups are consistent with
those of MCRI11.

We detected linear polarization in three CH3;OH maser fea-
tures (P; = 0.6%—1.6%, see Fig. 2), and the error-weighted lin-
ear polarization angles is (y)cu,on = —70° + 16°. The adapted
version of the FRTM code was able to properly fit all these three
CH3O0H maser features, and the outputs with their relative er-
rors are reported in Cols. 10, 11, and 14 of Table 1. Moreover,
these maser features appear to be unsaturated, because their
TpAQ are under the saturation threshold (T3AQ)chon = 2.6 X
10° K sr of the 6.7-GHz CH;OH masers (Surcis et al. 2011a).
Considering the determined 6 angles, the magnetic field is per-
pendicular to the linear polarization vectors, i.e., | — 55°| >
|6~ — 55°|. Furthermore, we detected circularly polarized emis-
sion (Py = 0.6%) toward the brightest CH3OH maser feature
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MOS, for which we measured quite a large Zeeman splitting
AVz=(-92+ 1.4)ms™".

4.2. H,O masers

The H,O maser features are linearly distributed (PAy,0 = 114°+
4°) from northwest (NW) to southeast (SE), and their veloc-
ities increase in magnitude from NW to SE. The velocity of
W05, which is the most southeastern and the most blue-shifted
H,O maser features, is an order of magnitude faster than the
velocities of the other maser features. Although the PAy,o of
the maser distribution agrees perfectly with the PA measured re-
cently by MCR11, the maser features are not on the outflow as
detected by MCR11 and the velocity distribution is reversed with
respect to what MCR11 observed (see Fig. 4).

We detected linearly polarized emission (P} = 1.3%,
see Fig. 2) only from the brightest H,O maser feature W02
(x = —37° + 13°). The FRTM code provides an upper limit
of AV; (Col. 9 of Table 2), while the value of TpAQ (Col. 10)
is below the saturation threshold (TpAQ)y,0 = 6.7 X 10° K sr
also for the H,O maser, indicating an unsaturated maser (Surcis
et al. 2011a). The third output of the FRTM code, i.e. 6 (Col. 13),
indicates that the magnetic field is on the plane of the sky and
perpendicular to the linear polarization vector. No circular po-
larization at 50 was detected toward any H,O maser feature
(P‘\’,V02 <0.4%).

5. Discussion
5.1. Zeeman splitting

The magnetic field strength along the line of sight can be calcu-
lated from the Zeeman-splitting measurements by using

AV
B = —=%, (1)
az
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1 larization fraction (black solid line, left scale)
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Fig. 3. Total intensity (I, upper panel) and circular polarization intensity
(V, lower panel) spectra for the CH;OH maser feature M0S. The thick
red line shows the best-fit models of / and V emission obtained using
the adapted FRTM code (see Sect. 3). The maser features were centered
on zero velocity.

where a7z is the Zeeman-splitting coefficient, which depends
on the Landé g-factor of the corresponding maser transition.
Moreover, the total magnetic field strength can be determined
if the angle between the maser propagation direction and the
magnetic field 6 is known, ie., B = Bj/cos 6. While the
Zeeman-splitting coefficient for the 22-GHz H,O maser is

scale) are also shown (lower panel).

well-known, az for the 6.7-GHz CH3OH maser emission is
still uncertain. Indeed, the Landé g-factor corresponding to the
CH3;OH maser transition is still unknown (Vlemmings et al.

2011). However, a considerable value of a§H3OH could be in the

range 0.005 kms™' G < o5 < 0.05 kms™' G™! (Surcis
et al. 2011a).

From our observations we measured Zeeman splitting only
from the CH3OH maser M0S5, and consequently we can spec-
ulatively give only a possible range of By, which is 0.2 G <
|BCH3OH| < 2.1 G where the uncertainty of AV has been taken

Il

into account. Considering 6yvos = 75°%,3., the total magnetic
field, Bcu,on, ranges from —0.2 G to —24 G. According to the
sign of the Zeeman splitting, the magnetic field is pointing to-
ward the observer. The non-detection of significant circular po-
larized emission from the 22-GHz H,O maser could be due to a

weaker magnetic field along the outflows.

5.2. Faraday rotation

The interstellar medium (ISM) between IRAS 20126+4104 and
the observer causes a rotation of the linear polarization vectors
known as foreground Faraday rotation (®;). Even if previous
works (e.g., Surcis et al. 2011a, 2012, 2013) have shown that
this rotation is small at both 6.7-GHz and 22-GHz and do not af-
fect the measurements of the magnetic field orientation, it is im-
portant to determine @y for IRAS 20126+4104. The foreground
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Fig. 4. Left panel: modified version of Fig. 3(b) of Shinnaga et al. (2012). The white box indicates the position of the right panel. The black bars
represent the magnetic field direction determined from the polarized dust emission at 350 um, whose continuum emission is in the background.
Right panel: CH;OH (triangles), OH (squares) (Edris et al. 2005), and H,O (octagons) masers in IRAS 20126+4104. The gold asterisk represents
the BO.5 protostar (@ = 20"14m26%0498 and 65099 = 41°13’32”7443, MCR11), while the dotted line represents the Keplerian disk of ~1000 au
(PAgisx = 53° = 7°, Cesaroni et al. 2005). The red and blue lines indicate the red- and blue-shifted lobes of the jet, respectively, with a PAj =
115° and an opening angle of 9° (MCR11). The thick green segments represent the magnetic field direction determined from the polarized
CH;OH and H,O maser emissions. The green dashed segments represent the magnetic field direction determined from the linearly polarized
emission of OH masers (Edris et al. 2005). The foreground Faraday rotation at 1.6-GHz is probably not negligible and needs to be taken into

account when interpreting the image (see Sect. 5.2).

Faraday rotation is given by

D n By y 7
@[°] = 4.22 x 10° : ;
! ([kpc]) ([cm-3]) ([mG]) ([GHZ])

2
where D is the length of the path over which the Faraday ro-
tation occurs, n. and B) are the average electron density and
the magnetic field along this path, respectively, and v is the fre-
quency. By assuming that the interstellar electron density, mag-
netic field, and distance are n. ~ 0.012cm™3, By = 2uG (Sun
etal. 2008), and D = 1.64 kpc, respectively, @y is estimated to be
4°0 at 6.7-GHz and 0°3 at 22-GHz, but for 1.6-GHz OH masers
(Df ~ 60°.

Surcis et al. (2012, 2013) found that the linear polarization
vectors of 6.7-GHz CH3OH masers are quite accurately aligned
in all the young stellar objects (YSOs) that they observed, indi-
cating that the internal Faraday rotation (®;) is negligible. In the
case of 22-GHz H,O masers, ®; is found to be negligible only if
the H>O masers are pumped by a C-shock (Kaufman & Neufeld
1996).

5.3. Morphology of the magnetic field

The two maser species that are associated with two differ-
ent structures of the YSO (i.e., the disk and the outflows,
see Sect. 4) probe the morphology of the magnetic field in
two different zones of the protostar. The magnetic field close
to the disk (Zone A, at ~400 au from the protostar), which
is probed by the CH3;OH masers, has an orientation on the
plane of the sky of ®%k = 20° + 16°, while close to the jet
(Zone B, at ~1600 au from the protostar), which is probed by
the H,O masers, (I)°B“‘ﬂ°‘” = 53° + 13° (see Fig. 4). A compari-
son of the morphology of the magnetic field with the structure
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of the protostar reveals that the magnetic field is parallel to the
disk (PAgisk = 53° + 7°; Cesaroni et al. 2006) in Zone B, and it
rotates clockwise by 33° in Zone A, i.e., at ~400 au from the cen-
tral protostar. Here the magnetic field is perpendicular to the jet
(PAje, = 115°; MCR11). Moreover, the angle between the mag-
netic field and the line of sight is (6)ch,on = 82‘:}?2 in Zone A
and (Op,0 = 90‘:3?0 in Zone B; i.e., the magnetic field is on
the plane of the sky. Even if the magnetic field is not parallel to
the jet, ()cu,on is consistent with the inclination of the jet with
respect to the line of sight, which is ¢ = 80° (MCR11). In ad-
dition, because AV is negative, the magnetic field in Zone A is
pointing towards the observer (e.g., Surcis et al. 2011b). We note
that Edris et al. (2005) identified one Zeeman pair of OH masers,
which indicates a magnetic field strength of about +11 mG in the
direction pointing away from the observer at the opposite side of
the disk from Zone A (see Fig. 4). Therefore, this could be evi-
dence for the reversal of the magnetic field from above to below
the disk.

Shinnaga et al. (2012) measured an S-shaped morphology
of the magnetic field on a large scale by observing the polar-
ized dust emission at 350 um (see Fig. 4; angular resolution 9",
which at 1.64 kpc corresponds to ~15 000 au). They determined
that the magnetic field changes its direction from N-S to E-W in-
side the infalling region (r < 0.1 pc = 20000 AU). The orienta-
tion of the magnetic field determined from the linearly polarized
emission of CH3OH and H,O masers is in good agreement with
the large-scale magnetic field. The orientation of the magnetic
field measured from the OH masers by Edris et al. (2005) suffers
from a large uncertainty due to the large foreground Faraday ro-
tation. Because the OH masers arise in the same projected area
of the CH3OH masers, for which @y is small, the orientation of
the magnetic field measured from both maser species could be
expected to be the same. This implies that the magnetic field
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G. Surcis et al.: The magnetic field at milliarcsecond resolution around IRAS 20126+4104

vectors of OH masers should be rotated of approximately 60° to
be consistent with those of the CH;OH masers. This rotation is
equal to the foreground Faraday rotation estimated in Sect. 5.2.
Consequently, the magnetic field derived from the OH maser
emission would also be consistent with the S-shaped morphol-
ogy measured by Shinnaga et al. (2012).

The good agreement of the magnetic field from small to large
scale suggests that the CH3OH masers of Group 1 are not on the
disk but they are likely to be tracing material that is being ac-
creted onto the disk along the magnetic field line as in Cepheus A
(Vlemmings et al. 2010). Indeed, if the CH3;OH masers of
Group 1 were on the disk, we would have expected a resulting
magnetic field that is much more random because of turbulent
motions in the disk (Seifried et al. 2012b). The CH3OH masers
of Group 2 are instead interpreted as tracing the material in the
disk winds that is flowing out along the twisted magnetic field
lines. In this case, the CH;OH masers should have a helical mo-
tion, like the SiO masers in Orion (Matthews et al. 2010), which
is consistent with the proper motion of Group 1 measured by
MCRI11.

5.4. Role of the magnetic field

To investigate the S-shaped morphology Shinnaga et al. (2012)
calculated the evolution of a magnetized cloud that has the same
observed parameters of IRAS 20126+4104. They considered a
constant magnetic field strength of 1.5 x 1073 G parallel to the
z axis and with the rotation axis, which is rotated at an angle of
60° with respect to the z axis, on the y-z plane. In their simula-
tions the initial cloud has the energy ratios E;o/Egray = 0.02 and
Ep/Egqay = 0.55,1.e. Erx < Ep. Here Ey is the rotational en-
ergy, Egny the gravitational energy, and Ep the magnetic energy
in the cloud. They find that the simulated magnetic field vec-
tors agree with the observed morphology of the magnetic field
if the cloud is observed from the x-y plane with a viewing angle
of 30° with respect to the y axis. More recently, Kataoka et al.
(2012) have shown that in star-forming cores the polarization
distribution projected on the celestial plane strongly depends on
the viewing angle of the cloud.

Kataoka et al. (2012) studied four different models in which
they adopted a uniform magnetic field that has the same direction
but different strengths for each model. In Models 3 and 4, the ro-
tation of the cloud is introduced and the rotation axis is inclined
from the magnetic field lines at an angle of 60°. Model 4 has
the strongest magnetic field among all the models. According
to their simulations, the large-scale S-shaped morphology, i.e.
the magnetic field deviating from an hourglass configuration, in
IRAS 20126+4104 might be explained by Model 3, and it is
caused by (1) the misalignment of the magnetic field with the
rotation axis and by (2) E. > Ep. A slight misalignment of
the magnetic field with the rotation axis was observed on a large
scale by Shinnaga et al. (2012), who measured that the mean
direction of the global magnetic field is @gaoa = —3°, and the
rotation axis of the cloud is PA,, = —40° +20°. Condition (2) of
Kataoka et al. (2012) instead contradicts the initial conditions of
the simulations made by Shinnaga et al. (2012).

So far, no observational determinations of the ratio between
E.ot and Ep has been possible because no magnetic field strength
has been measured in IRAS 20126+4104. But now we can de-
termine if E,, > Ep (hereafter case A) or if E,,, < Ep (hereafter
case B) by using our estimates of the magnetic field strength at
CH3;OH maser densities.

We assume that the cloud is a homogeneous solid sphere
with magnetic flux freezing during its evolution. The rotational

energy for a homogeneous solid sphere with radius R, mass M,
and angular velocity Q is

1
Eiot = gMRZQ% A3)

while the magnetic energy for the same sphere is
1
Ep = ZIBIR, )

where |B| is the magnetic field strength into which the sphere is
immersed. The critical value of magnetic field at which E., =
E B is

6 M'72Q

5 RE ®)

[Beriticall =
Considering that the estimates for the cloud properties of
IRAS 20126+4104 are R = 0.54 pc, M = 402 M, (Hofner et al.
2007), and Q = 2 km s~! pc™! (Shinnaga et al. 2008), we find
that the critical value of the magnetic field of the cloud should be

|Beriticall =5 x 107 G. ©6)

This |Beriticall Value is determined not at the CH;OH maser den-
sities, so it cannot be directly compared with the magnetic field
strength measured by us. But because we have assumed the
presence of magnetic flux freezing in the cloud, the relation
|B] o ny; , where k = 0.47 as empirically determined by Crutcher
(1999), can be used to estimate |Bgrigica] at the CH3OH maser
densities. We assume |B| « ng';” because it is proven to be

valid up to densities of 10'" cm™ (Vlemmings 2008). Cragg
et al. (2005) determine that the number density of 6.7-GHz
CH;OH maser (nngH) varies from 107 cm™ to 10° cm™3,
above which the CH3;OH masers are quenched. Therefore, we
have to estimate a range of |Bgica| by considering the whole
range of nﬁz{3OH. The critical value of the magnetic field at
the densities of the 6.7-GHz CH3OH maser is thus between

[BO em”| = 0,001 G and |B!?. ™| = 0.01 G. Consequently,

critical critical

in Case A, [BY m™ |+ < 0.01 G (k = 0.47), and in Case B,

critical
B | sep > 0.001 G (k = 0.47).
It is important to mention that Crutcher et al. (2010) claim
a different value of «, i.e. k = 0.65. They find that at densi-
ties less than 10> cm™, magnetic fields are density indepen-
dent; i.e., they are constant, while for higher densities they vary

as |B| o ny;®. Even though this relation has so far been veri-

fied for densities up to 10’ cm™>, for the sake of completeness
we also estimate |Bgiticall at CH3OH maser densities by using
|B| o ngfs. Repeating the calculation for k = 0.65, we found

B9 7| en < 0.1 G (k = 0.65) and [B9 1" |oqsen > 0.004 G
k = 0.65).

In Fig. 5 we show a simple diagram that can help visu-
alize the different |Beriicall Tanges and the measured |Bcy,omnl,
which are estimated by using both az = 0.05 kms™' G™! and
az = 0.005 kms™! G~!. To determine the ranges of |Bc,oml,
we also considered the errors of AV, and 6. We can see from
Fig. 5 that the magnetic field measured from the Zeeman split-
ting of the CH3;OH maser M05, independently of the value of oy,

and nfllfOH, indicates that E,,, < Ep (both for x = 0.47 and for
k =0.65).
Using similar calculations for 1.6-GHz OH maser

(10° ecm™ < ng, < 10% cm™; Crutcher 2012), we find
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CH30H _
measured by considering ez, ©~ = 0.05 kms™' G
CH30H _

that the magnetic field strength measured by Edris et al. (2005),
i.e. 11 mG, satisfies Case B, i.e. E;x < Ep, only if x = 0.47

(IB!9 ™| e > 107* G) and Case A, i.e. Exq > Ep, only if
K= 0.65 (1B |cqsen < 0.02G).

Therefore, in our estimates the magnetic field dominates the
rotation of the cloud. Moreover, we can speculatively state that
the initial conditions of Shinnaga et al. (2012) are correct and
that the S-shaped morphology of the magnetic field cannot be
described by Model 3 of Kataoka et al. (2012). However, in
Model 4 of Kataoka et al. (2012), the magnetic field is stronger,
and we have the initial condition E., < Ep. In this case they
find that the deviation of the magnetic field lines from the
hourglass configuration could only be observed very close to
the protostar, i.e., where the magnetic field is probed by the
6.7-GHz CH;OH masers. Of course, further observations, for
instance of dust tracers in full polarization mode at mas resolu-
tion, could in future help clarify the role of the magnetic field in
IRAS 20126+4104.

6. Conclusions

The YSO IRAS 20126+4104 has been observed in full polariza-
tion spectral mode at 6.7-GHz with the EVN and at 22-GHz with
the VLBA to detect linear and circular polarization emission
from CH3OH and H,O masers, respectively. We detected 26
CH30H masers and 5 H,O masers at mas resolution. Linearly
polarized emission was detected towards three CH3;OH masers
and one H,O maser that probed the magnetic field both close
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to the Keplerian disk and to the large-scale outflow. The ori-
entation of the magnetic field derived from the masers agrees
with the S -shaped morphology that was measured by Shinnaga
et al. (2012) on a larger scale by using dust-polarized emission
at 350 um.

Moreover, we were able to measure a Zeeman splitting of
—-9.2 ms~! from the brightest 6.7-GHz CH3;OH maser. From
this measurement, we determined that the magnetic field energy
dominates the rotation energy of the region; i.e., E;o < Ep.
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