MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY
WESTFORD, MASSACHUSETTS 01886

Telephone:
508-692-4764

Fax:
617-981-0590
20 October 1997

TO:

Mark IV/EVN/CfA Correlator Development Group

FROM:
Alan R. Whitney and Joel I. Goodman

SUBJECT:
Definition and Management of Correlator-Board DSP Routines
Introduction

This memo specifies a set of basic communications and data-moving routines acting between various components of the Correlator Board, similar to those discussed by Bos (NFRA-Note 638) and Goodman (Mark IV Memo 207.1). These routines, when embodied as ‘tasks’ which are scheduled and executed, can either be managed directly by the CUCC or be used to support higher-level DSP data-management structures, such as described by Whitney (Mark IV Memo 214).

A primary goal of this memo is to define a set of low-level routines in such a way that task management may be carried out by the CUCC or by the processing DSP in a nearly identical manner. Actual task dispatch and execution is always managed by the DSP scheduler (Goodman, Mark IV Memo 219.1). This similarity between task management from the CUCC and within the DSP should significantly help to ease the transition from CUCC-intensive control to more DSP-intensive control using higher-level DSP tasks to control and dispatch the low-level tasks defined in this memo.

The following routines are defined and described:

1. DSP_lag_data_read - reads lag and header-capture data from a specified set of correlator chips to a specified set of memory area(s) on the correlator board.

2. DSP_static_data_r/w - reads/writes static-parameters to/from a specified memory area to a specified set of correlator chips.

3. DSP_dynamic_data_r/w - read/write correlator-chip dynamic-parameter data and read residues to/from a specified memory area.

4. DSP_crossbar_write - write data to cross-bar switches.

5. DSP_set_global_mode - set correlator board global parameters.

6. DSP_mem_to_mem - transfer data from one DSP memory area to another.

7. DSP_dpram_copy – transfer data to and from dual port byte-wide memory

8. DSP_mem_alloc - allocate/de-allocate a block of DSP memory.

Correlator Board Memory and Datapath Organization

The RAM memory on the Correlator Board is organized into 5 distinct banks. Figure 1 shows a simplified schematic layout of these memory banks, plus the cross-connected ‘I/O ports’ through which the DSP’s must communicate. Each of these memory banks has a separate purpose:

Dual-Port RAM - a small (1 kB) RAM which is the only memory area simultaneously accessible for both read and write to both the DSP and the VME interface. The dual-port RAM is intended for high-level real-time control functions between the CUCC and the correlator board, and is also a pathway for moving small amounts of data between the CUCC and any of the correlator-board memory banks. Dual-port RAM has several special (byte) addresses reserved for special purposes:

0x000-0x3df: 1008-byte block reserved for CUCC-to-DSP messages and data. Only the CUCC may write to this area

0x3f0-0x3f3: 4 bytes reserved for the pointer into memory where task status is recorded. Only the CUCC writes to this area, and the detailed format of this record follows in Task Status Management.

0x3f4-0x3f7: 4-byte block reserved for message block to be passed to the CUCC when interrupted by the processing DSP through location 0x3fe. The content and format are specified by the interrupt type read from location 0x3fe at the time of the interrupt. (Detailed error message numbers and definitions appear in the appendix of this document). Only the DSP may write to this area.

0x3f8-0x3fb: 4 bytes reserved for the address of a message block (typically a Task Control Block) to be passed to the processing DSP when interrupted by the CUCC through location 0x3ff. Only the CUCC may write to this area.

0x3fc-0x3fd:
Unused 2-byte block

0x3fe:

a processing-DSP write to this byte location causes a VME interrupt to the CUCC. The value written specifies the interrupt type (tentative values):

0 – Diagnostic Test Complete

1 – Error(s) Detected

Others may be defined in the future.

Note: After the CUCC reads address 0x3fe as the result of an interrupt, it writes a transfer terminator character (0x0fe) back to address 0x3fe. The processing DSP then has the option of reading address 0x3fe to verify that the CUCC has acted on the interrupt.

0x3ff:

a CUCC write to this byte location causes an interrupt to the processing DSP. The value (interrupt type) written specifies the action to be taken by the DSP scheduler (tentative values):

0 - reserved

1 - schedule task chain

2 - request indivual task status

3 - request task chain status

4 - request daughter task status

5 - immediately abort specified task chain and daughters

6 - suspend specified task chain and daughters when each task completes

7 - enable event counter

8 - event counter reset and disable

Others may be defined in the future

Note: Message address must be placed in byte address 0x3f8-0x3fb before CUCC writes to location 0x3ff.

Note: After the processing DSP reads address 0x3ff as the result of an interrupt, it writes a transfer terminator character (0x0fe) back to address 0x3ff. The CUCC then has the option of reading address 0x3ff to verify that the processing DSP has acted on the interrupt.

Global RAM - a memory bank of up to 3 MB which can be sequentially ‘toggled’ (under VME control) between VME access or processing-DSP access. The Global RAM is intended primarily to hold executable code and operations tables for the processing-DSP. Once downloaded with code from the CUCC, global RAM will normally remain dedicated to the processing-DSP. Operations tables will, for the most part, be constructed by downloading to global RAM via dual-port RAM.

Local A RAM - similar to Global RAM, except intended primarily as a buffer for correlator data, in which case it will be alternately toggled between processing-DSP access (for reading data from correlator chips) and VME control (for passing data to CUCC).

Local B RAM - identical to Local A RAM, except will normally operate in a ‘ping-pong’ fashion with Local A RAM so that data from correlator chips can be read into Local A RAM, say, while earlier data in Local B RAM is transferred to the CUCC. At the end of a correlation period, the roles of Local A RAM and Local B RAM are reversed.

I/O RAM - up to 1 MB of RAM dedicated to the I/O DSP. The primary purpose of the I/O RAM is intermediate storage of data being transferred to/from the correlator chips. Some other use may be made of the I/O RAM for other special purposes depending on the application.

Test RAM - a special 1 MB RAM bank accessible for normal read/write operations only to VME, but also used for two special test purposes: 1) to capture a simultaneous snapshot of data from two data streams from any two selected signal inputs for examination and 2) provide a small sample of two data streams to selected correlator chips for correlation. Since Test RAM is outside of control by either DSP, it is not included in the routines defined in this memo.

Overview of the Dual-DSP system

The two DSP’s on the correlator board are intended to serve somewhat different purposes. The ‘processing DSP’ is primarily for the purpose of receiving and processing data and communicating with the CUCC. The ‘I/O DSP’, on the other hand, is intended primarily as a I/O controller to manage the flow of data to and from the processing DSP. The only connection between the two DSP’s is through their cross-connected I/O ports; all data to/from the correlator chips to/from any of the processing-DSP RAM banks must be routed through the DSP I/O ports.

Father-Daughter Tasks

Each DSP supports an independent resident scheduler (Goodman, Mark IV memo 219.1) which is responsible for dispatching tasks according to a specified schedule, with competing tasks selected for execution according to their specified priorities. In addition, a ‘father’ task may spawn a ‘daughter’ task by making a suitable request to the scheduler.

DSP-to-DSP Data Transfer

DSP-to-DSP data transfer (through mutual I/O ports) requires simultaneous ‘sister’ tasks on both DSP’s. A task on one DSP will stall if its sister task on the other DSP is not executing. The coordination of sister tasks for the tasks specified in this memo is handled transparently to the user.

Definitions

The following definitions will be useful in the explanations to follow:

1. Routine - A ‘routine’ is a particular ‘standalone’ module of executable code existing within a DSP’s memory space which is executed when a task is dispatched. Usually, a set of parameters is passed to a routine (via the Task Control Block) to perform a particular function.

2. Task - A ‘task’ is a particular instance of the scheduling of a routine. Each task must have an associated Task Control Block. Tasks are managed by the DSP scheduler and may be scheduled to execute periodically. Multiple tasks (each with its own TCB) may execute the same routine.

3. Task Control Block - The Task Control Block (TCB) specifies all the parameters necessary to schedule and execute a routine. Typically, a TCB is a 6-10 words long and is logically divided into two parts:

· Task-Independent Parameters - The first four words (32-bit) of the TCB are task-independent and simply specify the scheduling parameters to the DSP scheduler.

· Task-Dependent Parameters - These parameters specify the routine to be executed and the parameters of execution. The number and format of these parameters is routine dependent.

TCB’s may be linked in a chain from one to another so that a single call to the DSP scheduler can place many tasks in the scheduler queue simultaneously. This has the side benefit of guaranteeing the relative synchronization of all the tasks in the TCB chain. The sequence of execution of tasks in a TCB chain can be controlled by assigning an appropriate priority to each task, if desired.

Note that a TCB, once set up, may be scheduled or de-scheduled any number of times. The only requirement is that any required support tables are present.

For all tasks managed by the CUCC, the TCB address (which must be known by the CUCC since the CUCC must have constructed the TCB) is the only reference the CUCC may use in communicating with the DSP schedulers regarding a particular task [for example, to query its status or to explicitly de-schedule it].

4. DMA Access Table (DAT)- Some of the these tasks require the prior construction of a ‘DMA Access Table’, which specifies the details of memory area(s) to which reading/writing is to take place. The DAT may reside in any of the local Processing DSP RAM memory banks and is used by the task to construct chained-DMA tables (CDT’s), as necessary, to control the sequencing of read/write addresses. The format of the DAT table may vary from task to task.

5. Chained-DMA Table (CDT)- Some of the tasks require the construction of a ‘chained DMA table’ required by the DSP to control the sequencing of read/write addresses. The CDT is constructed by the task, as necessary, and may be re-used under certain circumstances. The user is never required to explicitly construct CDT’s but must always reserve space for them.

6. Memory management within DSP memory space which is associated with TCB’s is most conveniently managed using the DSP_mem_alloc routine. Note that, except for the DSP_mem_alloc routine, all memory addresses associated with each task, are explicitly specified. Furthermore, all TCB memory addresses may be indirect, allowing more powerful programming options; note that all indirect addresses are fully resolved before any actual processing begins.

Task Initiation

Tasks may be initiated either by the CUCC, or as sub-tasks (daughters) initiated by a high-level task running on the DSP. All actual task dispatch and execution is under control of the DSP scheduler. Note that enabling event counter has the effect of turning on BOCF interrupts that drive scheduling operations.

Initiating a Task from the CUCC

The following sequence of events is necessary for the CUCC to initiate the execution of a DSP task. Figure 2 schematically illustrates the scheduling process:

1. The CUCC prepares and writes any necessary TCB’s (chained if desired) and associated DAT’s to the appropriate DSP RAM bank(s). [For purposes of this illustration, we will assume that the CUCC has wrested control of the necessary RAM banks and written the required TCB’s and associated tables directly to them; in practice, a little bootstrap series of tasks managed through the dual-port RAM will normally be required to allocate the necessary memory and set up the proper tables and memory areas in the relevant RAM banks.]

2. The CUCC writes the head TCB address (may be indirect) to byte addresses 0x3f8-0x3fb of the dual port RAM.

3. The CUCC writes the value ‘0x1’ to dual-port RAM location 0x3FF, which interrupts the processing DSP, causing the DSP scheduler to read the head TCB address. The scheduler then adds the tasks in the TCB chain to its scheduling queue, saving the individual TCB addresses as pointers. The tasks will be executed by the scheduler according to their scheduling parameters and priority.

4. The CUCC may remove a single task from the scheduling queue by writing the value ‘0x6’ to dual-port RAM location 0x3FF, with the TCB address in byte addresses 0x3f8-0x3fb. Other options allow removal of TCB chains and father/daughter task sets, with or without immediate termination.

Initiating a Task from the DSP

Within DSP application software, the DSP tasks defined in this memo can be scheduled only by an already-executing DSP task (father task). This is done in a way almost identical to scheduling from the CUCC:

1. The father task allocates necessary memory spaces, then prepares and writes any necessary TCB’s and DAT’s to the appropriate DSP RAM bank(s).

2. The father task issues a ‘schedule’ request to the scheduler, passing the head TCB address of the daughter task chain.

3. The scheduler saves the TCB addresses as pointers to the daughter tasks. The daughter tasks will be executed by the scheduler according to their scheduling parameters and priority.

4. The father task may remove daughter tasks from the scheduler queue by issuing an appropriate ‘unschedule’ request to the scheduler.

Note that in this case the father task is responsible for DSP memory management.

Task Status Management

The CUCC request status by by writing to dual port RAM location 3ff. Status is returned on an invidual task basis or on the entire task chain itself. The address of the TCB is placed in dual port RAM location 3f8-3fb, with location 3f0-3f3 holding the pointer to the start address in memory where task status is to be recorded. The record format is as follows:

Word
Bits
Name
Explanation

0
23-0
TCB DATA AREA
Task identifier pointing to start of Task Dependant parameters

1
3-0
TASK STATE
Ready = 0

Done = 1

In Progress = 2

Suspended = 3

Running = 4

2
3-0
TASK ACTIVE
Task Off Queue = 0

Task Available For Dispatch = 1

3
31-0
CURRENT INTERVAL
Current scheduling interval

4
31-0
NEXT INTERVAL
Next scheduling interval task is due to complete by.

5
23-0
TCB LINK
Forward pointer to next TCB in chain

This record format is repeated in memory when status for a task chain is requested. When daughter task status is requested, all daughters spawned by tasks running on the DSP’s are returned.

Error Handling

On the detection of an error by a DSP task, the processing-DSP scheduler writes a message into dual-port RAM byte address 3f4-3f7 then writes a ‘1’ to address 3fe, which generates a VME interrupt to the CUCC. Error message values and their definition appear in the appendix of this document.

Memory Addresses

All memory addresses in a Task Control Block, and in references to a Task Control Block, are written in a 24-bit format, as follows:

I
MEM_ID
ADDRESS

23
16
15
8
7
0

where

Bits
Name
Explanation

23
I
indicates the associate memory address is indirect. The number of levels of indirect addressing is arbitrary

22-20
MemID
specifies the particular memory bank with which the address is associated, as follows:

1 - dual-port RAM (processing DSP)

2 - global RAM (processing DSP)

3 - local A RAM (processing DSP)

4 - local B RAM (processing DSP)

5 - I/O DSP RAM

6 - correlator chips on I/O Local Bus

7 - correlator chips on I/O Global Bus

19-0
Address
word (4 byte words) address within memory

DSP Memory Management

Generally, each DSP will have some free memory space beyond its code space which is available to the user for data areas, TCB’s, DAT’s, etc. This memory space may be managed, at the users option, either by CUCC or the DSP’s, or some combination of both. The DSP_mem_alloc routine is provided as a tool to give the CUCC the information needed to manage memory itself , or to provide dynamic allocation by the DSP on demand.

Task Control Block

Task-Independent Parameters

The first 4 words of the TCB are task-independent, as follows:

PERIOD
PRIORITY
CNWD

TASK CYCLE OFF
TASK CYCLE ON

MAX_EXEC
OFFSET

NBOCF
I
MEM_ID
FATHER_ADDR

I
MEM_ID
TCB_LINK_ADDR

31
24
23
16
15
8
7
0

Table 1: TCB Task-Independent Parameters
where

Word
Bits
Name
Explanation

0
7-0
CNWD
Specifies routine to be executed

0 - not used

1 - DSP_lag_data_read

2 - DSP_static_data_r/w

3 - DSP_dynamic_data_r/w

4 - DSP_crossbar_write

5 - DSP_set_global_mode

6 - DSP_mem_to_mem

7 - DSP_mem_alloc

15-8
PRIORITY
Task priority (1=highest, 255=lowest)

31-16
PERIOD
Task dispatch interval (#NBOCF periods)

1
15-0
TASK CYCLE ON
Used in conjunction with Task Cycle Off (>0)

Task Cycle On is the number of NBOCF events that the task is available for dispatch.

NOTE: Task Cycle On and Task Cycle Off define duty cycle, with Task Cycle the first phase of cycle

31-16
TASK CYCLE OFF
Used in conjunction with Task Cycle On

Task Cycle Off is the number of NBOCF events that the task is not available for dispatch

2
15-0
OFFSET
Initial dispatch offset (#NBOCF periods)

31-16
MAX_EXEC
Maximum allowed execution time (#NBOCF periods). Error will be created if execution not completed within this time from dispatch.
(=0 if don’t care)

3
31-24
NBOCF
#BOCF periods used as unit for PERIOD, OFFSET and MAX_EXEC

23-0
FATHER_ADDR
Father TCB address (=0 if none)

4
23-0
TCB_LINK_ADDR
Link address to next TCB address (=0 if end)

Table 2: Explanation of task-independent TCB parameters

Special cases:

1. PERIOD=0, OFFSET=0, MAX_EXEC=0: immediate schedule.

2. OFFSET=1: schedule on next BOCF.

3. Value of zero in FATHER_ADDR or TCB_LINK_ADDR indicate none exists.

Task-Dependent Parameters of TCB

The task-dependent parameters of the Task Control Block immediately follow the 4 task-dependent words defined above. The first word of task-dependent parameters always contains the following information:
1. FLAGS - 8-bit field instructing DSP to interrupt VME-bus under certain conditions:

Bit 0: interrupt VME on completion

Bit 1: interrupt VME on error

2. MODE - an 8-bit flag field which specifies the action to be taken with respect to this task. Meaning of bits differs from task to task.

3. TASK FIELD – a 16-bit field managed by the task to provide application specific communications with other tasks and/or the CUCC. [The underline indicates this field is managed by the task and/or DSP scheduler.]

Task Definitions
DSP_lag_data_read

The DSP_lag_data_read task reads lag and header-capture data from a set of specified correlator chips and places the data into (up to) three separate memory arrays with the data ordering within the arrays specified by the DAT. A separate array may be specified for ‘right-cell’ lag data, ‘left-cell’ lag data, and header-capture data [however, more complex structures lead to more complex chained DMA tables, which in turn are slower].

TASK FIELD
MODE
FLAGS

I
MEM_ID
 DAT_ADDR

I
MEM_ID
SRC_DMA_ADDR

I
MEM_ID
DST_DMA_ADDR

RIGHT_INC
I
MEM_ID
RIGHT_ADDR

LEFT_INC
I
MEM_ID
LEFT_ADDR

HEAD_INC
I
MEM_ID
HEAD_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 3: TCB for DSP_lag_data_read
where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
Bit 9: make DMA table only

Bit 10: do data transfer (DMA table will be
made, if necessary)

Bit 12: discard global validity counts

31-16
TASK FIELD
Not Used

5
23-0
DAT_ADDR
DAT address

6
23-0
SRC_DMA_ADDR
Source Address at which DMA table exists or is to be generated

7
23-0
DST_DMA_ADDR
Address at which destination DMA table exists or is to be generated

8
31-24
RIGHT_INC
Address increment between adjacent bins in ‘right-cell’ array

23-0
RIGHT_ADDR
Base address of ‘right-cell’ array

9
31-24
LEFT_INC
Address increment between adjacent bins in ‘left-cell’ array

23-0
LEFT_ADDR
Base address of ‘left-cell’ array

10
31-24
HEAD_INC
Address increment between adjacent bins in ‘header’ array

23-0
HEAD_ADDR
Base address of ‘header’ array

11
31-0
CHIPMASK
Mask indicating correlator chips to be read, corresponding to chips 31-0, respectively

Table 4: Explanation for DSP_lag_data_read TCB

The DMA Access Table specifies how the correlator data is to be distributed in memory. All lag and header-capture data from each chip specified in CHIPMASK must be fully read, in the order enforced by the chip; in particular, blocks are read in order B2,B3,A0,A1,A2,B1,B0,A3, corresponding to logical blocks 0-7, respectively. Each block is read, in order, 33 words (32 bit) of ‘right-cell’ data (including 1 word of ‘global validity count’), followed by 33 words of ‘left-cell’ data (again including 1 word of ‘global validity count’), followed by 10 words of header-capture data. The TCB specifies three independent destination-array base addresses, one for each of these three data types. The DAT specifies the destination-array ‘bin#’ for each data type within each block, where the address increment between bins is specified in the TCB. The DAT contains 3 bytes for each block of each correlator chip, specifying the destination-array bin# for each of the three data types:

DAT[source index] = destination-array bin#

where

source index = chip#*24 + block#*3 + cell#

chip# -
logical chip number (0-31, in order of increasing VME or DSP address)

block# -
logical block number in chip (0-7, in order B2,B3,A0,A1,A2,B1,B0,A3)

cell# -
0-right cell; 1- left cell; 2-header

destination-array bin# -
0-255

The DAT is always 768 entries (bytes) long. Only those entries corresponding to chips specified by the CHIPMASK are actually used in generating the chained-DMA table. If the ‘discard global validity count’ bit is set in the TCB, these values (which are the ‘33rd’ word of the left and right cell data) are directed to ‘bit-bucket’ memory. Note that a similar, but somewhat different, effect can be achieved by keeping the global validity count and setting the RIGHT_INC and LEFT_INC values to 32 (assuming two separate arrays); in this case, the global validity of each cell will be overwritten by the first lag of the next.

Note that the structure of the TCB allows arbitrary spacing bins within destination arrays. This allows additional space for bookkeeping or auxiliary information as necessary. Figure 3 shows a sample use the DSP_lag_data_read task, illustrating the DAT setup and result data organization in memory.

It should also be noted that sending correlator data to I/O RAM is somewhat slower than sending it directly to processing-DSP RAM due to the fact that the correlator chips share the same I/O-DSP busses as the I/O RAM and I/O ROM.

DSP_static_data_r/w

The DSP_static_data_r/w task transfers ‘static parameter’ data from memory to the correlator chips and vice versa. This data is always read/written to the correlator chips in logical chip order (0-31) and in logical block order (0-7) to each chip. The Static Parameter Table (SPT) is always organized in this fashion, so there is no need for a DAT for this operation. The SPT is always 256 words long. Only chips specified in the chipmask will actually be written. Table 5: TCB for DSP_static_data_r/w defines the TCB for this task.

TASK FIELD
MODE
FLAGS

I
MEM_ID
SPT_ADDR

I
MEM_ID
DMA_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 5: TCB for DSP_static_data_r/w
where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
Bit 8: 0 - read; 1 - write;

Bit 10: do data transfer;

Bit 11: do not use DMA

31-16
TASK FIELD
Same as DSP_lag_data_read

5
23-0
SPT_ADDR
Static Parameter Table address

6
23-0
DMA_ADDR
DMA table address

7
31-0
CHIPMASK
Mask indicating correlator chips to be accessed, corresponding to chips 31-0, respectively

Table 6: Explanation for DSP_static_data_r/w TCB

DSP_dynamic_data_r/w

The DSP_dynamic_data_r/w task reads and writes dynamic parameters and reads residues to/from memory. Normally, dynamic parameters will be written and residues will be read, the difference being only in the relative timing of BOCF. [In particular, if a BOCF intervenes between a write of dynamic parameters and a subsequent read, the residues from the previous correlator frame will be read. If there is no intervening BOCF, the just-written dynamic parameters will be read back.] Because the block order of this operation within a chip is different from 0-7, a chained DMA table will be created to re-order the data transfer so that the order of the data in the Dynamic Parameter Table (DPT) and Dynamic Parameter Residue Table (DPRT) is the same as the Static Parameter Table.

TASK FIELD
MODE
FLAGS

I
MEM_ID
DPT_ADDR

I
MEM_ID
DMA_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 7: TCB for DSP_dynamic_data_r/w
where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
Bit 8: 0 - read; 1 - write;

Bit 10: do data transfer

Bit 11: do not use DMA

31-16
TASK FIELD
Same as DSP_lag_data_read

5
23-0
DPT_ADDR
Static Parameter Table address

6
23-0
DMA_ADDR
DMA table address

7
31-0
CHIPMASK
Mask indicating correlator chips to be accessed, corresponding to chips 31-0, respectively

Table 8: Explanation for DSP_dynamic_data_r/w
DSP_crossbar_write

The DSP_crossbar_write task is used to transfer setup data to the (up to) 10 crossbar chips on each correlator board. The Cross Point Table (CPT) holds 16 words (64 bytes) for each of the crossbar chips, in logical order from chip 0 to chip 9. Only chips specified in the chipmask will actually be written. Table 9 defines the TCB for this task.

TASK FIELD
MODE
FLAGS

I
MEM_ID
CPT_ADDR

I
MEM_ID
DMA_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 9: TCB for DSP_crossbar_write
where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
Bit 10: do data transfer

Bit 11: do not use DMA

31-16
TASK FIELD
Same as DSP_lag_data_read

5
23-0
SPT_ADDR
Cross Point Table address

6
23-0
DMA_ADDR
DMA table address

7
9-0
CHIPMASK
Mask indicating crossbar chips to be written, corresponding to chips 9-0, respectively

Table 10: Explanation for DSP_crossbar_write TCB

Note: The ‘DSP_crossbar_write task can be executed only on the processing DSP.

DSP_set_global_mode

The DSP_set_global_mode task sets correlator board global parameters. The TCB is defined in Table 11.

TASK FIELD
MODE
FLAGS

ACCUM
SHSMP1
SHSMP0
CBMODE

31
24
23
16
15
8
7
0

Table 11: TCB for DSP_set_global_mode
where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
Not used

31-16
TASK FIELD
Same as DSP_lag_data_read

5
7-0
CBMODE

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bits 1-0
Unused

Unused

Validity mode:

0 - per-sample validity inactive

1 - per-sample validity active

Chip test mode:

0 - correlator chips in normal mode

1 - correlator chips in self-test mode

Control Signals:

0 - use internally generated signals

1 - use backplane SHSMP, ACCUM,

TRDATA, CLEAR signals

Accumulation mode:

0 - Accumulate disable during BOCF

1 - Accumulate enabled during BOCF

Data mode:

0 - normal

1 - data injection

2 - data capture

3 - self-diagnostic

11-8
SHSMP0
Shift-sample divide ratio during BOCF inactive

0 - divide by 2;

1 - divide by 4;

2 - divide by 8

3 - divide by 16

4 - always active

8 - always inactive

15-12
SHSMP1
Shift-sample divide ratio during BOCF active:
same values as SHSMP0

19-16
ACCUM
Accumulation divide ratio:
same values as SHSMP0

Table 12: Explanation for DSP_set_global_mode TCB

DSP_mem_to_mem

The DSP_mem_to_mem task allows data to be moved via DMA transfer between any two memory banks, or between a memory band and the external com port on the processing DSP. The TCB is structured to allow a repeating pattern of transfers to be specified. The TCB for this task is specified in Table 13.

TASK FIELD
MODE
FLAGS

I
MEM_ID
SORC_DMA_ADDR

I
MEM_ID
DEST_DMA_ADDR

SORC_ADDR_IDX
I
MEM_ID
SORC_ADDR

DEST_ADDR_IDX
I
MEM_ID
DEST_ADDR

REPEAT
NWORDS

SORC_ADDR_INC
DEST_ADDR_INC

31
24
23
16
15
8
7
0

Table 13: TCB for DSP_mem_to_mem
Where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
Bit 9: make new DMA table

Bit 10: do data transfer

31-16
TASK FIELD
Same as DSP_lag_data_read

5
23-0
SORC_DMA_ADDR
Source DMA table address

6
23-0
DEST_DMA_ADDR
Destination DMA table address

7
23-0
SORC_ADDR
Source start address

31-24
SORC_ADDR_IDX
Source address increment after each word transferred (2’s complement indicates negative)

8
23-0
DEST_ADDR
Destination start address

31-24
DEST_ADDR_IDX
Destination address increment after each word transferred (2’s complement indicates negative)

9
31-16
REPEAT
#times process is to repeat before ending

(value of 0 or 1 executes once, value of 2 executes twice, etc)

15-0
NWORDS
#words to be transferred

10
31-24
SORC_ADDR_INC
Source start address increment on repeat

15-0
DEST_ADDR_INC
Destination start address increment on repeat

Table 14: Explanation for DSP_mem_to_mem TCB

For data transfers to the external comm port, DEST_ADDR, DEST_ADDR_IDX, and DEST_ADDR_INC are ignored. For data transfers from the external comm port, SORC_ADDR, SORC_ADDR_IDX, and SORC_ADDR_INC are ignored.

Notes:

1. Data transfers always use DMA.

2. SORC_DMA_ADDR and DEST_DMA_ADDR are different only if the source and destination memories reside on different DSP’s.

3. All address fields must be filled in unconditionally.

DSP_dpram_copy

The DSP_dpram_copy routine moves data to or from byte-wide dual port RAM and any processing DSP memory. Its intent is to complement DSP_mem_to_mem which uses the DMA engine to transfer data under the assumption that memory is 32 bits wide. Unlike DSP_mem_to_mem, DSP_dpram_copy uses the CPU engine to carryout the data transfer.

ERROR
STATUS
MODE
FLAGS

I
MEM_ID
 SOURCE ADDRESS

I
MEM_ID
DESTINATION ADDRESS

TRANFER COUNT

31
24
23
16
15
8
7
0

Table 15: TCB for DSP_dpram_copy
where

Word
Bits
Name
Explanation

4
7-0
FLAGS
Used to interrupt CUCC when task complete

15-8
MODE
Not Used

23-16
STATUS
Same as DSP_lag_data_read

31-23
ERROR
Completion error code

5
22-20
MemID
Target memory bank
(see section on Memory Addresses)

19-0
SOURCE ADDRESS
Address of source for data transfer,

increment by one after each transfer

6
22-20
MemID
Target memory bank
(see section on Memory Addresses)

19-0
DESTINATION ADDRESS
Address of destination for data transfer, increment by one after each transfer

7
15-0
TRANSFER COUNT
The number of words to be transfered

Table 16: Explanation for DSP_dpram_copy

DSP_mem_alloc

The DSP_mem_alloc routine requests the dynamic allocation or de-allocation of a block of DSP memory. Normally, this memory will subsequently be used for data space, or the construction of TCB’s, DAT’s, etc. The DSP_mem_alloc routine may also be used to de-allocate dynamically-allocated memory and query the status of available memory. All return of necessary addresses and/or block sizes is through the TCB associated with the DSP_mem_alloc request.

A memory fence may be set in each memory bank which marks the boundary between DSP-managed memory and CUCC-managed memory. The address space below the fence, and not being used for other purposes by the DSP, is available for dynamic DSP allocation. The address space starting at the fence address and above is available for management by the CUCC [except for the dual-port RAM, which is normally outside of DSP management].

ERROR
STATUS
MODE
FLAGS

NWORDS

I
MEM_ID
ADDRESS

31
24
23
16
15
8
7
0

Table 17: TCB for DSP_mem_alloc
where

Word
Bits
Name
Explanation

4
7-0
FLAGS

15-8
MODE
1 - allocate NWORDS of memory
2 - return specified memory block to free pool

23-16
STATUS
Same as DSP_lag_data_read

31-23
ERROR
Completion error code

5
22-20
MemID
Target memory bank
(see section on Memory Addresses)

19-0
NWORDS
MODE=1: Block size to be alloc/de-alloc
MODE=2: returned block size available

Block size in number of 32-bit words

6
22-0
ADDRESS
MODE=1: returned address of allocated blk MODE=2: returned address of available blk

Table 18: Explanation for DSP_mem_alloc

APPENDIX

Error Message Definitions (Subject to Change)

/* add 0x8000000 for IO reported errrors */

/* general memory error summary */

#define MEMORY_ERROR 0x10000000 /* EXTERNAL MEMORY ERROR */

#define MALLOC_COMM_DATA 0x10000000 /* CANNOT MALLOC COMM DATA AREA */

#define MALLOC_NEWTCB
0x10000001 /* CANNOT MALLOC NEW TCB ADDRESS */

#define MALLOC_LINKPTR0
0x10000002 /* CANNOT MALLOC LINK POINTER ADDRESS */

#define MALLOC_STACK 0x10000003 /* CANNOT MALLOC STACK SPACE */

#define MALLOC_SP_WRITE 0x10000004 /* CANNT MALLOC STATIC PARAM WRITE TABLE */

#define MALLOC_SP_READ 0x10000005 /* CANNOT MALLOC STATIC PARAM READ TABLE */

#define MALLOC_DP_WRITE 0x10000006 /* CANNOT MALLOC STATIC PARM WRITE TABLE */

#define MALLOC_DP_READ 0x10000007 /* CANNOT MALLOC STATIC PARAM READ TABLE */

#define MEMALLOC_IO 0x10000008 /* DSP MEMORY MALLOC FAILED */

#define MEMALLOC_PR 0x10000009 /* DSP MEMORY MALLOC FAILED */

#define MALLOC_DAT_LAG 0x1000000A /* CANNOT MALLOC DAT and PARAM SPACE */

#define MALLOC_MEM_BLOCK 0x1000000B /* CANNOT MALLOC MEMORY BLOCK */

#define MALLOC_TASK_ARRAY 0x1000000C /* Can't malloc space for task array */

#define MALLOC_TASKDP 0x1000000D /* Can't malloc task depndnt params */

#define MALLOC_NEXT_LINK 0x1000000E /* Can't malloc space for next link */

#define MALLOC_DMA_PTR 0x1000000F /* Can't malloc space for DMA pointer */

 /* general communications error summary */

#define SEND_DATA_TIME 0x21000001 /* COMM PORT TIMED OUT SENDING DATA */

#define SEND_CMND_TIME 0x21000002 /* COMM PORT TIMED OUT SENDING COMMAND */

#define NO_TERMINATOR 0x21000003 /* NO TERMINATOR END OF COM PORT TRANSFER */

#define RECV_CMND_OUT_SEQ 0x21000004 /* COMMAND RECEIVED OUT OF SEQUENCE */

#define RECV_DATA_TIME 0x21000005 /* TIMED OUT WAITING FOR DATA */

#define DMA_BUSY_CH0 0x21000006 /* DMA TRANSFER REQUEST DURING CH0 DMA */

#define DMA_BUSY_CH1 0x21000007 /* DMA TRANSFER REQUEST DURING CH1 DMA */

#define DMA_BUSY_CH2 0x21000008 /* DMA TRANSFER REQUEST DURING CH2 DMA */

#define DMA_BUSY_CH3 0x21000009 /* DMA TRANSFER REQUEST DURING CH3 DMA */

#define DMA_BUSY_CH4 0x2100000A /* DMA TRANSFER REQUEST DURING CH4 DMA */

#define DMA_BUSY_CH5 0x2100000B /* DMA TRANSFER REQUEST DURING CH5 DMA */

#define DMA_TIMEOUT 0x2100000C /* TIMED OUT WAITING FOR DMA TO COMPLETE */

#define COMM_FLAGS_BAD 0x2100000E /* INCORRECT SEQUENCE OF FLAG VALUES */

#define DMA_CH0_INT 0x2300000F /* UNEXPECTED DMA CH0 INTERRUPT */

#define DMA_CH1_INT 0x23000010 /* UNEXPECTED DMA CH1 INTERRUPT */

#define DMA_CH2_INT 0x23000011 /* UNEXPECTED DMA CH2 INTERRUPT */

#define DMA_CH3_INT 0x23000012 /* UNEXPECTED DMA CH3 INTERRUPT */

#define DMA_CH4_INT 0x23000013 /* UNEXPECTED DMA CH4 INTERRUPT */

#define DMA_CH5_INT 0x23000014 /* UNEXPECTED DMA CH5 INTERRUPT */

#define TIMER_0_INT 0x23000015 /* UNEXPECTED TIMER 0 INTERRUPT */

#define COMM_0_INT 0x23000016 /* UNEXPECTED COMM PORT 0 INTERRUPT */

#define COMM_1_INT 0x23000017 /* UNEXPECTED COMM PORT 1 INTERRUPT */

#define COMM_2_INT 0x23000018 /* UNEXPECTED COMM PORT 2 INTERRUPT */

#define COMM_3_INT 0x23000019 /* UNEXPECTED COMM PORT 3 INTERRUPT */

#define COMM_4_INT 0x2300001A /* UNEXPECTED COMM PORT 4 INTERRUPT */

#define COMM_5_INT 0x2300001B /* UNEXPECTED COMM PORT 5 INTERRUPT */

#define DMA_PRECEDENCE 0x2300001C /* DMA Test compelete in unexpected order */

#define DMA_0_SLOW 0x2300001D /* PREVIOUS CYCLE DMA0 NOT COMPLETE IN TIME */

#define DMA_1_SLOW 0x2300001E /* PREVIOUS CYCLE DMA1 NOT COMPLETE IN TIME */

#define DMA_2_SLOW 0x2300001F /* PREVIOUS CYCLE DMA2 NOT COMPLETE IN TIME */

#define DMA_3_SLOW 0x23000020 /* PREVIOUS CYCLE DMA3 NOT COMPLETE IN TIME */

#define DMA_4_SLOW 0x23000021 /* PREVIOUS CYCLE DMA4 NOT COMPLETE IN TIME*/

#define DMA_5_SLOW 0x23000022 /* PREVIOUS CYCLE DMA5NOT COMPLETE IN TIME */

 /* general task error summary */

#define LATE_TASK
 0x31000000 /* TASK NOT COMPLETE BY SCHEDULED INTERVAL

 + taskSymbolicAddress */

#define LINK_NOT_FOUND 0x32000000 /* UNABLE TO FIND TASK ENTRY IN SCHEDULER

 LIST */

#define STACK_TOO_BIG 0x33000000 /* A tasks stack context is too large */

 /* general asic error summary */

#define STATIC_RW 0x41000000 /* Extends from CHIP1 to CHIP32 */

#define DYNAMIC_RW 0x42000000 /* Extends from CHIP1 to CHIP32 */

 /* general processor error summary */

#define BYE_BYE 0x51000000 /* UNEXPECTED HALT OF SOFTWARE EXECUTION */

#define UNEXP_IIOF0 0x52000000 /* UNEXPECTED I/O IIOF0 INTERRUPT */

#define UNEXP_IIOF1 0x52000002 /* UNEXPECTED I/O IIOF1 INTERRUPT */

#define UNEXP_IIOF2 0x52000002 /* UNEXPECTED I/O IIOF2 INTERRUPT */

#define UNEXP_IIOF3 0x52000003 /* UNEXPECTED I/O IIOF3 INTERRUPT */

 /* general messages for cucc */

#define DIAG_COMPLETE 0x60000000 /* Diagnostic test is complete */

PAGE
11
TCB.doc

