[image: image3.png]JOINT INSTITUTE FOR VLBI IN EUROPE

-

Post Correlator Integrator
software specification

1 Table of contents

21
Table of contents

2
Introduction
3
2.1
Purpose of document
3
2.2
Related documents
3
2.3
Abbreviations
3
3
Software overview
4
4
Device driver layers
6
4.1
Monaco hardware/software abstraction layer
7
4.2
PEM C4x comm driver
7
4.3
PCI driver
7
4.4
Symbios SYM53C785 SCSI controller driver
8
4.5
General SCSI driver
9
4.5.1
SCSI controller
8
4.5.2
Table indirect addressing
9
4.5.3
Implementation
9
4.5.4
Commands
Error! Bookmark not defined.
5
Application framework
11
5.1
RT-DSP communication handler
11
5.1.1
Dual port RAM definition
11
5.1.2
CUCC commands
12
5.1.3
Task Control Block
13
5.1.4
Message format
13
5.1.5
Message codes
13
5.2
Correlator board interface
13
5.3
Tape control handler
13
6
PCInt applications
15
7
Monaco C67 DSP board
16
7.1
Initialize the EMIF
16
7.2
Monaco-specific memory mapping
16

2 Introduction

2.1 Purpose of document

This document describes the Post Correlator Integrator software. This is the software running on the Monaco DSP board. It describes the different abstraction levels of the software and some of the details of the implementation.

2.2 Related documents

· Post Correlator Integrator requirement specification - P.E.Kamphuis

· Monaco Quad ‘C6201 VME64 Board Technical Reference – doc nr. 500-00191 rev. 1.11 february 1999

· Monaco Quad ‘C6201 VME64 Board Solaris Programming Guide – doc nr. 500-00193 rev. 1.00 december 1998

· PEM-Comm-C4x C6x to COMM port interface PEM Module User Guide – doc nr. 500-00451 rev 1.00 december 1998

· Correlator Board Hardware Specification, rev. 2.0 J.Goodman 15-sep-1994

· SCSI875 PCI Module – User’s Manual, SciTech Inc, rev 990630

· SYM53C875 PCI-ultra SCSI I/O Processor – Data Manual, Symbios Logic, version 4.0

· PCI local bus specification, rev 2.0, PCI Special Interests Group

2.3 Abbreviations

3 Software overview

The post correlator integrator software is not one piece of software but a highly related set of software components performing a certain task. The different processing units running software can be seen in figure 1.

[image: image1.wmf]CCC

1x

RT system

1x

PCInt

board

2x

Correlator

board

8x

VME-backplane

4x

Correlator unit

LAN

Figure 1: correlator processing units

The general concept of the system can be described as; The CCC instructs the RT-system how the logical setup of the system is and what kind of processing is to be done and where it must be performed. The actual unit doing all the control effort in the system is the RT-system. The RT-system is aware of the physical boards present in the unit. This software instructs instructs all the processing nodes what to do. When the actual measurement is started, it controls the processing in the system and reads the processed data when required. The processing nodes on the correlator boards, perform the actual correlator chip interfacing and controlling. The processing nodes on the PCInt perform additional processing. The PCInt hardware is selected in such way that two output destination are possible, the RT-system and a SCSI storage device.

From the requirement specification of the PCInt, it can be seen that the CCC and must know of the existence of the PCInt in order to schedule processing on this board. Its software is beyond the scope of this document.

The RT-system software is also out of scope for this document but in chapter x, some requirements and interface aspects for the PCInt are given.

The software running on the correlator boards and PCInt boards performs the actual processing in the system. The correlator board DSP software is described in document [x].

The foundation of the PCInt software is depicted in figure x. At the bottom is the actual board hardware and on top is the actual software application. The levels in between are different levels of abstraction for the hardware. In general these abstraction layers are called device drivers, they make the hardware accessible by the application without knowing the details. This document describes details and concepts of these levels.

[image: image2.wmf]Monaco C67 DSP board

Monaco hardware/software abstraction layer

PCI driver

SYM53C875 SCSI controller driver

general SCSI driver

PEM C4x comm driver

PCInt Application

The requirements for the actual application are relative simple. First of all the software must interface with the RT-system. It must be able to receive data coming from the correlator boards. It must process this data as required. And finally it must either make the data available to the RT-system or write it to the attached storage device.

4 RT-system software

4.1 Description

The RT-system must be aware of the PCInt boards in the system and must know how to interface with these boards. The details of this software are beyond the scope of this document. Stated in this chapter is the functionality of the RT-system in respect to the PCInt boards.

4.2 Implemented

The RT-system automatically detects the presence of PCInt boards in the system. The mechanism used to do this is similar to other boards in the system.

When the software detects a PCInt board, it will reset the board and start loading the software on the DSPs of the PCInt board.

The RT-system can access the entire physical memory of the DSPs on the board through the HPI port of each DSP. It can also interrupt the DSPs through this HPI port. This mechanism used to provide an access system to the PCInt board similar to the correlator boards. This means that the RT-system is capable of starting commands on the PCInt board. Some test functions showing these capabilities are present.

The control software on the RT-system is prepared to manage the processing parameters for the PCInt.

4.3 Required

The actual measurement control and setup for the PCInt board is still missing. This software requires starting and control two software tasks, one on the correlator and the other on the PCInt board.

4.4 Current limitations

At this stage only one PCInt board can be present at the time.

HPI transfer rates do not exceed 800 kB/sec. (40 MB/s should be possible)

5 Device driver layers

5.1 Monaco hardware/software abstraction layer

This layer of software is the Monaco DSP library from Spectrum Signal Processing. This is a special high-level application library to develop DSP code for the Monaco board more easily. It provides the DSP application with functions to configure and transfer data to and from Monaco resources.

5.2 PEM C4x comm driver

The PCInt is connected to the correlator boards through C4x communication ports. On the Monaco board these ports are located on a so-called PEM interface modules. The PEM comm C4x software development kit provides all the necessary device driver and application library functions to access all of the modules functionality.

5.3 PCI driver

5.3.1 Description

The Hurricane PCI controller performs PCI accesses. This implies some limitations imposed by the board architecture. The Hurricane PCI controller can only perform DMA transfers to and from global shared SRAM. This means that all data that is to be transferred to the PCI bus must first be placed in global shared SRAM. For this purpose the PCI software interface layer has a scratch buffer allocated in the global shared SRAM. This buffer is shared by all PCI read/write functions and therefore the functions are not reentrant!

For all standard PCI read functions, data is first placed in global SRAM by the Hurricane PCI controller and afterwards transferred to the buffer supplied by the caller.

For all PCI write functions, the supplied data is first written to global SRAM and then written to the PCI memory location by the Hurricane PCI controller.

Since the standard PCI read/write functions are not intended for transferring large blocks of data, the functions block until the transfer is completed.

5.3.2 Interface

General

RESULT PCI_Init(void)

This function initialize the Hurricane PCI controller and scans the PCI bus for connected devices. It builds an internal list of all PCI devices found and also performs the Plug and Play configuration of the found devices. I.e. it configures and enables the devices on unique memory locations on the PCI bus.

PCI_DEV* PCI_FindDevice(unsigned int vendor, unsigned int device, PCI_DEV *from)

This function can be used by the application or e.g. a SCSI interface layer for scanning the PCI device list for a device of a specific vendor.

PCI_DEV * PCI_FindClass(unsigned int class, PCI_DEV *from)

The application or e.g. a SCSI interface layer can use the PCI_FindClass function to scan the PCI device list for a device of a specific class.

PCI read/write functions

void PCI_Write8(UINT32 *address, BYTE data)

write a byte to a PCI memory location, implemented by using a DWORD read and a DWORD write subsequently

BYTE PCI_Read8(UINT32 *address)

write a byte to a PCI memory location, implemented by using a DWORD read and a DWORD write subsequently

DWORD PCI_Read32(UINT32 *pmc_address)

read a dword from a PCI memory location,

void PCI_Write32(UINT32 *pmc_address, DWORD data)

write a dword to a PCI memory location

RESULT PCI_WriteMem(UINT32* pmc_address, DWORD *data,UINT32 count)

write a block of dword data to a PCI memory region.
The data must be in shared SRAM.

RESULT PCI_ReadMem(UINT32* pmc_address, DWORD *data,UINT32 count)

read a block dword data from a PCI memory region.
The data must be in shared SRAM.

5.4 Symbios SYM53C785 SCSI controller driver

5.4.1 SYM53C875 controller

The SYM53C875 controller runs a script to perform the SCSI protocol. The high level script commands instruct the processor to perform all the required bus states and response such as, select, reselect, disconnect, transfer etc, to implement all aspects of the SCSI protocol.

The script is loaded by the host processor (Monaco board) into a special memory area in the SCSI controller, the SCRIPTS RAM.

The advantage of SCRIPTS is that complex SCSI bus sequences execute independently of the host processor. The SCRIPTS can reside in every memory location on the PCI bus, as long as it is accessible by the controller. If scripts reside in SCRIPTS RAM, internal to the controller, they are fetched directly from RAM without generating PCI-bus traffic.

The SCRIPTS processor does not compile code; SCRIPTS programs are assembled with a

special assembler and linked to any C program.

The driver writes table to the SCRIPTS memory of the SCSI controller using a Hurricane DMA transfer. The DSA register of the controller is loaded with the address of the table in SCRIPTS memory and the script is started. On completion of the script, it receives notification from the scsi controller by interrupt (EXT5). The interrupt handler reads the status information from the controller to clear the interrupt condition and sends a message to the SYM53C875 SCSI controller driver.

Note:
this is not the most generic way of implementing the handling of PCI bus interrupts. Since it is dedicated to only this specific controller. A better way would have been to do it on PCI-bus level and redirecting the interrupt to the specific device handler.

5.4.2 Table indirect addressing

The scsi script uses table indirect addressing mode. In order to do this, it needs several buffers. Some of these buffers have to be located in scripts RAM.

The following tables are required

scsi_cmd_buffer
it set to the correct SCSI command

scsi_msgo_buffer[0]
is set to message which is send to the SCSI device

scsi_length
reflect the actual amount of data received

scsi_stat_buffer
will contain the status from the target

scsi_msgi_buffer
will contain the final message in byte from the SCSI device

scsi_data_buffer
will be filled with the Rq Snse or Inquiry data, scsi_length will reflect the actual amount of data received

The tables that have to be in scripts RAM are, scsi_stat_buffer, scsi_msgi_buffer, and scsi_length. The C8xx_Command expects addresses in the command structure that are local to the Monace board. It wil remap these addresses to the relevant PCI addresses. Since some scsi that report data require the scsi_data_buffer to be in scripts RAM, this address is expected to be a PCI address.

Table indirect addressing simplifies SCRIPTS by separating addresses and device information from control information. The device driver sets up the correct tables and buffers for a specific SCSI command and start the same SCRIPT independent of the type of SCSI command to perform.

A general SCSI commands setup a data structure with table information.

It then makes a call to the SYM53C875 SCSI controller driver which copies the tables to the controller and starts the script in the controller. It then waits for the completion interrupt of the controller and reads the status information and signals the calling command for completion.

Note
There are a few problems related to the Hurricane controller when using the SCSI controller on the PCI bus. The Hurricane controller does not allow byte write actions to and from the PCI bus. The SCSI controller however uses byte reads and writes when performing the SCSI protocol. This means that locations where the required information is stored must be in SCRIPTS RAM on the SCSI controller.

5.4.3 Interface

RESULT C8XX_Init(SCSI_CNTR *scsi_controller, int do_sync, int do_wide)

RESULT C8xx_Command(SCSI_CNTR *scsicntr, ti_entry *maint,unsigned int timeout)

5.5 General SCSI driver

De SCSI driver sets up all the specific SCSI commands and passes it on to the device specific routines to execute the command. All commands are blocking, this means that the calls won’t return until the target completes the SCSI command. The only exception is the SCSI write command, this command is started and returned immediately. An interrupt handler takes care of the completion of this command.

5.5.1 Implementation

The general SCSI device driver fills a table in GSRAM with the required indirect addressing information for the SCSI script.

The actual starting of the commands is performed by the SYM53C875 SCSI controller driver. The SYM53C875 SCSI controller driver reads the results of the scsi commands and returns this information to the general SCSI driver.

5.5.2 Interface

RESULT SCSI_Init(void)

scan all PCI devices for SCSI controllers all the PCI devices

SCSI_CNTR* SCSI_FindController(WORD vendor, WORD device,const SCSI_CNTR *from)

Search the device list of the controller for a specific device

RESULT SCSI_TUR(SCSI_CNTR *scsicntr, UINT8 log_device)

To execute a Test Unit Ready to a device on the SCSI bus

RESULT SCSI_RqSense(SCSI_CNTR *scsicntr, UINT8 log_device, UINT8 *length);

To execute a Reques Sense command on a device on the SCSI bus

RESULT SCSI_Inquiry(SCSI_CNTR *scsicntr, UINT8 log_device, UINT8 *length);

To execute an inquiry command on a device on the SCSI bus

RESULT SCSI_RdCap(SCSI_CNTR *scsicntr, UINT8 log_device,UINT8 length);

To read the capacity of a device on the SCSI bus

RESULT SCSI_StartStopUnit(SCSI_CNTR *scsicntr, UINT8 log_device, UINT8 start);

To execute a StartStopUnit command on a device on the SCSI bus

RESULT SCSI_LoadUnLoad(SCSI_CNTR *scsicntr, UINT8 log_device, UINT8 load);

To unload or load a tape on a tape device on the SCSI bus

RESULT SCSI_WriteFilemark(SCSI_CNTR *scsicntr, UINT8 log_device, UINT8 mark);

To write a filemark to a tape device on the SCSI bus

RESULT SCSI_ModeSense6(SCSI_CNTR *scsicntr, UINT8 log_device, UINT8 length, UINT8 call);

To execute a ModeSense command on a device on the SCSI bus

6 Application framework

The actual application running on the PCInt has several main functions. One of the main functionality is collecting data coming from the correlator boards.

6.1 RT-DSP communication handler

The RT-DSP communication handler is a task that handles all the required communication between the real-time system and the processing DSP. It allows the real-time system to start tasks on the DSP and to send events to the tasks. It is also possible for the real-time system to request messages (status/error) from the DSP.

All communication between the real-time system and the DSP is performed via dual port memory. This 1K byte large memory is simultaneously accessible by the real-time system and the DSP. Two of the memory locations are mailbox register. A mailbox registers asserts an interrupt signal when it is written by one side of the dual port memory. One mailbox register generates an interrupt to the DSP and the other to the VME bus. The interrupt condition is cleared when the interrupted side accesses the specific mailbox register.

The mailbox register allows the real-time system to interrupt the DSP by writing a command in the mailbox register. The RT-DSP (rthost) communication handler reads the command from the mailbox register, performs the required action and writes a transfer terminator character back to the mailbox register to clear the interrupt condition. The real-time system polls the mailbox register for the transfer terminator character to detect completion of the requested action.

6.1.1 Dual port RAM definition

Dual-Port RAM - a small (1 kB) RAM which is the only memory area simultaneously accessible for both read and write to both the DSP and the VME interface. The dual-port RAM is intended for high-level real-time control functions between the CUCC and the correlator board, and is also a pathway for moving small amounts of data between the CUCC and any of the correlator-board memory banks. Dual-port RAM has several special (byte) addresses reserved for special purposes:

0x000-0x3df:
1008-byte block reserved for CUCC-to-DSP messages and data. Only the CUCC may write to this area

0x3E0-0x3EF:
16 bytes (4 words) of message data. When the CUCC requests a message from the DSP, it is written to this location. The first word contains the message type and three remaining words are message dependant. If the processing DSP has no message to send to the CUCC it writes the no_message character (0x000000ff) to the first word.

0x3F0-0x3F7:
8 bytes (2 words) used when sending events to a specific task. The first word specifies the task id and the second word is the event. These locations are written by the CUCC prior to starting the command.

0x3F8-0x3FB:
4 bytes reserved for the address of a Task Control Block to be passed to the processing DSP when interrupted by the CUCC through location 0x3ff. It is expected that the addressed TCB is in dualport RAM. Only the CUCC may write to this area.

0x3FC:
unused byte

0x3FD:
application control word (switch bank A to B etc.)

0x3FE:
VME interrupt is not used in the Astron correlator DSP applications

0x3FF:
a CUCC write to this byte location causes an interrupt to the processing DSP. The value (interrupt type) written specifies the action to be taken by the DSP scheduler (tentative values):

0 - reserved

1 – startup task

2 – send event to task

3 - reserved

4 - reserved

5 - reserved

6 - reserved

7 – enable event counter

8 – event counter reset and disable

9 – request message from DSP

Others may be defined in the future

Note: After the processing DSP reads address 0x3ff as the result of an interrupt, it writes a transfer terminator character (0x0fe) back to address 0x3ff. The CUCC then has the option of reading address 0x3ff to verify that the processing DSP has acted on the interrupt.

6.1.2 RT-system commands

The RT-system writes the command to dualport RAM location 0x3FF and interrupts the DSP via the HPI port. The DSP performs the command and signals the RT-system of completion by setting the host interrupt flag in the HPI port and writing a transfer terminator character to (0xfe) back to address 0x3FF. The RT-system has to poll the host interrupt flag in the HPI port to signal completion.

Message reporting

The DSP internally maintains a message queue for messages to the RT-system. These messages can include general messages and status messages but also error messages. The entire message (16 bytes) is copied to dualport RAM on request by the RT-system.

Task starting

Task startup is performed in a slightly different way of the other commands. When the RT-system interrupts the DSP, the DPS will create and start the task and it will write a message to the message queue saying that it created a task with a specific task id. Then the DSP writes a transfer terminator character to (0xfe) to address 0x3FF and sets the host interrupt flag in the HPI to signal completion of the task creation. The RT-system can then request messages to see which task id is associated with the created task (if required) If RT-system has to wait for the completion of the started task, it must continue polling message until a task completed message is received from the started task (task id).

The following sequence of events is necessary for the RT-system to initiate the execution of a DSP task.

1. The RT-system prepares and writes any necessary TCB’s to the dualport memory

2. The RT-system writes the head TCB address to byte addresses 0x3f8-0x3fb of the dual port RAM.

3. The RT-system writes the value ‘0x1’ to dual-port RAM location 0x3FF.

4. The RT-system interrupts the DSP by setting the DSPINT in the HPI.

5. The RT-system monitors the host interrupt flag in the HPI to detect completion(continue at step 11)

6. The DSP reads the head TCB address and creates and starts the specified task.

7. The DSP write a message to the message queue, identifying that a task is created and which task id is assigned to it.

8. The DSP writes a transfer terminator character to dual-port RAM location 0x3ff.

9. The DSP sets the host interrupt flag in the HPI to signal that command in completed

10. The DSP executes the started task, and when the task finishes a TASK_COMPLETED message is written in the message queue.

11. The RT-system writes the value ‘0x9’ to dual-port RAM location 0x3FF (continue at 13)

12. The DSP reports the first message from the message queue to the RT-SYSTEM. If there is no message in the queue, a NO_MESSAGE message is reported

13. The RT-system monitors the host interrupt flag in the HPI to detect completion.

14. The RT-SYSTEM checks the reported message and continues when a TASK_COMPLETED message is received. When a NO_MESSAGE message is received, it continues at step 11.

6.1.3 Task Control Block

Word 0
Mode(16) | priority (8) | command (8)

Word 1
char[4] task name

Word 2
NPAR – number of task parameters

Word 3 – Word 3+NPAR
task specific parameters

6.1.4 Message format

Word 0
Error (1) | reserved (7) | message code (24)

Word 1
task id of the task responsible for the message

Word 2
message dependant info

Word 3
message dependant info

6.1.5 Message codes

	Message ID
	Code
	word 2
	word 3
	description

	NO_MESSAGE
	0x000000fe
	x
	x
	no messages to report

	TASK_COMPLETED
	0x00000001
	x
	x
	This message is generated by a task when it completes.

	TASK_CREATED
	0x00000002
	Tid
	Name
	This message is generate by the RT-host communication handler to signal the host which task is created.

6.2 Correlator board interface

The correlator board interface is a task that can be start by an application. This task sets up the PEM modules on the Monaco board to receive data from the correlator boards. The received data is written in a dual buffer and when one of the buffers is filled, it sends an event to the application.

The task keeps on restarting a data read from the COMM ports until it is instructed by the application to stop.

There are some limitations in the interface library for the PEM modules. First of all the dual port memory on the PEM module is limited and a data transfer is limited to this size. The task therefor keeps starting data transfers until the requested buffer is filled.

The second limitation is that there is no interrupt notification of completion of a read from the PEM module. According to the library, polling must do this. Wrapping the DMA completion interrupt and checking there if the transfer is completed solves this limitation.

6.2.1 Task parameters

6.2.2 Events

6.3 Tape control handler

On the PCInt board one processing node must handle all SCSI related functionality. Only one of the nodes can do this at a time. The task to perform this functionality must be started on the node, which is going to be the tape controller. This task will scan the PCI bus. It then selects the SCSI module from the PCI device and scan the SCSI bus for devices.

The task can receive commands via a message queue instructing it which tape command to perform.

6.4 Global shared SRAM synchronisation

Since all four processing nodes must write their data to tape, the data must be combined.

7 PCInt applications

A PCInt application is a cooperative task of the correlator board and the PCInt board. The task of the correlator board is to control the read of the correlator chips and the processing of the dynamic parameters and also the transmitting of the data to the PCInt board. The PCInt board receives the lag data, processes it and if required write it to tape.

The correlator board process is:

When the application is started, the correlator chips are read on every BOCF. The IO and processing DSP both monitor the header data for a new frame number to arrive. A new frame number indicates that a new recirculation cycle has begun (recirculation buffer 0) When this synchronisation trigger is found the processing DSP sends a synchronisation message to the RT-system and the IO DSP starts calculating the dynamic parameters for the next frame.

After the RT-system receives the synchronisation message, it can enable the transfer of the lag to the PCInt board by setting the data-to-PCI bit in the application control word. Starting the next BOCF the chip data will be send to the PCInt board.

This concept has some implications:

· The PCInt software is purely data driven. It only receives lag data when the transfer is enabled on the correlator board.

· The PCInt receives only the frames that are to be processed. The correlator board discards all other frames.

· By starting the measurement at the proper BOCF, it can be assured that the PCInt receives the correct frame for recirculation buffer 0.

8 Monaco C67 DSP board

8.1 Initialize the EMIF

(refer: Monaco Technical reference page 12)

#define EMIF_GCTL 0x01800000

#define EMIF_CE1 0x01800004

#define EMIF_CE0 0x01800008

#define EMIF_CE2 0x01800010

#define EMIF_CE3 0x01800014

#define EMIF_SDRAMCTL 0x01800018

#define EMIF_SDRAMTIMING 0x0180001C

#define EMIF_SDRAMEXT 0x01800020

*(int *)EMIF_GCTL = 0x00003078;/* EMIF global control register */

*(int *)EMIF_CE1 = 0x30E40421; /* CE1 - 32-bit asynch access after boot*/

*(int *)EMIF_CE0 = 0xFFFF3F43; /* CE0 – SBSRAM, 32 bit wide */

*(int *)EMIF_CE2 = 0xFFFF3F33; /* CE2 - 32-bit wide SDRAM*/

*(int *)EMIF_CE3 = 0x72B70A23; /* CE3 – PEM control (reconf for indv. PEM) */

*(int *)EMIF_SDRAMCTL = 0x0544A000; /* SDRAM specific */

*(int *)EMIF_SDRAMTIMING = 0x0000061A; /* SDRAM Timing external */

8.2 Monaco-specific memory mapping

	Origin
	Size
	description

	0x00000000
	0x00010000
	Internal program RAM

	0x00400000
	0x00080000
	CE0, SBSRAM (512K)

	0x01400000
	0x00400000
	CE1, shared SRAM (4M)

	0x01800000
	0x00000020
	EMIF control regs

	0x01840000
	0x00000074
	DMA control regs

	0x01880000
	0x00000004
	HPI control reg

	0x018c0000
	0x00000028
	McBSP0 regs

	0x01900000
	0x00000028
	McBSP1 regs

	0x01940000
	0x0000000c
	Timer0 regs

	0x01980000
	0x0000000c
	Timer1 regs

	0x019c0000
	0x0000000c
	Interrupt selector regs

	0x01a00000
	0x00600000
	Internal peripheral bus (reserved)

	0x02000000
	0x01000000
	CE2, local SDRAM (16M)

	0x03000000
	0x01000000
	CE3, PEM (16M)

	0x80000000
	0x00010000
	Internal data RAM

AUTHOR:	P.E.Kamphuis

DOCUMENT NUMBER:

PROJECT:	RTD ERB4062PL975013

ISSUE:	DRAFT

DATE:	14 November, 2000

1
9

_1036227839.vsd

