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ABSTRACT

The eSMA (“extended SMA”) combines the SMA,; JCMT and CSO into a single facility, providing enhanced sen-
sitivity and spatial resolution owing to the increased collecting area at the longest baselines. Until ALMA early
science observing (2011), the eSMA will be the facility capable of the highest angular resolution observations at
345 GHz. The gain in sensitivity and resolution will bring new insights in a variety of fields, such as protoplane-
tary/transition disks, high-mass star formation, solar system bodies, nearby and high-z galaxies. Therefore the
eSMA is an important facility to prepare the grounds for ALMA and train scientists in the techniques.

Over the last two years, and especially since November 2006, there has been substantial progress toward
making the eSMA into a working interferometer. In particular, (i) new 345-GHz receivers, that match the
capabilities of the SMA system, were installed at the JCMT and CSO; (ii) numerous tests have been performed
for receiver, correlator and baseline calibrations in order to determine and take into account the effects arising
from the differences between the three types of antennas; (iii) first fringes at 345 GHz were obtained on August
30 2007, and the array has entered the science-verification stage.

We report on the characteristics of the eSMA and its measured performance at 230 GHz and that expected
at 345 GHz. We also present the results of the commissioning and some initial science-verification observations,
including the first absorption measurement of the C/CO ratio in a galaxy at z=0.89, located along the line of
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sight to the lensed quasar PKS 1830—211, and on the imaging of the vibrationally excited HCN line towards
IRC+10216.
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Stars: formation, protoplanetary disks, late-type, outflows; Galaxies: general, high-redshift

1. INTRODUCTION

The submillimeter window is critically important for astronomy because it probes cold and dense environments
whose spectral energy distribution peaks in this wavelength range. Moreover, the submillimeter window offers
unique access to numerous high-excitation lines of molecules. With its dry atmosphere, Mauna Kea is a privileged
location to open this window and peer into the dense, dust-enshrouded regions of the Universe. The Caltech
Submillimeter Observatory (CSO) and James Clerk Maxwell Telescope (JCMT) were among the first submil-
limeter facilities worldwide and have allowed astronomers to obtain novel results with undiminished success since
their first-light on Mauna Kea in the mid-eighties.

Despite their numerous advantages, these single-dishes have a limited angular resolution and the SubMil-
limeter Array (SMA), the first imaging interferometer at submillimeter wavelengths, was built on Mauna Kea
with the goal of providing high-angular resolution observations in this regime. The SMA consists of 8x6-m
dishes provided by the Smithsonian Astrophysical Observatory (SAO, USA) and ASTAA (Taiwan). Following
the successful realization of using the 10.4-m CSO and 15-m JCMT as a two-antenna interferometer (1992-1995,
see Ref. 1,2), it was foreseen, as the first SMA antennas were brought to Mauna Kea almost a decade ago, to
combine the SMA with the JCMT and the CSO into an “extended SMA” or eSMA, providing enhanced sen-
sitivity and spatial resolution compared with the SMA. The JCMT-SMA Memorandum of Understanding was
signed in 2001; the CSO later agreed to join the project. Over the last two years, there has been substantial
progress toward making the eSMA into a working interferometer.

The eSMA is now in a position to start fully exploiting the advantages which motivated the three individual
observatories to embark on this joint venture:

e [ncreased resolution: With the CSO in the array, the longest baseline extends to 782 m, compared to 509 m
for the SMA in very-extended configuration. This corresponds to an angular resolution better than ~ 072
at 345 GHz.

e [ncreased sensitivity: The addition of the CSO and JCMT doubles the collecting area of the SMA alone
from 226 to 488 m2. Together with dual polarization (and depending on the assumptions made for the
values of the system temperatures in Eq. 7 of Appendix B), this provides an improvement of up to a
factor of ~ 3 — 5 in observing speed, compared to the current, single polarized SMA. Moreover, this extra
collecting area is located on the longest baselines / highest angular resolution, where it is most critically
needed.

In this paper, we describe the technical challenges encountered in the process of joining the CSO and JCMT
to the SMA, outline some sciences objectives, and present the first results obtained with this facility.

2. TECHNICAL DESCRIPTION

The CSO, JCMT and SMA, which together make the eSMA, are pictured in the left panel of Fig. 1, while the
right panel shows the locations of the JCMT and CSO and the pad-positions for the SMA antennas. In this
section, we describe the hardware and operational issues inherent to the eSMA | as well as some of the tests that
have been carried out to try and solve the problems intrinsic to this heterogeneous array. Note that although the
eSMA is designed to operate in the 320-355 GHz window, the testing to date has been done at lower frequencies
(230-270 GHz).
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Figure 1. Left: From left to right, the CSO, JCMT, SMA control building and SMA antennas. — Right: Topographic
map showing the pad positions for the SMA antennas, and the locations of the JCMT and CSO. The red circles are
indicative of the four main different SMA configurations. Also labeled are a few key distances.

2.1 Hardware
2.1.1 Adding the JCMT and CSO to the SMA array

Sumitomo single mode fibers were pulled from the SMA control building and spliced into the existing fiber be-
tween the CSO and JCMT in 2000. These fibers distribute the LO reference signals from the SMA to the CSO
and JCMT receivers and carry the returning IF signal back to the SMA correlator. In addition, multi-mode
fiber bundles were installed for computer communications and control. Following the commissioning of the SMA
itself, SMA IF /LO conditioning and control electronics were duplicated and installed at the CSO and the JCMT.
The above steps were absolutely necessary in order to have identical LO chains for all the telescopes involved,
which is essential for eSMA operations, as a fixed cable length is assumed in the correlation.

Furthermore, the fibers and attached equipment have been configured to reside within the SMA network, trans-
parently extending the array to include the CSO and JCMT antennas. Schematic views of the LO/PLL circuit
and of the crate connections are shown in Fig. 2.
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Figure 2. Left: Schematic view of the LO and PLL circuit. — Right: Overview of the eSMA crate connections between
the JCMT and SMA. Similar connections are present between the CSO and SMA.

SMA control to the JCMT and the CSO is channeled through dedicated computers at each telescope. The
dedicated computers also control the SMA specific IF/LO conditioning electronics. They receive commands
through Remote Procedure Call (RPC) and reflective memory, which is also used to report back the antenna
status. With only minor differences, control of the SMA Antenna equipment at the JCMT and CSO is identical to
the rest of the array. However, the receivers, telescope, and control software of the JCMT and CSO are different
from those at the SMA and each other and require a custom interface. A simplified ASCII command set,



implementable via e.g. a serial line connection, was designed as the common interface between the observatories.
This effectively allows the SMA to take remote control of the JCMT and CSO and monitor status information
such as tracking errors. The latter is important because the different telescopes have different slew-rates and
cable-wraps, resulting in a different routing and arrival time on target; individual baselines are flagged until both
telescopes are on target. Using the interface the SMA can also control e.g. the switching of loads in front of the
receivers in order to carry out calibrations. The implementation of the full interface command-set is ongoing as
of summer 2008.

The eSMA required a modification of the correlator software at the SMA. As the SMA is designed to operate
in dual-frequency mode with 8 antennas, there is enough hardware for running the eSMA 10-antenna single-
frequency configuration (45 baselines). Since August 2007, the eSMA has been observing successfully with all
45 baselines.

2.1.2 Heterogeneous array issues

For all practical purposes, the SMA antennas are identical, so that telescope-specific issues typically cancel out.
The CSO and JCMT, however, are of a completely different design resulting in a more complicated situation
requiring special corrective measures.

Heterodyne receivers used in submillimeter astronomy observe a single linear polarization and, because of the
different optical configuration, each type of telescope observes a different polarization while pointed to the same
target. To correct for this half-wave plates are installed in the beam at the CSO and JCMT that automatically
rotate to a common polarization as a function of elevation.

The rotation of the plates introduces elevation dependent phase terms. Additional elevation dependent phase
terms arise from purely mechanical issues. Examples are a pronounced non-intersection of axes term at the CSO
and a measureable drop of the elevation axis at the JCMT when moving from horizon to zenith. Unfortunately
such phase terms are degenerate with regular baseline terms and their separation is time-consuming, requiring
dedicated and repeated tracking of sources differing e.g. only in elevation (see section 2.3). Presently the eSMA
is converging towards the required maximum residual baseline uncertainty of ~0.1 mm.

The observing software at the SMA also required modifications to take the differences between the telescopes
into regard: e.g. for interferometric pointing observations the smaller beams of the CSO and JCMT need to be
accounted for.

2.2 eSMA operations

Operations of the eSMA are completely controlled from the SMA side. The SMA is typically staffed during the
first half of the night and during the second half, it is controlled completely remotely either from Cambridge,
Massachusetts (4 out of 5 weekdays) or from Taipei, Taiwan (1 out of 5). However, neither the CSO nor the
JCMT are set up for the level of remote, un-attended observing as is usual for the SMA. Currently during eSMA
commissioning both the CSO and JCMT are independently staffed. Once the commissioning has finished it is
expected to support eSMA observations with a single shared team for the CSO and JCMT. The requirement for
such a team to remain available at the summit throughout the night will likely be dictated more by security and
safety issues than technical constraints.

2.3 Baselines effects

As mentioned in section 2.1.2, a significant amount of time has been spent during the testing phase to perform
necessary array calibration observations. These observations are designed to determine accurately the relative
positions of the individual elements (“baselines”) along with antenna-dependent terms (non-intersection of the
axes, etc.). All these terms affect in particular the ability to transfer phase calibration solutions from calibrators
to target sources and therefore, ultimately, our ability to accurately image a region in the sky. To prevent this
potential issue, these baseline- and antenna-dependent terms must be determined to a fraction of a wavelength
(typically 0.1 mm).

For an homogeneous array, the relative antenna positions are typically obtained from observations of unre-
solved calibration sources for which the positions are known. The phase of such calibrators should ideally be



zero but due to the uncertainties in the positions, it is in fact given by Eq. 1 of Appendix A.1. Observations
of sources spanning a large range of hour angles and declinations hence allow us to derive the uncertainties in
the X, Y and Z respectively. Figure 3 shows the effect of solving for the relative positions. The initial values
found from these August 29, 2007 observations were (AX, AY, AZ) = 10.25, —8.53, 14.11 mm and —8.82, 3.14,
—22.96 mm for the JCMT and CSO, respectively.
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Figure 3. Left: Observed amplitude and phase for SMA-SMA (5-6), SMA-JCMT (6-10), SMA-CSO (6-9) and CSO-JCMT
(9-10) baselines during the first baseline track obtained on 2007 August 29. — Right: Effect of applying the solution
derived from fitting the baseline equation (see Appendix A.1) to the baseline-track data.

However, for an heterogeneous array, these solutions are degenerate as they encompass antenna-dependent
terms as well as the relative positions. Therefore, additional tests have been performed, for which a carefully
chosen subset of quasars have been observed. For example, a pair of quasars with similar right ascension but
opposite declination can allow determination of elevation effects (e.g. those due to the non-intersection of the
azimuth and elevation axes — see Appendix A.2). Indeed, in this case, the difference between the phases of
two such quasars is independent of the uncertainties in the X and Y positions and can be fitted with elevation
terms only.Another appropriate choice is a pair with similar declination and different R.A. In this case, using
the functional form of the dependence of the phase on the elevation derived with the first pair of quasars, this
second pair then provides a good solution for the X and Y positions.

2.4 eSMA properties and (expected) performances

Table 1 summarizes the capabilities of the eSMA in comparison with the SMA alone, both in single (sp) and
dual (dp) polarization modes. Estimates for the sp mode were obtained from the SMA sensitivity calculator:
http://smal.sma.hawaii.edu/beamcalc.html, assuming a frequency of 345 GHz, 6.7 hr of on-source integration
time (H.A.==£5), a source declination of 25°, and good atmospheric conditions (pvw=1.5 mm). Factors between
sp and dp modes can be found in Appendix B.

Note that the eSMA currently operates in single polarization mode. The JCMT has the capability to combine
with the SMA in dual polarization, once the SMA will be fully equipped with the appropriate receivers. Within
one or two years the CSO may also have that capability. In the event of dual-polarization observations with the
eSMA, two SMA antennas will have to be dropped from the array due to correlator capacities.

3. SCIENCE OBJECTIVES

The eSMA will address a number of key issues in a large range astrophysics topics, from Solar System objects
and galactic low- and high-mass star-forming regions to high-z galaxies. Science projects that will benefit the
most from eSMA compared with the SMA alone are those that fall into the following categories: (i) detecting
and imaging faint continuum sources (of order a few mJy) at subarcsec resolution; (ii) detecting and imaging
thermal (> 30 K) lines tracing dense gas at subarcsec resolution; (iii) providing larger samples of moderately
bright sources for statistical analysis; and (iv) providing the best possible data on key template sources prior to
ALMA as a reference.

Examples of science cases where the eSMA will have an impact have been described in a report of a workshop
held at Leiden Observatory, the Netherlands in early 2007. Information can be found at:



Table 1. Specifications and sensitivities of the eSMA and SMA arrays.

Array eSMAg, eSMAg, | eSMAg, SMAs, | SMAg,

(Band in GHz) (230) (345) (345) (230) | (345)

Frequency range (GHz) 210-280 | 315-380 | 320-355 || 272-349 | 320-355

Number of baselines 45 45 28 28 28

Total collecting area (m?) 488 488 431 226 226

Longest baseline (m) 782 509

Resolution (arcsec) 0.22x0.55 0.18x0.32 0.24%0.32

Resolution (AU at 150 pe) ~30-80 ~25-50 ~35-50

Continuum (mJy/beam) 2.1 1.1 0.9 2.3 1.6

Line (K per 1 km/s channel) 12.4 5.6 4.6 10.7 7.6
NOTES. — (i) sp and dp denote single and dual polarization modes respectively ; eSMAg, is 8x6 m + 10.4 m
+ 15 m while eSMAq, is 6x6 m + 10.4 m + 15 m (see text for details). (ii) Resolutions are given for uniform
weighting and sensitivities for natural weighting. — (iii) Bold characters denote values measured for the 7-hr

track on PKS 1830—211 (see Sec. 5.1); note that those data were obtained under worse (pvw~3-4 mm) weather
conditions than assumed for the estimates, and were reduced using uniform weighting.

http://www.leidenuniv.nl/~bottinelli/esma-workshop/report_esma_workshop.pdf.
These science cases include the following:

e Solar System objects. — The high sensitivity and angular resolution of eSMA will enable important studies
of Solar System objects to be carried out, such as comets, Kuiper Belt Objects (KBOs), trans-Neptunian
objects and Centaurs. These objects are likely to consist of the most unaltered matter from the Solar
Nebula (see Ref. 3, and references therein), and are therefore essential to our understanding of the young
Solar System. In particular, areas in which eSMA observations will provide crucial information are: (i)
jet features from the nuclei of comets; (ii) atmospheric composition of, e.g., Pluto, Triton, KBOs; (iii)
spatial variability in Io’s atmosphere and the potential link with volcanic mechanisms; (iv) kinematics of
atmospheres (presence of “winds”, e.g. in Titan); (v) light-curves of asteroids.

e Protoplanetary disks.— Circumstellar disks are an ubiquitous feature occurring in the star formation pro-
cess, due to the conservation of angular momentum as the ISM condenses from cloud core to protostellar
scales. Planet formation begins in the gas-rich disks around young pre-main sequence stars. The density,
temperature and velocity distribution of these disks critically determines the growth of dust particles, af-
fects the chemistry and coagulation of planetesimals, and controls the gas accretion and orbital migration
of massive planets. Recent observations and modeling show that the combination of spatially resolved
imaging and spectra at infrared and millimeter wavelengths is needed to make advances in this area.

The eSMA will have the sensitivity, dynamic range and resolution to enable the study of large and diverse
samples of protoplanetary disks, leading to key constraints on theoretical models of disk structure. Three
areas in which the eSMA will be particularly powerful include: (i) benchmarking the nearest disks prior
to ALMA; (ii) young disks in the embedded phase of star formation, where the high angular resolution
and sensitivity is needed to separate disks and envelopes; and (iii) transitional disks with large inner holes,
perhaps indicative of planet formation. For embedded sources, they will also shed light onto the launching
mechanism of the outflows and their relation to the properties of the disks.

e MHigh-mass star formation. — The eSMA will help answer several key questions in this area: (i) clustered
star formation and the IMF; (ii) circumstellar kinematics on <1000 AU scales; (iii) pre-stellar phases.
The eSMA is very well suited to address these issues. Its high angular resolution is essential to separate
individual sources in distant (few kpc), crowded protostellar clusters, or to map the structure and kinematics
of the pre-stellar cores on scales on which fragmentation is expected to occur. Its high sensitivity is essential
to measure a large range of masses and thus get a good sampling of the protostellar mass distribution.
Moreover, its high operating frequency makes for a better mass sensitivity per unit flux density. Finally, in
addition to providing mass determination from the continuum, eSMA observations of line emission (such as



CH30H, SiO, HCN, ions and deuterated species) could be used to measure the temperatures and densities
of the sources, trace their molecular outflows, and measure their mid-infrared radiation field, that is, to
pinpoint physical and chemical condition in the cores.

e Fwvolved stars. — Studying the later stages of stellar evolution is important for an understanding of stellar
populations and the chemical enrichment of galaxies, as well as the life cycle of stars and matter. With
its high spatial-resolving power at 345 GHz, the eSMA will be an excellent facility to map the dust and
kinematics in the envelopes of late-type stars, as well as investigate the magnetic field of their outflows.

e Nearby Galaxies: starbursts, mergers, and AGN. — Activity in galaxies is attributed to two main phenom-
ena: extended starbursts and accretion onto a central supermassive black hole to form an active galactic
nucleus (AGN). Both types of activity are fed by massive reservoirs of molecular gas and both may sig-
nificantly affect their surrounding clouds through their strong radiation fields. Studying the molecular gas
in active galaxies requires both high angular resolution and high sensitivity, even for very nearby AGN
and starburst galaxies. The eSMA will be of great help to tackle this task by bringing new information in
several topics: (i) separating AGN and starburst activity in Ultra-luminous infrared galaxies (ULIRGs); (ii)
physical and chemical conditions of dense molecular gas in the heart of ULIRGs; (iii) excitation conditions
in nearby active galaxies; (iv) detailed views of the inner few hundred parsec of nearby galaxies.

An important aspect of this program will be to combine new eSMA observations with existing SMA data
to trace the emission on a broad range of spatial scales. Also, the high spatial resolution of the eSMA
will make it possible, for the first time, to match molecular line observations to near-infrared ionic line
observations in nearby galaxies.

e High-redshift galaxies.— Submillimeter studies of high-redshift galaxies have been a key area of activity for
all three of the observatories involved in the eSMA. Five topics have been identified where the eSMA can
provide important new insights into the properties and nature of the important population of high-redshift
submillimeter galaxies (SMGs): (i) Exploring the far-IR/radio correlation on kpe scales at high redshift; (ii)
Beyond the confusion limit: imaging SMGs representative of the cosmic far-IR background; (iii) Imaging
cold dust reservoirs in massive high-redshift AGN: witnessing the birth of massive ellipticals; (iv) Imaging
bright SMGs with multiple radio counterparts: testing simulations of galaxy-galaxy mergers; (v) Imaging
SMGs without radio counterparts: is there a significant population of distant, massive starbursts?

4. FIRST ESMA IMAGE OF A SCIENCE OBJECT: IRAS16293—2422

TRAS16293-2422 (hereafter IRAS16293) is a well-known young, solar-mass protostar, which consists, at arcsec
resolution level, of two main components (IRAS16293A and TRAS16293B). IRAS16293 was observed on 2008
March 13 with the SMA in the compact configuration. Despite the far from optimal eSMA beam, the eSMA
team chose to proceed with the observations because the good weather conditions and sufficient brightness of
TRAS16293 would allow the data to be self-calibrated, thereby obtaining the first science-verification data.

Figure 4 shows the continuum as observed by the eSMA at 267 GHz. Although the absolute astrometry is lost
in the process of self-calibration, the relative positions of the two components are consistent with the literature.
Moreover, despite the facts that no high-spectral resolution data could be taken and that flux calibration could
not be performed, the spectra displayed in Fig. 4 reproduce qualitatively well the particularities reported in the
literature for this source, namely that the SE component (the weaker component in the continuum in the 1 mm
wavelength range) has broader and stronger lines than the NW component* ¢ (Note that HCO™T seems brighter
in the NW component, but this is probably due to the fact that this line is located near the edge of a band).

5. FIRST SCIENTIFIC RESULTS
5.1 PKS 1830—211: first direct absorption measurement of C/CO in a normal galaxy

PKS 1830211 is a radio loud quasar with a redshift of z = 2.507.7 Millimeter continuum emission images
of PKS 1830—211 show two compact components, north-east (NE) and south-west (SW), separated by ~ 1”.
This double-peaked structure represents two images of the background quasar, magnified and distorted by a
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Figure 4. eSMA continuum map and spectra of IRAS16293. Absolute astrometry information is lost during the self-
calibration process, so that the offsets here are relative to the phase center, «(2000) = 16"32722762, §(2000) =
—22°28'32/32. The 0”38x3”54 beam is shown in the lower left corner. — The left and right panels show, for selected
frequency ranges in the LSB and USB, the spectra averaged over the box regions around the SE and NW components
respectively. Intensities are normalized to the strongest line and major transitions (or their positions) are labeled.

lensing system at z = 0.88582.% This lens was indirectly detected by the observations of broad H 1 and molecular
absorptions in the millimeter spectra of PKS 1830—211 (e.g., Ref. 8-10). Ref. 9 suggested it to be a spiral galaxy,
which was recently confirmed by direct HST and IR images.'™ 2 Observations of absorption lines reported in
Ref. 9,13 show that the molecular absorption is most conspicuous towards the SW component, with only a
weaker absorption feature detected in association with the NE component.

As shown by previous studies, the line of sight towards PKS 1830—211 offers a unique opportunity to study the
physics and chemistry of the gas in a random molecular cloud in the lensing galaxy. Although several molecular
species (CO, CS, HCN, HNC, HCO™, HsS, HoCO, NoH™, and some of their isotopologues) have been detected
in this source, little is know about the atomic content. However, this is important as atoms play a dominant
role in the energy balance of the gas, and observations of atomic species such as C 1 can be used to determine
the physical and chemical conditions of the gas. In particular, the [C 1]/[CO] is often used as a diagnostic of the
type of PDRs from which they originate, but such analyses refer to emission line data averaged over large areas
and suffer from radiative transfer and excitation effects. The current eSMA data probe the C/CO abundance
ratio directly for the first time in absorption in a dense molecular cloud. Such a measurement has not yet been
possible in our own Galaxy because of the difficulty of doing subarcsec interferometry at 492 GHz. The C/CO
ratio is also an important ingredient for testing models for the formation of more complex carbonaceous molecules.

5.1.1 eSMA observations

Observations of PKS 1830—211 (a(2000) = 18"33™397889, §(2000) = —21°03'39”77) were carried out with
the eSMA on 2008 April 14 (with eight SMA antennas in the very-extended configuration, vex), targeting the
(3P1—3Py) transition of C I at a rest frequency of 492.161 GHz. Table 5.1.1 summarizes the observed frequencies,
spectral resolution, and resulting beam sizes. See Ref. 14 for a description of the data calibration and reduction
process.

Table 2. Observational parameters for PKS 1830—211

Parameter C 1, eSMA continuum, eSMA | continuum, SMA
Observed frequency (GHz)® 260.97965 267 267
Channel width 0.93 km s~ ! 2 x 1.5 GHZ? 2 x 2 GHz
Beam size (FWHM) and P.A. | 0762 x 0730, 38° | 0755 x 0722, 32° 0750 x 0733, 25°

@ Corresponding to a rest frequency of 492.16065 GHz, from vobs = Vrest/ (1 + 2), with z = 0.88582.
b Note that in the 230 GHz band, the eSMA bandwidth is limited by that of the JCMT’s receiver A3.



5.1.2 Results

The left panel of Fig. 5 shows the continuum map obtained with the eSMA, derived from line-free channels. C
I absorption is only seen toward the southern component as shown in the right panel of Fig. 5. This illustrates
the importance of sub-arcsecond data: the optical depth determination could be off by more than a factor of 2
if the two components were unresolved. Moreover, the comparison of the profiles obtained with the eSMA and
SMA-only displayed in the right panel of Fig. 5 clearly shows the gain in sensitivity provided by the eSMA.
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Figure 5. eSMA continuum map and spectra of PKS 1830—211. Absolute astrometry information is lost during the
self-calibration process, so that the offsets here are relative to the center of the double point source. The contour levels
are multiples of 150 mJy. The 0”55x0”22 beam is shown in the lower left corner. The spectral windows show the eSMA
(top, flux scale on the left y-axis) and SMA (bottom, flux scale on the right y-axis) spectra of C 1 (*P1—%Py) toward the
SW component. Note the improvement in noise level between the eSMA (rms = 0.085 Jy beam ') and SMA (rms =
0.143 Jy beam ') data.

Together with additional SMA observations of CO absorption, we therefore obtained the first absorption
measurement of the C/CO abundance ratio for an average line of sight in a dense molecular cloud in a normal
spiral galaxy. A preliminary analysis indicates that the line profiles can be fitted with 2 or 3 components, each
of which have a C/CO ratio of ~1. This value indicates that the region of the lensing spiral galaxy at z=0.889
intervening in the line of sight is mostly translucent cloud material.

5.2 TRC+10216

IRC+10216 is the best-studied carbon star that shows a very rich spectrum of molecular lines at millimeter
and submillimeter wavelengths. Hydrogen cyanide (HCN) is known to show maser components towards a few
carbon-rich evolved stars including TRC+10216. Previous observations at the CSO revealed that the HCN
higher J transition (J = 9 — 8) of IRC+10216 even shows laser action.!> eSMA observations of IRC+10216
were performed on 2008 April 14, with the correlator tuned to target the HCN J = 3 — 2 components in the
v=(0,1,0) state.!6 The left and middle panels of Fig. 6 show a comparison of the continuum images taken with
the SMA and with the eSMA, respectively. Signal-to-noise is improved by about 67% when we use the eSMA.
The observations allowed us to spatially resolve the maser clump features for the first time as shown in the right
panel of Fig. 6.

6. CONCLUSION

In the past two years, substantial progress has been achieved to make the eSMA into a fully functional instrument.
Thanks to the dedication and commitment of the commissioning team and of all three observatories, the eSMA is
now moving in the fast lane towards harvesting exciting new results, as demonstrated by the first scientific output
of this array. Moreover, the numerous scientific areas to which the eSMA can make a significant contribution
provide a bright perspective for the coming years.
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Figure 6. Left, middle: SMA and eSMA continuum images of IRC+10216. The contours are drawn at 3, 9, and 27 o.
Beam sizes are shown in the lower left corner and are 0740 x 0730 and 0746 x 0”22 for the SMA and eSMA respectively.*®
— Right: eSMA map of the HCN J = 3 — 2, v=(0,1,0) transition (contours) overlaid on top of the continuum emission
of the central star (gray scale). The line emission was averaged over all channels for that transition. The contours are
drawn at 3, 9, 15, 21, and 27 ¢.%¢

APPENDIX A. PHASE DEPENDENCE ON BASELINE COMPONENTS AND
ANTENNA-DEPENDENT TERMS

A.1 Baseline components (positions)

The phase of antenna 4, w.r.t. the reference antenna is given by:

¢; = 2% AX;cosdcos H— AY;cosdsin H + AZ;sind (1)

where §, H, and ¢ = declination, hour angle and elevation of the source, AX, AY, AZ are the uncertainties
in the XY, Z positions of antenna 1.
A.2 Antenna-dependent terms: elevation

Elevation terms can be added to equation 1, assuming they are of the generic form Aa cos(e) + Absin(e), we
have:

2
= TW AX;cosdcos H— AY;cosdsin H+ AZ;sind + Aacose + Absine (2)

We expect that the phase variations proportional to cos(e) are dominated by the non-intersection of the axes
(see Fig. 7), we identify Aa with the distance between the azimuth and elevation axes of antenna i, absorbing
any other (smaller) effects with a cos(e) dependency into this term.

Now, if we look at the phase difference for two quasars ¢; and gs:

2
oi(q1) — di(ge) = Tﬂ- (AX; cosdy cos Hy — AY;cosdy sin Hy + AZ;sindy + Aacose; + Absine;)

—  (AXjcosdycos Hy — AY; cosdg sin Hy + AZ; sin o + Aacoses + Absin 62)] (3)

For Eq. 3 to be independent of the = and y terms, a pair of two quasars are observed, such that H, = H; and
09 = —01, which yields cosds = cosdy, cos Ho = cos Hy,sin Hy = sin H; and sinds = —sind;. We are left with
the sind and € terms and Eq. (3) yields:

2
oi(q1) — ¢di(g2) = TW 2AZ;sind1 + Aa(cos e — cosen) + Ab(sine; — sin 62)] (4)
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Figure 7. Schematic representation of the non-intersection of axes.'”

APPENDIX B. SENSITIVITY RATIOS FOR DUAL VS SINGLE POLARIZATION
WITH THE ESMA

In this section, we assume that the SMA, JCMT and CSO antennas are the same, except for their diameter (8,
15 and 10.4m respectively) and their aperture efficiency, 7, (0.67, 0.55 and 0.60 respectively).

For a homogeneous array, assuming a fixed integration time and bandwidth, the noise level ¢ is such that:
T2

2 sys
— 5
7 Ag Nb np ( )

where Tyys is the system temperature, A. = 1,4 = n, 7 D?/4 is the effective aperture, 7, the aperture efficiency,

A the geometric collecting area, D the diameter of the antenna, N, = N, (N, — 1)/2 is the number of baselines,
N, the number of antennas, and n, = 1 or 2 for single or dual polarization respectively.

For a heterogeneous array, the denominator changes to the geometric mean over the antennas:

Toys.i Tsys.i
2 sys,i Lsys,j
0% x (6)
N(N-1)/2—1,N(N—-1)/2
Tp Zi:(l,j:i)Jr/l ( )/ Aeile,j
1 Ts S0 Ts S,7
x S, YS,J (7)

np Ns_s(Aes Aes)+ Ns_5(Aes Aeg) + Ns_c(Aes Aec) + Ni_c(Aey Acc)’

where Ng_s, Ns_j, Ns_c, Nj_¢ are the number of SMA-SMA, SMA-JCMT, SMA-CSO and JCMT-CSO base-
lines, and A, g, Ae,j, Ae,c are the effective apertures of the SMA, JCMT and CSO antennas and are 18.94, 97.19
and 50.97 m? respectively.

Assuming identical Ty for all antennas as a 0" order approximation, and using the relevant values in Tab. 3
for the number of baselines, we therefore obtain the following noise level ratios:
eSMAqp / eSMA, = 0.83, SMAg4, / SMAg, = 0.71, and eSMAq, / SMA,, = 0.43,
corresponding approximately to an improvement in observing speed of a factor of ~1.5, 2, and 5, respectively.

Table 3. Number of baselines for Eq. 7

Baseline type | SMA-SMA | SMA-JCMT | SMA-CSO | JCMT-CSO | Total
Config.*
eSMAg, 8xT7/2 =28 8 8 1 45
eSMAg, 6x5/2 =15 6 6 1 28
SMA, 8xT7/2 =28 0 0 0 28
SMA4p 8xT/2 = 28 0 0 0 28

¢ Configuration: note that due to correlator limitations, only six SMA antennas can be used
for the eSMA dual polarization mode.
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