M:\kamphuis\MS\WORD\dspOS concepts.doc
16-11-00

[image: image1.png]JOINT INSTITUTE FOR VLBI IN EUROPE

dspOS concepts

Related documents

[1]
dspOS kernel components

[2]
Correlator board DSP software

[3]
Post Correlator Integrator software

1 Table of contents

21
Related documents

2
Table of contents
2
3
Introduction
2
4
dspOS real-time kernel
3
4.1
Multi-tasking
3
4.2
Concept of a task
3
4.2.1
Decomposition Criteria
3
4.3
Overview of System Operations
4
4.3.1
Task States
4
4.3.2
State Transitions
5
4.3.3
Task Scheduling
6
4.3.4
Task Priority
6
4.3.5
Dispatch Criteria
6
4.3.6
Objects, Names, and IDs
6
4.4
Task Management
7
4.4.1
Creation of a Task
7
4.4.2
Task Control Block
8
4.4.3
Task Mode Word
8
4.4.4
Task Stacks
8
4.4.5
Task Memory
8
4.4.6
Death of a Task
8
4.4.7
Notepad Registers
8
4.4.8
The Idle Task
8
4.5
Communication, Synchronization, Mutual Exclusion
9
4.6
The Message Queue
9
4.6.1
The Queue Control Block
9
4.6.2
Queue Operations
9
4.6.3
Messages and Message Buffers
10
4.7
Events
10
4.7.1
Event Operations
10
4.7.2
Events Versus Messages
10
4.8
Semaphores
11
4.8.1
The Semaphore Control Block
11
4.8.2
Semaphore Operations
11
4.9
Interrupt Service Routines
11
4.9.1
Interrupt Entry and Exit
11
4.9.2
Synchronizing With Tasks
12
4.9.3
System Calls Allowed From an ISR
12

2 Introduction

dspOS is a real-time operating system. It provides a complete multi-tasking environment. Although it is designed to run on Texas Instruments DSPs, it can easily be ported to other platforms. The kernel software is mainly written in C, with some minor assembly additions.

The dspOS has a modular architecture. Its main component is the real-time kernel. This kernel is accompanied by a collection of software components, which provide a solid and standard foundation for multi-tasking applications.

3 dspOS real-time kernel

The dspOS kernel is a real-time, multitasking system kernel. As such, it provides a framework to

· Provide services on demand

· Schedule and manage resources

· Coordinate multiple asynchronuous activities

3.1 Multi-tasking

A multi-tasking system is dynamic because task switching is driven by temporal events. In a multi-tasking system tasks can execute asynchronously. Thus a multi-tasked implementation closely parallels the real world, which is mainly asynchronously and/or cyclical as far as real-time systems apply. Application software for multi-tasking systems is likely to be far more structured, maintainable and re-usable.

Several kernel attributes help to solve problems inherent in real-time software development.

· Partitioning of actions into multiple tasks, each capable of executing in parallel with other tasks

· Task priorization. The kernel always executes the highest priority task that can run

· Task preemption. If an action is in progress and a higher priority external event occurs, the event’s associated action takes over immediately

· Powerful synchronization mechanisms available to applications, including message queues, multiple wait events and semaphores

· Timing functions (not implemented yet), such as wakup timers, and timeouts for servicing cyclical, external events

3.2 Concept of a task

For the system, a task is the smallest unit of execution that can compete on its own for system resources. A task runs in its own environment, in this space a task can use system resources or wait for them to become available without concern for other tasks. Conceptually a task can execute concurrently with, and independent of other tasks. The dspOS kernel simply switches between different tasks on cue. The cues are triggered by system calls to the kernel.

Although each task is a logically separate set of actions, it must coordinate and synchronize itself with actions in other tasks or with interrupt service routines (ISR), by calling dspOS kernel services.

3.2.1 Decomposition Criteria

The decomposition of a complex application into a set of tasks and ISR’s, is a matter of balance and trade-offs, but one that obviously impacts the degree of parallelism, and therefore efficiency which can be achieved. Excessive decomposition exacts an inordinate amount of overhead activity required in switching between the virtual environments of different tasks. Insufficient decomposition reduces throughput, because actions in each task proceed serially, whether they need to or not.

There are no fixed rules for partitioning an application; the strategy used depends on the nature of the application. First of all, if an application involves multiple, independent main jobs, then each job should have one or more tasks to itself. Within each job, however, the partitioning into multiple, cooperating tasks requires much more analysis and experience.

The following discussion presents a set of reasonably sufficient criteria, whereby a job with multiple actions can be divided into separate tasks. Note that there are no necessary conditions for combining two tasks into one task, though this might result in a loss of efficiency or clarity. By the same token, a task can always be split into two, though perhaps with some loss of efficiency.

Terminology:

In this discussion, a job is defined as a group of one or more tasks, and a task is defined as a group of one or more actions.

An action (act)
is a locus of instruction execution, often a loop.

A dependent action (dact)
is an action containing one and only one dependent condition; this condition requires the action to wait until the condition is true, but the condition can only be made true by another dact.

Decomposition Criteria:

Given a task with actions A and B, if any one of the following criteria are satisfied, then actions A and B should be in separate tasks:

Time
dact A and dact B are dependent on cyclical conditions that have different frequencies or phases.

Asynchrony
dact A and dact B are dependent on conditions that have no temporal relationships to each other.

Priority
dact A and dact B are dependent on conditions that require a different priority of attention.

Clarity/Maintainability
act A and act B are either functionally or logically removed from each other.

The dspOS kernel imposes essentially no limit on the number of tasks that can coexist in an application. You simply specify in the dspOS Configuration the maximum number of tasks expected to be active at the same time, and the dspOS kernel allocates sufficient memory for the requisite system data structures to manage that many tasks.

3.3 Overview of System Operations

dspOS kernel services can be separated into the following categories:

· Task Management

· Storage Allocation (not implemented)

· Message Queue Services

· Event Signal Services

· Semaphore Services

· Time Management and Timer Services (not implemented)

· Interrupt Completion Service

· Error Handling Service (not implemented)

Detailed descriptions of each system call are provided in dspOS Kernel Components.

The remainder of this chapter provides more details on the principles of dspOS kernel operation and is highly recommended reading for first-time users of the dspOS kernel.

3.3.1 Task States

A task can be in one of several execution states. A task’s state can change only as result of a system call made to the dspOS kernel by the task itself, or by another task or ISR. From a macroscopic perspective, a multitasked application moves along by virtue of system calls into dspOS, forcing the dspOS kernel to change the states of affected tasks and, possibly as a result, switch from running one task to running another. Therefore, gaining a complete understanding of task states and state transitions is an important step towards using the dspOS kernel properly and fully in the design of multitasked applications. To the dspOS kernel, a task does not exist either before it is created or after it is deleted. A created task must be started before it can execute. A created-but-unstarted task is therefore in an innocuous, embryonic state.

Once started, a task generally resides in one of three states:

· Ready

· Running

· Blocked

A ready task is runnable, and waits only for higher priority tasks to release the CPU. Because a task can be started only by a call from a running task, and there can be only one running task at any given instant, a new task always starts in the ready state.

A running task is a ready task that has been given use of the CPU. There is always one and only one running task. In general, the running task has the highest priority among all ready tasks

A task becomes blocked only as the result of some deliberate action on the part of the task itself, usually a system call that causes the calling task to wait. Thus, a task cannot go from the ready state to blocked, because only a running task can perform system calls.

3.3.2 State Transitions

Figure x depicts the possible states and state transitions for a dspOS task. Each state transition is described in detail below. Note the following abbreviations:

E for Running (Executing)

R for Ready

B for Blocked

(E (B) A running task (E) becomes blocked when:

1 It requests a message (q_receive with wait) from an empty message queue; or

2 It waits for an event condition (ev_receive with wait enabled) that is not presently pending; or

3 It requests a semaphore token (sm_p with wait) that is not presently available; or

4 It pauses for a time interval (tm_wkafter).(not implemented)

(B (R) A blocked task (B) becomes ready when:

1 A message arrives at the message queue (q_send) where B has been waiting, and B is first in that wait queue; or

2 An event is sent to B (ev_send), fulfilling the event condition it has been waiting for; or

3 A semaphore token is returned (sm_v), and B is first in that wait queue; or

4 B has been waiting with a timeout option for events, a message, a semaphore, and that timeout interval expires; or (not implemented)

5 B has been delayed, and its delay interval expires or its wakeup time arrives; or (not implemented)

6 B is waiting at a message queue or semaphore, and that queue or semaphore is deleted by another task. (not implemented)

(B (E) A blocked task (B) becomes the running task when:

1 Any one of the (B (R) conditions occurs, B has higher priority than the last running task.

(R (E) A ready task (R) becomes running when the last running task (E):

1 Blocks; or

2 Runs out of its timeslice, its roundrobin mode is enabled, and R has the same priority as E. (not implemented)

(E (R) The running task (E) becomes a ready task when:

1 Any one of the (B (E) conditions occurs for a blocked task (B) as a result of a system call by E or an ISR;

A fourth, but secondary, state is the suspended state. A suspended task cannot run until it is explicitly resumed. Suspension is very similar to blocking, but there are fundamental differences.

First, a task can block only itself, but it can suspend other tasks as well as itself.

Second, a blocked task can also be suspended. In this case, the effects are additive — that task must be both unblocked and resumed, the order being irrelevant, before the task can become ready or running.

A fifth state is the started state. This state is similar to the ready state except that it never ran before. This state is entered after calling t_start, it tells to the kernel to call this task in a different way than a ready task. The actual difference is that a ready task has a valid context and the started task has not.

3.3.3 Task Scheduling

The dspOS kernel employs a priority-based, preemptive scheduling algorithm. In general, the dspOS kernel ensures that, at any point in time, the running task is the one with the highest priority among all ready-to-run tasks in the system.

3.3.4 Task Priority

A priority must be assigned to each task when it is created. There are 256 priority levels — 255 is the highest, 0 the lowest. Certain priority levels are reserved for use by special dspOS tasks. Level 0 is reserved for the IDLE task furnished by the dspOS kernel. Levels 240 - 255 are reserved for a variety of high priority tasks.

When a task enters the ready state, the dspOS kernel puts it into an indexed ready queue behind tasks of higher or equal priority. All ready queue operations, including insertions and removals, are achieved in fast, constant time. No search loop is needed.

During dispatch, when it is about to exit and return to the application code, the dspOS kernel will normally run the task with the highest priority in the ready queue. If this is the same task that was last running, then the dspOS kernel simply returns to it. Otherwise, the last running task must have either blocked, or one or more ready tasks now have higher priority. In the first (blocked) case, the dspOS kernel will always switch to run the task currently at the top of the indexed ready queue. In the second case, technically known as preemption, the dspOS kernel will also perform a task switch.

Note that a running task can only be preempted by a task of higher or equal priority. Therefore, the assignment of priority levels is crucial in any application. A particular ready task cannot run unless all tasks with higher priority are blocked. By the same token, a running task can be preempted at any time, if an interrupt occurs and the attendant ISR unblocks a higher priority task.

3.3.5 Dispatch Criteria

Dispatch refers to the exit stage of the dspOS kernel, where it must decide which task to run upon exit; that is, whether it should continue with the running task, or switch to run another ready task.

If the dspOS kernel is entered because of a system call from a task, then the dspOS kernel will always exit through the dispatcher, in order to catch up with any state transitions that might have been caused by the system call. For example, the calling task might have blocked itself, or made a higher priority blocked task ready. On the other hand, if the dspOS kernel is entered because of a system call by an ISR, then the dspOS kernel will not dispatch, but will instead return directly to the calling ISR, to allow the ISR to finish its duties.

Because a system call from an ISR might have caused a state transition, such as readying a blocked task, a dispatch must be forced at some point. This is the reason for the dspos_intinit() and dspos_intexit() entry into the dspOS kernel, which is used by an ISR to enter and exit the interrupt service, and at the same time allow the dspOS kernel to execute a dispatch.

3.3.6 Objects, Names, and IDs

The dspOS kernel is an object-oriented operating system kernel. Object classes include tasks, message queues, and semaphores.

Each object is created at runtime and known throughout the system by two identities — a pre-assigned name and a run-time ID. An object’s 32-bit (4 characters, if ASCII) name is user-assigned and passed to the dspOS kernel as input to an Obj_CREATE (e.g. t_create) system call. The dspOS kernel in turn generates and assigns a unique, 32-bit object ID (e.g. Tid) to the new object. Except for Obj_IDENT (e.g. q_ident) calls, all system calls that reference an object must use its ID. For example, an event is send to a task using its Tid, a message is sent to a message queue using its Qid, and so forth.

The run-time ID of an object is of course known to its creator task — it is returned by the Obj_CREATE system call. Any other task that knows an object only by its user-assigned name can obtain its ID in one of two ways:

1 Use the system call Obj_IDENT once with the object’s name as input; the dspOS kernel returns the object’s ID, which can then be saved away.

2 Or, the object ID can be obtained from the parent task in one of several ways.

For example, the parent can store away the object’s ID in a global variable — the Tid for task ABCD can be saved in a global variable with a name like ABCD_TID, for access by all other tasks.

An object’s ID contains implicitly the location, even in a multiprocessor distributed system, of the object’s control block (e.g. TCB or QCB), a structure used by the dspOS kernel to manage and operate on the abstract object.

Objects are truly dynamic — the binding of a named object to its reference handle is deferred to runtime. By analogy, the dspOS kernel treats objects like files. A file is created by name. But to avoid searching, read and write operations use the file’s ID returned by create or open. Thus, t_create is analogous to File_Create, and t_ident to File_Open.

As noted above, an object’s name can be any 32-bit integer. However, it is customary to use four-character ASCII names, because ASCII names are more easily remembered.

3.4 Task Management

In general, task management provides dynamic creation and deletion of tasks, and control over task attributes. The available system calls in this group are:

t_create
Create a new task.

t_ident
Get the ID of a task.

t_start
Start a new task.

t_delete
Delete a task.

3.4.1 Creation of a Task

Task creation refers to two operations. The first is the actual creation of the task by the t_create call. The second is making the task ready to run by the t_start call. These two calls work in conjunction so the dspOS kernel can schedule the task for execution and allow the task to compete for other system resources. Refer to dspOS kernel components for a description of t_create and t_start.

A parent task creates a child task by calling t_create. The parent task passes the following input parameters to the child task:

· A user-assigned name

· A priority level for scheduling purposes

· Sizes for a stack

· Several flags

Refer to the description of t_create in dspOS Kernel Components for a description of the preceding parameters.

t_create acquires and sets up a Task Control Block (TCB) for the child task, then it allocates a memory segment large enough for the task’s stack This memory segment is linked to the TCB. t_create returns a task identifier assigned by the dspOS kernel.

The t_start call must be used to complete the creation. t_start supplies the starting address of the new task, a mode word that controls its initial execution behavior, and an optional argument list. Once started, the task is ready-to-run, and is scheduled for execution based on its assigned priority.

With one exception, all user tasks that form a multitasking application are created dynamically at runtime. After startup, the dspOS kernel simply passes control to the IDLE task. This task is used to perform all initial initialization.

3.4.2 Task Control Block

A task control block (TCB) is a system data structure allocated and maintained by the dspOS kernel for each task after it has been created. A TCB contains everything the kernel needs to know about a task, including its name, priority, and of course its context. Generally, context refers to the state of machine registers. When a task is running, its context is highly dynamic and is the actual contents of these registers. When the task is not running, its context is frozen and kept in the TCB, to be restored the next time it runs. There are certain overhead structures within a TCB that are used by the dspOS kernel to maintain it in various system-wide queues and structures. For example, a TCB might be in one of several queues — the ready queue, a message wait queue, a semaphore wait queue.

<< layout TCB >>

At dspOS kernel startup, a fixed number of TCBs is allocated reflecting the maximum number of concurrently active tasks specified in the dspOS Configuration Table entry dspos_ntask. A TCB is allocated to each task when it is created, and is re-claimed for reuse when the task is deleted.

A task’s Tid contains, among other things, the encoded address of the task’s TCB. Thus, for system calls that supply Tid as input, the dspOS kernel can quickly locate the target task’s TCB. By convention, a Tid value of 0 is an alias for the running task. Thus, if 0 is used as the Tid in a system call, the target will be the calling task’s TCB.

3.4.3 Task Mode Word

Each task carries a mode word that can be used to modify scheduling decisions or control its execution environment. (not supported)

3.4.4 Task Stacks

Each task must have its own stack. You declare the size of the stack when you create the task using t_create().

3.4.5 Task Memory

The dspOS kernel allocates and maintains a task’s stack, but it has no explicit knowledge of a task’s code or data areas.

3.4.6 Death of a Task

A task can terminate itself, or another task. The t_delete dspOS Service removes a created task by reclaiming its TCB and returning the stack memory segment to the heap. The TCB is marked as free, and can be reused by a new task. The proper reclamation of resources such as semaphores should be an important part of task deletion. This is particularly true for dynamic applications, wherein parts of the system can be shutdown and/or regenerated on demand.

In general, t_delete should only be used to perform self-deletion. The reason is simple. When used to forcibly delete another task, t_delete denies that task a chance to perform any necessary cleanup work.

3.4.7 Notepad Registers

Each task has 16 software notepad 32-bit registers. They are carried in a task’s TCB, and can be set and read using the t_setreg and t_getreg calls, respectively. The purpose of these registers is to provide to each task, in a standard system-wide manner, a set of named variables that can be set and read by other tasks.

Eight of these notepad registers are reserved for system use. The remaining eight can be used for any application specific purpose.

3.4.8 The Idle Task

At startup, the dspOS kernel automatically creates and starts an idle task, named IDLE, whose purpose in life is initialize all application tasks and resources and to soak up CPU time when no other task can run. IDLE runs at priority 0.

Though simple, IDLE is an important task. It must not be tampered with via t_delete, unless you have provided an equivalent task to fulfill this necessary idling function.

3.5 Communication, Synchronization, Mutual Exclusion

A dspOS based application is generally partitioned into a set of tasks and interrupt service routines. Conceptually, each task is a thread of independent actions that can execute concurrently with other tasks. However, cooperating tasks need to exchange data, synchronize actions, or share exclusive resources. To service task-to-task as well as ISR-to-task communication, synchronization, and mutual exclusion, the dspOS kernel provides three sets of facilities — message queues, events, and semaphores.

3.6 The Message Queue

Message queues provide a highly flexible, general-purpose mechanism to implement communication and synchronization. The related system calls are listed below:

q_create
Create a message queue

q_ident
Get the ID of a message queue.

q_delete
Delete a message queue.

q_receive
Get/wait for a message from a queue.

q_send
Post a message at the end of a queue.

Like a task, a message queue is an abstract object, created dynamically using the q_create system call. q_create accepts as input a user-assigned name and several characteristics, including whether tasks waiting for messages there will wait first-in-first-out, or by task priority, whether the message queue has a limited length, and whether a set of message buffers will be reserved for its private use. A queue is not explicitly bound to any task. Logically, one or more tasks can send messages to a queue, and one or more tasks can request messages from it. A message queue therefore, serves as a many-to-many communication switching station.

Consider this many-to-1 communication example. A server task can use a message queue as its input request queue. Several client tasks independently send request messages to this queue. The server task waits at this queue for input requests, processes them, and goes back for more — a single queue, single server implementation.

The number of message queues in your system is limited by the dspos_nqueue specification in the dspOS Configuration Table.

A message queue can be deleted using the q_delete system call. If one or more tasks are waiting there, they will be removed from the wait queue and returned to the ready state. When they run, each task will have returned from their respective q_receive call with an error code (Queue Deleted). On the other hand, if there are messages posted at the queue, then the dspOS kernel will reclaim the message buffers and all message contents are lost.

3.6.1 The Queue Control Block

Like a Tid, a message queue’s Qid carries the location of the queue’s control block (QCB). This is an important notion, because using the Qid to reference a message queue totally eliminates the need to search for its control structure.

A QCB is allocated to a message queue when it is created, and reclaimed for re-use when it is deleted. This structure contains the queue’s name and ID, wait-queueing method, and message queue length and limit.

3.6.2 Queue Operations

A queue usually has two types of users — sources and sinks. A source posts messages, and can be a task or an ISR. A sink consumes messages, and can be another task or (with certain restrictions) an ISR.

There is one way to post a message — q_send

When a message arrives at a queue, and there is no task waiting, it is copied into a message buffer taken from either the shared free message buffer pool. The message buffer is then entered into the message queue. A q_send call puts a message at the end of the message queue.

When a message arrives at a queue, and there are one or more tasks already waiting there, then the message will be given to the first task in the wait queue. No message buffer will be used. That task then leaves the queue, and becomes ready to run.

There is only one way to request a message from a queue — the q_receive system call. If no message is pending, the task can elect to wait, or return unconditionally. If a task elects to wait, it will either be by first-in-first-out or by task priority order, depending on the specifications given when the queue was created. If the message queue is non-empty, then the first message in the queue will be returned to the caller. The message buffer that held that message is then released back to the shared free message buffer pool.

3.6.3 Messages and Message Buffers

Messages are fixed length, consisting of four long words. A message’s content is entirely dependent on the application. It can be used to carry data, pointer to data, data size, the sender’s Tid, a response queue Qid, or some combination of the above. In the degenerate case where a message is used purely for synchronization, it might carry no information at all.

When a message arrives at a message queue and no task is waiting, the message must be copied into a message buffer that is then entered into the message queue. A dspOS message buffer consists of five long words. Four of the long words are the message and one is a link field. The link field links one message buffer to another. At startup, the dspOS kernel allocates a shared pool of free message buffers. The size of this pool is equal to the dspos_nmsgbuf entry in the dspOS Configuration Table.

A message queue can be created to use a pool of buffers shared among many queues. In this case, messages arriving at the queue will use free buffers from the shared pool on an as-needed basis.

3.7 Events

The dspOS kernel provides a set of synchronization-by-event facilities. Each task has 32 event flags it can wait on, bit-wise encoded in a 32-bit word. The high 16 bits are reserved for system use. The lower 16 event flags are user definable.

Two dspOS system calls provide synchronization by events between tasks and between tasks and ISRs:

ev_receive
Get or wait for events.

ev_send
Send events to a task.

ev_send is used to send one or more events to another task. With ev_receive,a task can wait for or request without waiting, one or more of its own events. One important feature of events is that a task can wait for one event, one of several events (OR), or all of several events (AND).

3.7.1 Event Operations

Events are independent of each other. The ev_receive call permits synchronization to the arrival of one or more events, qualified by an AND or OR condition. If all the required event bits are on (i.e. pending), then the ev_receive call resets them and returns immediately. Otherwise, the task can elect to return immediately or block until the desired event(s) have been received. A task or ISR can send one or more events to another task. If the target task is not waiting for any event, or if it is waiting for events other than those being sent, ev_send simply turns the event bit(s) on, which makes the events pending. If the target task is waiting for some or all of the events being sent, then those arriving events that match are used to satisfy the waiting task. The other non-matching events are made pending, as before. If the requisite event condition is now completely satisfied, the task is unblocked and made ready-to-run; otherwise, the wait continues for the remaining events.

3.7.2 Events Versus Messages

Events differ from messages in the following sense:

An event can be used to synchronize with a task, but it cannot directly carry any information.

Topologically, events are sent point to point. That is, they explicitly identify the receiving task. A message, on the other hand, is sent to a message queue. In a multireceiver case, a message sender does not necessarily know which task will receive the message.

One ev_receive call can condition the caller to wait for multiple events. q_receive, on the other hand, can only wait for one message from one queue.

Messages are automatically buffered and queued. Events are neither counted nor queued. If an event is already pending when a second, identical one is sent to the same task, the second event will have no effect.

3.8 Semaphores

The dspOS kernel provides a set of familiar semaphore operations. In general, they are most useful as resource tokens in implementing mutual exclusion. The related system calls are listed below.

sm_create
Create a semaphore.

sm_ident
Get the ID of a semaphore.

sm_delete
Delete a semaphore.

sm_p
Get / wait for a semaphore token.

sm_v
Return a semaphore token.

Like a message queue, a semaphore is an abstract object, created dynamically using the sm_create system call. sm_create accepts as input a user-assigned name, an initial count, and several characteristics, including whether tasks waiting for the semaphore will wait first-in-first-out, or by task priority. The initial count parameter should reflect the number of available “tokens” at the semaphore. sm_create assigns a unique ID, the SMid, to each semaphore.

The number of semaphores in your system is limited by the dspos_nsema specification in the dspOS Configuration Table.

A semaphore can be deleted using the sm_delete system call. If one or more tasks are waiting there, they will be removed from the wait queue and returned to the ready state. When they run, each task will have returned from its respective sm_p call with an error code (Semaphore Deleted).

3.8.1 The Semaphore Control Block

Like a Qid, a semaphore’s SMid carries the location of the semaphore control block (SMCB), even in a multiprocessor configuration. This is an important notion, because using the SMid to reference a semaphore eliminates completely the need to search for its control structure.

An SMCB is allocated to a semaphore when it is created, and reclaimed for re-use when it is deleted. This structure contains the semaphore’s name and ID, the token count, and wait-queueing method. It also contains the head and tail of a doubly linked task wait queue.

3.8.2 Semaphore Operations

The dspOS kernel supports the traditional P and V semaphore primitives. The sm_p call requests a token. If the semaphore token count is non-zero, then sm_p decrements the count and the operation is successful. If the count is zero, then the caller can elect to wait, or return unconditionally. If a task elects to wait, it will either be by first-in-first-out or by task priority order, depending on the specifications given when the semaphore was created. The sm_v call returns a semaphore token. If no tasks are waiting at the semaphore, then sm_v increments the semaphore token count. If tasks are waiting, then the first task in the semaphore’s wait list is released from the list and made ready to run.

3.9 Interrupt Service Routines

Interrupt service routines are critical to any real-time system. On one side, an ISR handles interrupts, and performs whatever minimum action is required, to reset a device, to read/write some data, etc. On the other side, an ISR might drive one or more tasks, and cause them to respond to, and process, the conditions related to the interrupt.

An ISR’s operation should be kept as brief as possible, in order to minimize delaying of other interrupts. Normally, it simply clears the interrupt condition and performs the necessary physical data transfer. Any additional handling of the data should be deferred to an associated task with the appropriate (software) priority. This task can synchronize its actions to the occurrence of a hardware interrupt, by using a message queue, events flag, or semaphores.

3.9.1 Interrupt Entry and Exit

For all processors, the Interrupt Service Routine should exit using dspos_intrexit() entry in the dspOS kernel. dspos_intrexit() causes dspOS kernel to dispatch to the highest priority task.

3.9.2 Synchronizing With Tasks

An ISR usually communicates with one or more tasks, either directly, or indirectly as part of its input/output transactions. The nature of this communication is usually to drive a task, forcing it to run and handle the interrupting condition. This is similar to the task-to-task type of communication or synchronization, with two important differences.

First, an ISR is usually a communication/synchronization source — it often needs to return a semaphore, or send a message or an event to a task. An ISR is rarely a communication sink — it cannot wait for a message or an event. Second, a system call made from an ISR will always return immediately to the ISR, without going through the normal dspOS dispatch. As early as possible, the ISR should call the dspos_intrinit() entry in the dspOS kernel. dspos_intrinit() sets an internal flag to indicate that an interrupt is being serviced and then returns to the ISR.

If a task sends a message and wakes up a high priority task, the dspOS kernel must nevertheless return first to the ISR. This deferred dispatching is necessary, because the ISR must be allowed to complete. The dspOS kernel allows an ISR to make any of the synchronization sourcing system calls, including q_send to post messages to message queues, sm_v to return a semaphore, and ev_send to send events to tasks.

A typical system implementation, for example, can use a message queue for this ISR-to-task communication. A task requests and waits for a message at the queue. An ISR sends a message to the queue, thereby unblocking the task and making it ready to run. The ISR then exits using the dspos_intrexit() entry into the dspOS kernel.

Among other things, dspos_intrexit() causes the dspOS kernel to dispatch to run the highest priority task, which can be the interrupted running task, or the task just awakened by the ISR. The message, as usual, can be used to carry data or pointers to data, or for synchronization.

In some applications, an ISR might additionally have the need to dequeue messages from a message queue. For example, a message queue might be used to hold a chain of commands. Tasks needing service will send command messages to the queue. When an ISR finishes one command, it checks to see if the command chain is now empty. If not, then it will dequeue the next command in the chain and start it. To support this type of implementation, the dspOS kernel allows an ISR to make q_receive system calls to obtain messages from a queue, and sm_p calls to acquire a semaphore. Note, however, that these calls must use the “no-wait” option, so that the call will return whether or not a message or semaphore is available.

3.9.3 System Calls Allowed From an ISR

The restricted subset of dspOS system calls that can be issued from an ISR are as follows. Conditions necessary for the call to be issued from an ISR are in parentheses.

ev_send
Send events to a task.

q_receive
Get a message from an ordinary message queue (no-wait).

q_send
Post a message to end of an ordinary message queue.

sm_p
Acquire a semaphore (no-wait).

sm_v
Return a semaphore.

tm_tick
Announce a clock tick to the dspOS kernel.

As noted earlier, because an ISR cannot block, a q_receive, or sm_p call from an ISR must use the no-wait, i.e. unconditional return, option. All other dspOS system calls are either not meaningful in the context of an ISR, or can be functionally served by another system call. Making calls not listed above from an ISR will lead to dangerous race conditions, and unpredictable results.

AUTHOR:	P.E.Kamphuis

DOCUMENT NUMBER:	

PROJECT:	dspOS concepts

ISSUE:	DRAFT

DATE:	9-nov-2000

PAGE
11

