
Astronomical Data Analysis Software and Systems XV P.4

ASP Conference Series, Vol. XXX, 2005
C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds.

ParselTongue: AIPS Talking Python

Mark Kettenis, Huib Jan van Langevelde, Cormac Reynolds

Joint Institute for VLBI in Europe, Dwingeloo, The Netherlands

Bill Cotton

National Radio Astronomy Observatory,Charlottesville VA, USA

Abstract. After more than 20 years of service, classic AIPS still is the
data reduction package of choice for many radio-interferometry projects,
especially for VLBI. Its age shows, most prominently in the limited script-
ing capabilities of its user interface: POPS. ParselTongue is an attempt
to make the trusted AIPS algorithms and AIPS data structures available
in a modern dynamic programming language: Python. It also provides
an environment to do distributed computing to take advantage of modern
computing clusters. This makes it suitable for use as a scripting inter-
face for doing complicated data reduction on large data sets. It is also
used as a coding platform for the new calibration algorithms that are
being developed for the European VLBI Network as part of the ALBUS
project. Here we hope to take advantage of Python’s extensive support
for web-based technologies to automate things like collecting calibration
data.

1. ParselTongue

ParselTongue1 provides a Python interface to classic AIPS2 and Obit3. This
package makes it possible to run AIPS (and Obit) tasks, and manipulate AIPS
(meta)data from a modern dynamic programming language. It will serve as the
infrastructure for RadioNet’s Advance Long Baseline User Software (ALBUS)4

project, but is useful in its own right for things like complex automated data
reduction and implementing pipelines. Its features are best illustrated by a
couple of examples.

1http://www.radionet-eu.org/rnwiki/ParselTongue

2http://www.aoc.nrao.edu/aips/

3http://www.cv.nrao.edu/~bcotton/Obit.html

4http://www.radionet-eu.org/jra/albus.php

1



2 Kettenis, van Langevelde, Reynolds & Cotton

2. Examples

The first example shows how to run FITLD to load an image into AIPS and
then run IMEAN to calculate the RMS noise of the image:

from AIPSTask import AIPSTask
from AIPSData import AIPSImage

image = AIPSImage(’4C39.25’, ’ICLN’, 1, 1)

fitld = AIPSTask(’fitld’)
fitld.infile = ’/home/potter/4C39.25.FITS’
fitld.outdata = image
fitld.go() # Run FITLD

imean = AIPSTask(’imean’)
imean.indata = image
imean.go() # Run IMEAN

print ’RMS noise:’, imean.pixstd # Print output from IMEAN

Note that ParselTongue allows you to use full path names to specify your input
files, even if they are longer than 48 characters. The AIPSTask objects used
to run FITLD and IMEAN in the example are constructed dynamically from
AIPS help files. This means that all AIPS tasks for which a standard AIPS
documentation file can be found by ParselTongue, are supported; even ones
that don’t exist yet. Changes to the existing AIPS installation are not required.

Creating pipeline-like scripts of course requires more than just running
tasks. A truly useful script will also need to make decisions based on the data
being processed. To make this possible, ParselTongue provides almost full access
to image and UV data. The next example shows how to read keywords from
headers and collect information from extension tables:

from AIPSData import AIPSUVData

uvdata = AIPSUVData(’N05L2’, ’UVDATA’, 1, 1)

print ’Date:’, uvdata.header.date
print ’Telescope’, uvdata.header.telescop
print ’Antennas:’, uvdata.antennas
print ’Sources:’, uvdata.sources
print ’Stokes:’, uvdata.stokes

Dull read and write access to extension tables is also possible:

from Wizardry.AIPSData import AIPSUVData

uvdata = AIPSUVData(’N05L2’, ’UVDATA’, 1, 1)
oldcl = uvdata.table(’CL’, 1)
newcl = uvdata.attach_table(’CL’, 2, no_term=6)



ParselTongue: AIPS Talking Python 3

Figure 1. Remote execution of AIPS tasks using ParselTongue.

for row in oldcl:
row.real_2 = row.real_1
row.imag_2 = row.imag_1
newcl.append(row)

This little script will transfer the gain calibration from the first polarization to
the second polarization, and put it in a new calibration table.

In addition, it is even possible to access raw visibilities in UV data sets in
an efficient way. All data access is implemented using the Obit C Library.

3. Features

ParselTongue can be used interactively from an interactive Python session. It
customizes the standard Python environment to provide TAB-completion, min-
imal match and command line history. It also provides help on all documented
AIPS and Obit tasks.

ParselTongue also allows remote execution of tasks using Python’s built-
in XML-RPC support. This can be used to run tasks in parallel on a cluster.
The architecture is shown in figure 1. AIPS disks on remote machines appear as
additional disks on the machine used to run the ParselTongue script. Tasks that
use data on such a remote disk execute on the machine where this disk actually
resides.

4. Science & Pipelines

Within JIVE, ParselTongue is already being used for complex data reduction
tasks. Figure 2 shows methanol masers in Cep. A at 6.7 GHz. The data



4 Kettenis, van Langevelde, Reynolds & Cotton

Figure 2. The source HW2 in star forming region Cep A. The back-
ground represents the 22 GHz continuum and the triangles are the loca-
tions of H2O masers. The filled circles indicate the 6.7 GHz methanol
masers positions, the open circles the 12 GHz methanol masers and the
diamonds the methanol maser emission at 107 GHz. (van Langevelde
& Philips, in preperation).

was correlated in wide field astrometric mode at the EVN correlator at JIVE.
ParselTongue scripts were used to process the 320 GB data set.

ParselTongue’s ability to write AIPS extension tables has also been exer-
cised successfully in applying calibration obtained from data correlated in wide
band mode to narrow band spectral line data.

At JIVE we are also working on converting the EVN pipeline to Parsel-
Tongue. The current prototype is already using some of the possibilities that
Python has to offer, for example to access the EVN archive remotely. This is
something that is simply impossible from an AIPS run file.

5. Future development

Development of ParselTongue is currently focused on reliability and usability,
but there are a few ideas for adding new functionality such as support for other
task-based data reduction packages (MIRIAD, aips++, etc.) and an interface
to the AIPS TV for interactive use. There are plans to add a work-flow manager
to create and control ParselTongue scripts. ParselTongue could also form the
basis for a Graphical User Interface to AIPS.


