Related Documents

Introduction

This memo specifies additions and changes to the CUCC – DSP interface described in [1]. Changes in this interface include a change in the dual port memory definition. This change is required because in the Astron application DSP to CUCC VME interrupts are not allowed. This also requires a changes in the error handling routines.

Dual port RAM definition

Dual-Port RAM - a small (1 kB) RAM which is the only memory area simultaneously accessible for both read and write to both the DSP and the VME interface. The dual-port RAM is intended for high-level real-time control functions between the CUCC and the correlator board, and is also a pathway for moving small amounts of data between the CUCC and any of the correlator-board memory banks. Dual-port RAM has several special (byte) addresses reserved for special purposes:

0x000-0x3df:
1008-byte block reserved for CUCC-to-DSP messages and data. Only the CUCC may write to this area

0x3E0-0x3EF:
16 bytes (4 words) of message data. When the CUCC requests a message from the DSP, it is written to this location. The first word contains the message type and three remaining words are message dependant. If the processing DSP has no message to send to the CUCC it writes the no_message character (0x000000ff) to the first word.

0x3F0-0x3F7:
8 bytes (2 words) used when sending events to a specific task. The first word specifies the task id and the second word is the event. These locations are written by the CUCC prior to starting the command.

0x3F8-0x3FB:
4 bytes reserved for the address of a Task Control Block to be passed to the processing DSP when interrupted by the CUCC through location 0x3ff. It is expected that the addressed TCB is in dualport RAM. Only the CUCC may write to this area.

0x3FC:

unused byte

0x3FD:

application control word (switch bank A to B etc.)

0x3FE:

VME interrupt is not used in the Astron correlator DSP applications

0x3FF:

a CUCC write to this byte location causes an interrupt to the processing DSP. The value (interrupt type) written specifies the action to be taken by the DSP scheduler (tentative values):

0 - reserved

1 – startup task

2 – send event to task

3 - reserved

4 - reserved

5 - reserved

6 - reserved

7 – enable event counter

8 – event counter reset and disable

9 – request message from DSP

Others may be defined in the future

Note: After the processing DSP reads address 0x3ff as the result of an interrupt, it writes a transfer terminator character (0x0fe) back to address 0x3ff. The CUCC then has the option of reading address 0x3ff to verify that the processing DSP has acted on the interrupt.

CUCC commands

All CUCC commands to the DSP are handled in a similar way, except for the start up of a task.

The CUCC writes the command to dualport RAM location 0x3FF and interrupts the DSP. The DSP performs the command and signals the CUCC of completion by writing a transfer terminator character to (0xfe) back to address 0x3FF. So the CUCC only has to poll 0x3FF to signal completion.

Message reporting

The DSP internally maintains an message for messages to the CUCC. These message can include general messages and status messages but also error messages. The entire message (16 bytes) is copied to dualport RAM on request by CUCC.

Task Initiation from the CUCC

Task startup is performed in a slightly different way of the other commands. When the CUCC interrupts the DSP, the DPS will create and start the task and it will write a message to the message queue saying that it created a task with a specific task id. Then the DSP writes a transfer terminator character to (0xfe) to address 0x3FF to signal completion of the task creation. The CUCC can then request messages to see which task id is associated with the created task (if required) If CUCC has to wait for the completion of the started task, it must continue polling message until a task completed message is received from the started task (task id).

The following sequence of events is necessary for the CUCC to initiate the execution of a DSP task.

1. The CUCC prepares and writes any necessary TCB’s to the dualport memory

2. The CUCC writes the head TCB address to byte addresses 0x3f8-0x3fb of the dual port RAM.

3. The CUCC writes the value ‘0x1’ to dual-port RAM location 0x3FF, which interrupts the processing DSP.

4. The CUCC monitiors dual-port RAM location 0x3FF and waits for a transfer terminator character. (continue at step 9)

5. The DSP reads the head TCB address and create and start the specified task.

6. The DSP write a message to the message queue, identifying that a task is created and which task id is assigned to it.

7. The DSP writes a transfer terminator character to dual-port RAM location 0x3ff.

8. The DSP executes the started task, and when the task finishes a TASK_COMPLETED message is written in the message queue.

9. The CUCC writes the value ‘0x9’ to dual-port RAM location 0x3FF, which interrupts the processing DSP. (continue at 11)

10. The DSP reports the first message from the message queue to the CUCC. If there is no message in the queue, a NO_MESSAGE message is reported

11. The CUCC monitiors dual-port RAM location 0x3FF and waits for a transfer terminator character.

12. The CUCC checks the reported message and continues when a TASK_COMPLETED message is received. When a NO_MESSAGE message is received, it continues at step 9.

Task Control Block

Word 0
Mode(16) | priority (8) | command (8)

Word 1
char[4] task name

Word 2
NPAR – number of task parameters

Word 3 – Word 3+NPAR
task specific paramets

Message format

Word 0
Error (1) | reserved (7) | message code (24)

Word 1
task id of the task responsible for the message

Word 2
message dependant info

Word 3
message dependant info

Message codes

	Message ID
	Code
	word 2
	word 3
	description

	NO_MESSAGE
	0x000000fe
	x
	x
	no messages to report

	TASK_COMPLETED
	0x00000001
	x
	x
	This message is generated by a task when it completes.

	TASK_CREATED
	0x00000002
	Tid
	Name
	This message is generate by the RT-host communication handler to signal the host which task is created.

PAGE
1
RTinterface.doc

