	MASSACHUSETTS INSTITUTE OF TECHNOLOGY	

				HAYSTACK OBSERVATORY

			 WESTFORD, MASSACHUSETTS 01886															

					�date \@ "d MMMM, yyyy"�1 May, 1996�			Telephone: 508-692-4764	

								 	 Fax: 617-981-0590

To:	Mark 4 Development Group

From: 	Joel Goodman

Re:	Adding Application Specific Software Routine’s to Core DSP Software

Related Documents

[1] "Definition and Management of Low Level Correlator Board DSP Routines", A. R. Whitney, J. I. Goodman, 4-29-1996

INTRODUCTION

This document outlines in detail the mechanism for adding and scheduling tasks that are not part of the suite of DSP software Haystack is developing. A task is a software routine with a thread to a dispatcher that schedules it for execution. The concepts conveyed in this document are intended to give a detailed overview of how a multi-threaded and multi-tasking scheduler operates on the correlator board.

The scheduling mechanism detailed here was originally suggested and outlined by Roger Capallo of Haystack Observatory.

DISCUSSION

The correlator board has a kernel of DSP software that provides services partially outlined in [1]. A real time scheduler is being added to the DSP’s kernel so that new tasks are added by passing the scheduler a set of parameters that give the symbolic address of a routine, the interval of events over which the task will execute, its priority of execution, the tasks target DSP, whether the task is being added or removed, and its offset from the start of task scheduling when it is ready for dispatch. These parameters passed over the VME bus by the CUCC are used by the on board DSP’s to create a scheduling table for task execution.

Two events initiate action by the scheduler; One is at system powerup when tasks are scheduled and execute only once. The second event is the falling edge BOCF interrupt. Tasks are scheduled across an integer multiple number of BOCF intervals ranging from 1 (on every interrupt) to 0xFFFF hexadecimal.

Care given in the process of assigning a task memory will prevent the kernel from being inadvertently overwritten.

Passing the Scheduler Task Parameters

The Correlator Unit Crate Controller (CUCC) passes the scheduler the address of a Task Control Block (TCB) in Correlator Board RAM. The TCB [1] contains the following scheduling parameters :

(Whether the task is being added or removed from the execution queue

(The interval (number of BOCF’s) over which a task periodically executes. This sets the interval for the scheduler to dispatch the task.

(The maximum execute interval for a task to complete. If this number is used in conjunction with the task period (above) it can effectively set the "duty cycle" of the task.

(A priority attribute that assigns precedence to tasks that have an identical anniversary interval.

(An offset from the first event (BOCF) for a task to be queued for periodic execution by the scheduler.

A TCB address is passed via a predefined location in the correlator boards dual port RAM. The exact mechanics of the interface are presented in [1].

Although there is great flexibility in exercising this interface, I will present my notion of how the CUCC presents tasks to the scheduler on the Correlator Board. Tasks and the kernel of DSP software are downloaded across the VME bus into the Processing DSP’s global memory. The kernel and the tasks are compiled and linked in such a fashion that their target processing area is within the range of available address space in global RAM on the board. If the target is the IO DSP, compilation and linking must target the address space of global RAM as there is no local RAM (only EPROM) on the IO DSP.

The DSP is reset by the CUCC and kernel execution starts. Parameters are placed in dual port RAM and the CUCC informs the scheduler of new tasks in a serial or linked list fashion [1]. Because the Processing DSP’s scheduler is the connection to the outside world (via the CUCC), any tasks targeted at the IO DSP’s scheduler is relayed by the Processing DSP.

Scheduler Operation

As an example of scheduler operation, the tables below illustrate the state of execution of four tasks; Task A, Task B, Task C, Task D . The CUCC passes the correlator board the following information; where in Processing DSP memory the task resides, the target processor (in this example all tasks are targeted for execution on the Processing DSP), the interval over which it will execute and a starting offset from the first event and a priority of execution. Task A is scheduled to execute at event 0 (initialization), with 0 offset from the first event and priority of 4. Task B is scheduled to execute on every event (1), with an offset of two from the first event and a priority of 2. Task C is scheduled to execute every 4 events, with an offset of two from the first event and a priority of 3. And Task D is scheduled to execute every 3 events, with an offset of two from the first event and priority of 1. In this case task period and maximum execute interval are identical. A scheduling table is constructed by the DSP software as follows;

TASK�EXEC INTRVL�PRI-OR�OFFSET�CURRNT INTRVL�NEXT INTRVL�START

INTRVL�STATE��A�0�4�0�0�0�0�READY��B�1�2�2�0�3�2�OFF QUEUE��C�4�3�2�0�6�2�OFF QUEUE��D�3�1�2�0�5�2�OFF QUEUE��

The current interval keeps track of occurrence of events (BOCF’s). Next interval defines the interval for the task to complete. Start interval is the offset from the first event to its being placed in the scheduler execution queue The state defines the current status of a particular task. Priority assigns precedence to tasks due to complete on the same interval. On the first event the task table is updated as follows;

TASK�EXEC INTRVL�PRI-OR�OFFSET�CURRNT INTRVL�NEXT INTRVL�START

INTRVL�STATE��A�-�-�-�-�-�-�OFF QUEUE��B�1�2�2�1�3�2�OFF QUEUE��C�4�3�2�1�6�2�OFF QUEUE��D�3�1�2�1�5�2�OFF QUEUE��

Task A executed at initialization is taken off the queue by the scheduler. Task’s B,C and D are off queue until the current interval is equal to the start interval. On the next event,

the task table is updated as follows;

TASK�EXEC INTRVL�PRI-OR�OFFSET�CURRNT INTRVL�NEXT INTRVL�START

INTRVL�STATE��A�-�-�-�-�-�-�OFF QUEUE��B�1�2�2�2�3�2�DONE��C�4�3�2�2�6�2�READY��D�3�1�2�2�5�2�IN PROGRESS��

Because Task B must complete in this interval, it was executed first and is now done. Task B’s state will change to ready when the current interval is incremented. Task D has the closest anniversary interval and is now in progress. Task C has not yet been scheduled to execute. After two events the task table is updated as follows;

TASK�EXEC INTRVL�PRI-OR�OFFSET�CURRNT INTRVL�NEXT INTRVL�START

INTRVL�STATE��A�-�-�-�-�-�-�OFF QUEUE��B�1�2�2�4�5�2�DONE (2nd)��C�4�3�2�4�6�2�IN PROGRESS��D�3�1�2�4�5�2�DONE (1st)��

Both Task B and D complete in this interval. Because both tasks share the same interval that they must complete in, the scheduler relies on the priority entry and assigns Task D to execute first. Task D will not be scheduled for execution until current interval reaches 5. Task C is now in progress and must complete before the 6th interval occurs. Skipping ahead to the 6th interval, here is how the state of the scheduler table might look;

TASK�EXEC INTRVL�PRI-OR�OFFSET�CURRNT INTRVL�NEXT INTRVL�START

INTRVL�STATE��A�-�-�-�-�-�-�OFF QUEUE��B�1�2�2�6�7�2�DONE (1st)��C�4�3�2�6�10�2�DONE (2nd)��D�3�1�2�6�8�2�IN PROGRESS��

During the course of execution it is possible that a task the software has scheduled will not complete in its allocated interval. The scheduling software will treat this case as an error, and will remove the slothful task from the queue The CUCC is passed a message indicating that this error condition exists and operation will proceed as scheduled. This error handling process provides some degree of fault tolerance by removing a task that cannot complete its duties in the time allocated, and not interrupting other tasks from proceeding to execute.

Tasks Scheduling Other Tasks

It is possible for a parent task to ‘kick off’ a child task whose attributes and location have been set by the CUCC. The parent task prepares and writes a TCB in the same fashion as the CUCC (described in [1]). The parent task may then at some arbitrary time pass the scheduler a TCB address that then in turn puts the child task into the queue for execution. The parent task calls the DSP kernel routine

 	(int) childTask(unsigned int onQue, unsigned int tcbAddress);

that wakes the scheduler up to take action on a TCB in an identical fashion as it would if the CUCC was passing the TCB. Note that value onQue has the same interpretation as the parameters passed in Dual Port RAM location 0x3FF defined in [1]. The function returns a 1 if successful, or -1 if an error has occurred.

Controlling a Tasks Duty Cycle

Two task parameters specified by the CUCC are task period and task max execute interval. Task period specifies the number of intervals to wait before the scheduler is required to dispatch a task. Maximum execute interval specifies the number of intervals the task has to complete its duties. If these two parameters are different, then it is possible to control the effective "duty cycle" of a tasks execution. As an example, the following routines A,B,and C are all dispatched as tasks with a period of 3 and maximum execute interval of 1. The only difference is that their offset from start is 0, 1 and 2 respectively. The tasks execute at times shown below:

�����

�

�

���������������������

�

Notice that Task A, B and C are interleaved with one another. Many other duty cycles are possible by adjusting the task period and maximum execution interval.

External Observation of Scheduler and Task States

To observe a task's state during operation, the DSP software will upon request use dual port RAM on board to pass the current interval, next interval and state of a particular task to the CUCC. On each event these parameters are updated and written to prescribed dual port RAM memory locations. The exact mechanics of this interface is described in [1].

Only one tasks state during operation may be observed at any given time. This is due to the fact that if there are numerous tasks, software overhead for maintaining this observation is cumbersome. In practical terms, updating dual port RAM with task state data will run as the lowest priority task.

Inter-task Communication

Tasks compiled and linked with the kernel are free to communicate with one another. The form this communication takes is style dependent, as the compiler is responsible for allocating memory and passing data parameters from task to task.

Dual port RAM has on reserve approximately 1000 locations for application specific use. The CUCC and tasks are aware of these locations and use them to pass parameters amongst themselves, or indirectly to the kernel or other tasks. The form of indirection from task to kernel or task to task is via dual port RAM. A task that wishes to pass parameters uses dual port RAM as a conduit for sending data on to other tasks. This implementation of passing parameters is best suited for using semaphores for tasks to communicate with one another. The unused locations in dual port RAM (as outlined in [1]) are not used in any way by the kernel.

SUMMARY

The real time scheduler provides an elegant mechanism for adding tasks to the kernel of existing DSP software. Priority is determined by the number of BOCF intervals over which a task executes. Tasks that are nearer to the interval when they must finish are assigned higher priorities than those tasks whose interval to complete is further away. If multiple task are due to complete on the same interval, the priority attribute is used to assign task execution precedence.

Tasks may communicate with one another if they are linked together with the kernel, or if they are linked separately by using reserved dual port RAM locations with semaphores. Because the scheduler is synchronized to occur on one periodic interrupt (BOCF), scheduling is deterministic. A task may kickoff the execution of a ‘child’ task whose scheduling parameters are assigned by the CUCC.

Observing a particular task cycle through its execution states provides external verification that a task is being scheduled and executed properly. Upon request by the CUCC, the scheduler provides the status of a particular task in dual port RAM on a real time basis.

BOCF

 B

 A

 C

 B

 A

TASK

