Creating a Boot ROM

Introduction

Since the IO DSP on the correlator board, starts its program execution from a boot ROM. It is required to create a suitable boot ROM. This document describes the required steps to create PROMs from a piece of code.

Code requirements

The ROM code of the IO DSP must provide basic functionality to the correlator board. This functionality include providing access to the correlator chips and booting application code. Therefore it is based on the standard IO DSP code. The main difference with the standard code is memory address where the code is located. For this reason a different linker command file is used.

Linker command file

The linker command file tells the linker where to locate memory sections in the address map. Basically it describes the physical memory layout of the board and instructs which memory section has to go where in the physical memory. Depending on the function of the memory section, it must either be located in memory or ROM.

IO DSP memory map

	memory
	address
	length
	comment

	BOOT
	0x00000000
	0x1
	reset vector

	ROM
	0x00000001
	0x3FFF
	boot ROM

	ASICA
	0x00021000
	0x8000
	GROUPA ASIC'S STARTING ADDRESS

	PERIPH
	0x00100000
	0x100
	C40 peripheral registers

	IRAM0
	0x002FF800
	0x400
	C40 internal RAM

	IRAM1
	0x002FFC00
	0x400
	C40 internal RAM

	GDATA
	0x80000000
	0x0800
	global RAM (reserved for data)

	GCODE
	0x80000800
	0x4000
	global RAM (reserved for code)

	HEAP
	0x80004800
	0x2B800
	global RAM (reserved for heap)

	ASICB
	0x80041000
	0x8000
	GROUPB ASIC'S STARTING ADDRESS

There are two basic types of sections:

_ Initialized sections contain data or executable code. The C compiler creates three initialized sections: .text, .cinit, and .const. The assembler creates also an initialized .data section.

_ Uninitialized sections reserve space in memory (usually RAM). A program can use this space at runtime for creating and storing variables. The compiler creates three uninitialized sections: .bss, .stack, and .sysmem.

The .text, .cinit, .const, and .data sections can be linked into either ROM or RAM. The .bss, .stack, and .sysmem sections should be linked into some type of RAM. Note, however, that the .bss and .const sections must be allocated in the same 64K data page for a small model,

Note: For the ROM code, the .const section only contains strings. Which are referenced by address and it is therefore not absolutely required for .bss and .const to be in the same 64K data page. So the .const section can be place in ROM. However future code changes might cause this to malfunction.

For the IO ROM the following section allocation is used.

	Section
	memory
	attribute
	comment

	.text
	ROM
	I
	all executable code as well as floating-point constants

	.cinit
	ROM
	I
	tables with values for initializing variables and constants

	.const
	ROM
	I
	floating-point constants and switch tables (also strings)

	.data
	IRAM0
	I
	initialized data from assembly code

	.cio
	ROM
	U
	section for tables from the stdio library

	.stack
	IRAM1
	U
	system stack, this is the default stack segment for the code.

	.bss
	IRAM0
	U
	space for global and static variables. In the small memory model (default) it contains also space for the constant table. At program start up, the C boot routine copies data out of the .cinit section and stores it in the .bss section.

	.vector
	IRAM0
	U
	interrupt vector table

	lgmicr
	PERIPH
	U
	local and global memory interface control registers

	mydata
	GDATA
	U
	

	asica
	ASICA
	U
	special defined section to place the data structure to access the correlator chips at the correct memory location

	asicb
	ASICB
	U
	special defined section to place the data structure to access the correlator chips at the correct memory location

	vectors
	VECS
	I
	reset vector

	.sysmem
	HEAP
	U
	memory pool, or heap, used by the dynamic memory functions.

	ioapp
	GDATA
	U
	

	dspos
	IRAM0
	U
	DSPOS uses it own section for its statically allocated tables.

Functionality

The following functionality is included in the IO ROM version.

· read static parameters

· write static parameters

· read dynamic parameters

· write dynamic parameters

· create lag read DMA table

· read lag data

· set validity and test parameters

· write IO memory

· boot IO DSP (jump to start location)

This include all the functionality required for normal test operations. The write memory and boot operations provide the ability to load application specific code when required.

Tools

The TMS320C3x/C4x assembler and linker create object files that are in common object file format (COFF), a binary object file format that encourages modular programming and provides flexible methods for managing code segments.

This COFF cannot be used for creating a boot ROM of the code; it has to be converted to a format accepted by an EPROM programmer. To do this a Hex Conversion Utility is provided in the C4x development tools. This utility can generate files in the following formats:

ASCII-Hex, supporting 16-bit addresses

Extended Tektronix Hexadecimal (Tektronix), supporting 32-bit addresses

Intel MCS-86 Hexadecimal (Intel) supporting 32-bit addresses

Motorola Exorciser (Motorola-S), supporting 16-bit, 24-bit, and 32-bit addresses

Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

To invoke the Hex Conversion Utility

hex30 [-options] filename

The ‘filename’ can be an object file or a command file.

To simplify the creation of files for the PROM programmer a command file is created.

This command file identifies the input file name, the object file created by the linker, and the format hex-files must be in. In this case the output format of Texas Instruments SDSMAC is used (-t).

iorom.out

-map iorom.xmp

-t

/* ROM Memory MAP */

ROMS

{

EPROM1: org = 0000h, len = 04000h, romwidth = 16

files = { iorom.t0, iorom.t1 }

}

Programming the PROMs

The two files generated by the HEX30 utility can by used to program the PROMs. There are however a few problems.

For some reason the byte ordering in the files in interpreted incorrectly by Promlink. For this reason a byte swap must be performed after a file is loaded.

The second problem that occurs is that location 0x4000 of the PROM must contain a control word. The value of this memory location must be set to 0x0008 for proper programming.

The device used for programming is: CYPRESS 7C276-PLCC

