1 Reference:

[1]
TMS320 Floating Point DSP optimizing C compiler User’s Guide, SPRU034

[2]
TMS320 Floating Point DSP assembly language tools User’s Guide, SPRU035

2 I/O DSP memory map



C40 map
Correlator board

0000
0000
Local bus (external)
EPROM

0000
0FFF



0000
1000



0000
1FFF








0002
0000

Correlator Group A

0002
8FFF



000F
FFFF



0010
0000
Peripherals (internal)
Internal memory and control

0010
00FF



0010
0100
Reserved


001F
FFFF



0020
0000
Reserved


002F
F7FF



002F
F800
RAM blk 0 (internal)


002F
FBFF



002F
FC00
RAM blk 1 (internal)


002F
FFFF



0030
0000
Local memory







7FFF
FFFF



8000
0000
Global memory
I/O RAM

8003
FFFF



8004
0000

Correlator group B

8004
8FFF








FFFF
FFFF



Name
Start address
Length
used
attribute
Section

IRAM0
002ff800
000000400
00000040
RWIX
.vector

IRAM1
002ffc00
000000400
00000000
RWIX


STACK
80000240
000001000
00001000
RWIX
.stack

VARS
80001240
000001000
0000056b
RWIX
.data

.bss

HEAP
80002240
000004000
00004000
RWIX
.sysmem

GRAM
80006240
000033dc0
00000000
RWIX


VECS
8003a000
000000001
00000001
RWIX
vectors

PROG
8003a001
000003fff
000015f1
RWIX
.text

.cinit

.const

Processing DSP memory map



C40 map
Correlator board

0000
0000
Local bus (external)
Local RAM A

0003
FFFF








000F
FFFF



0010
0000
Peripherals (internal)
Internal memory and control

0010
00FF



0010
0100
Reserved


001F
FFFF



0020
0000
Reserved


002F
F7FF



002F
F800
RAM blk 0 (internal)


002F
FBFF



002F
FC00
RAM blk 1 (internal)


002F
FFFF



0030
0000
Local memory







00C0
0000

Local RAM B

00C3
FFFF








7FFF
FFFF



8000
0000
Global memory
Global RAM






8003
FFFF








8010
0000

Control parameters

801F
FFFF



8020
0000

Dual port RAM

8020
03FF








FFFF
FFFF



name
Start address
length
used
attribute
section

ELRAMA
00000000
000100000
00000040
RWIX
.vector

IRAM0
002ff800
000000400
00000000
RWIX


IRAM1
002ffc00
000000400
00000000
RWIX


ELRAMB
00c00000
000100000
00000000
RWIX


VECS
80000000
000000240
00000001
RWIX
vectors

STACK
80000240
000001000
00001000
RWIX
.stack

PROG
80001240
00000edc0
0000633e
RWIX
.text

.cinit

.data

.const

.bss

.sysmem

EGRAM
80010000
000030000
00000000
RWIX


Changes to the memory map.

For the processing the heap is changed to the entire section of EGRAM. So all the process DSP’s global data memory is under DSP control. It is also an advantage to combine the interrupt vector segment with the software trap vectors. 

Correlator DSP compiler, linker and assembler settings

The compiler and linker settings are related to the target processor, IO or processing, and possible debug requirements. In general it can be stated that a small memory and stack based model is required for a C40 target DSP. This means that the data segment is maximally 64K words large and that function parameters are passed via the stack.

The small memory model requires that all external variables, global variables, static variables, and compiler generated constants in the program fit into a single 64K word long data page. This allows the to access any of these objects without modifying the data page (DP) register. There are no restrictions on the size of the code, automatic data, or dynamically allocated data.

When using the small memory model the .bss section must be less than 64K words and it must not cross any 64K-page boundary. This can be achieved by linking the .bss section using the block attribute of the SECTIONS directive

The statement:

.bss: load = block(0x10000)

when used with the SECTIONS directive, will force the .bss section into a 64K data page if the size of the .bss section is less than 64K.

2.1 Compiler switches

-v40
target processor TMS320C40

-o2
optimization level 2. (see [1]: page 2-39)

-dwhichDSP=processDSP

2.1.1 Additional switches for debugging:

-g
generate symbolic debugging directives that are used by C source level debuggers. This will disable optimization.

-as
write label definitions to symbol table for symbolic debugging

2.1.2 Additional useful options

-s
interlist C and assembly source statements. (

-k
keep .asm file

-pf
generate prototypes for functions

-pw2
enable all warning messages

-mn
re-enables optimizations disabled by –g

-mi
disable the use of RPTS instructions for loops and uses RPTB instead. This allows loops to be interrupted

-mf
force compiler to always honor indirection on external objects. Useful when external objects are addressed outside the .bss section. ([1] page 2-21)

-x
invoke the optimizer at level 2 and defines the _INLINE preprocessor symbol, which causes all functions defined or declared as inline to be expanded in line

2.2 Assembler switches

-v40
target processor TMS320C40

Additional switches for debugging:

-s
make symbols global, for symbolic debugging

2.3 Linker options

-c

use ROM autoinitialization model

-heap size
set heap size to size words

-o outputfile
name the executable output module

-stack size
set stack size to size words

-m mapfile
generate a map-file named mapfile
-l filename
names an archive library file as linker input

-w

generate a warning when an output section is created that is not specified with the SECTIONS directive

2.4 TI run time libraries

Build of the standard TI development libraries

mk30 –v40 –o2 –mf –mi –x ––h ––k rts.src –l rts40.lib

mk30 –v40 –o2 -mn ––h ––k prts40.src –l prts40.lib

or for the debug versions

mk30 –v40 –o2 –mf –mi –x –g ––h ––k rts.src –l rts40g.lib

mk30 –v40 –g –o2 ––h ––k prts40.src –l prts40g.lib

2.5 Assembler

as30 –v40 filename
debug version

as30 –v40 –s filename
2.6 C compiler

cl30 –v40 –o2 –mn –dwhichDSP=type filename
debug version

cl30 –v40 –g –as –dwhichDSP=type filename
type is one of the following; processDSP,ioDSP

2.7 Linker

The linker options are included in the linker command file. 

2.7.1.1 To be specified

DMA tables

Position
Item
Description

0
Control register
Contains status and mode information for associated DMA channel

1
Source Address
Memory address of data to be read

2
Source Address index
Step size used to increment or decrement the source address register

3
Transfer Count
Number of words to transfer

4
Destination Address
Memory address of data to be written

5
Destination Address index
Step size used to increment or decrement the destination address register

6
Link pointer
Memory address of data to autoinitialize the DMA channel registers

(next DMA table)

When the DSP creates the DMA tables it assumes that a continuous memory block is available that can contain the (linked) DMA tables.

Note: There are several exceptions to this situation, for some functions DMA tables are allocated by the DSP and in other situations the size of the DMA tables are different.

When a data transfer is started from I/O to process DSP on one of the DSP’s, a receiving or transmitting DMA task is initiated on the other DSP.

Note: At this point it seems that the data transfer from I/O DSP to process DSP are tasks for the process DSP. It is only possible to start a client task at the I/O DSP, during this task execution the I/O DSP is locked. (e.g. does not execute ‘normal’ DSP code)

Message passing and error reporting

In the Haystack correlator DSP code is error reporting and message passing performed by interrupting the CUCC. In the DZB and EVN/JIVE correlator this is not acceptable.

The message and error-reporting interface between the DSP and the CUCC consist of two items:

Item
Dual port address
description

Message code
0x3f4-0x3f7
actual message or error

Message type
0x3fe
message type identifier (written in mailbox register to interrupt CUCC

In general the mechanism is simple. The message is written in the message code location by the DSP. After that the message identifier is written in the message type location to interrupt the CUCC. On interrupt the CUCC reads the message type and message code from the dual port memory locations and writes the transfer terminator character (0xfe) in the message type location.

Message types

TASK_IS_COMPLETE
0x00

ERROR_CONDITION
0x01

POWERUP_COMPLETE
0x02

DIAG_COMPLETE
0x60000000

All messages are placed directly in the dual port memory except for the error messages. The error messages are placed in a queue like structure. The following functions are used to handle the queue and the error messages.

void zeroErrorQueue()
Clear the error queue to initial values.

void processError(unsigned *dataArea)
Wrapper function around error_handler

void error_handler(unsigned int *dataArea)
Calls for every error in queue the reportError function

void error_type(unsigned int error)
Place error in the queue

void reportError(unsigned int *dataArea)
Report the next error in the queue to the CUCC. For the IO DSP the error message is send to the process DSP.

Additional function

void interruptCUCC(unsigned int flag)
Place the message type (flag) in the dual port memory to interrupt the CUCC

void messageDpRAM(unsigned int message)
Place a message in the dual port memory

At some positions in the code there is also direct write access to the dual port memory locations.

2.8 Changes in message and error handling

The major change in the error handling is the removal of the interrupt to the CUCC. This implies that the CUCC gets another task to check for messages on a regular interval. Adding an additional scheduler command to report a message out of the queue does this. The only way to handle this correctly is to perform all message passing through the queue. For this reason the function WriteQueue is added. 

In order to be able to generate the VME interrupt the function InterruptCUCC is changed to a wrapper function for writing to the queue.

Item
Dual port address
Description

Message code
0x3f4-0x3f7
actual message or error

Message type
0x3fd
message type identifier

void zeroErrorQueue()
Clear the error queue to initial values. Note: the queue is now a true fifo (circular buffer)

void error_type(unsigned int error)
changed to a wrapper function around WriteQueue

void WriteQueue(unsigned int type,unsigned int code)
Places a message code and message type in the queue.

void interruptCUCC(unsigned int flag)
changed to a wrapper function around WriteQueue

void reportError(unsigned int *dataArea)
This function checks to see if there is a message in the queue. If so it writes the message into dual port memory and writes the message type to location 0x3fd or 0x3fe depending if DSP-CUCC VME interrupts are used or not.

The use of the VME interrupt can now be turned on and off by setting the define VMEint in common.h. The VME interrupt functionality is not tested, but it supposed to work as previously with the exception that all messages are first placed in the fifo.

Note: at this point all messages from IO DSP to process DSP are treated as errors. Some modification is required to be able to transfer messages too.

Stack handling

There are stack-related problems in the correlator DSP code.

In general it is supposed that every task has its own stack. The C-language based stack is identified by two pointers; the stack pointer and the stack frame pointer. The stack pointer points to the last used position on the stack. The stack frame pointer is used to address the function parameters, by using a negative offset, and addressing the local variables, by using a positive offset. The address of the frame pointer itself contains the frame pointer of the caller function.

2.9 In general the use of a C-stack is as follows.

Prior to a function call the parameters are placed on stack, The call it self results in the return address placed on stack. Within the function the previous frame pointer is pushed on stack and the current frame pointer is set to the current stack pointer. Then the local variables are allocated on stack. After this the actual function is executed. At the end of the function, the local variables are removed from stack. The previous frame pointer is popped from stack and a return is executed to return to the caller function.

[image: image1.emf]parameter

return

address

previous

frame

pointer

FP,SP


General stack layout after a function call with one parameter

2.10 Main scheduler function

In the correlator DSP code, the function entry() is the main scheduler function. This function checks to see if there is a task ready to be scheduled. It uses however an odd way to perform the looping in this function. Prior to calling entry() for the first time, the stack pointer is saved.

Note: the frame pointer is not saved.

[image: image2.emf]return

address

previous

frame

pointer

FP,SP

c_int00 called main

return

address

previous

frame

pointer

main called entry

mainstack


Stack layout after calling entry() from main

At some point in the function entry() the function restoreStack() is called. This function resets the stack pointer to the value stored prior to calling entry(). Prior to placing a new return address on stack, the stack pointer is incremented with one position. The result is that the return address for the main() calls entry() call is kept on stack. The new return is required for the return of the restoreStack call. This new return address is the starting address of the function entry(). The result is that entry() is not called, but jumped to. However the stack looks like the actual call is made.

Note: frame pointer now contains the frame pointer value of the previous call to entry().

What is the reason for user written stack handling functions, why not use the run-time support functions setjmp() and longjmp() (setjmp.h). These functions are intended for the same functionality as initialStack() and restoreStack() but conform to the C-language register convention.

[image: image3.emf]return

address

previous

frame

pointer

FP,SP

c_int00 called main

return

address

previous

frame

pointer

main called entry

mainstack

this address is assumed to be

still correctly on stack


stack layout after restoreStack() from within entry()

2.11 Calling another task.

There are three situations where a switch to another task is made, after a BOCF interrupt, tasks that previously have been interrupted by the BOCF and tasks that need to be executed on the first occasion.

2.11.1 Task executed on the first occasion.

When a task is scheduled to be executed immediately, the scheduler will execute this function without the presence of a BOCF interrupt. When a task is executed, the following actions take place. First the task’s state is set to running. Then the stack is switched to the task’s own stack by calling changeStack() with the task’s stack pointer as a parameter. 

ChangeStack() copies everything from mainstack up to the stack pointer to the new stack.

[image: image4.emf]return

address

previous

frame

pointer

FP,SP

c_int00 called main

return

address

previous

frame

pointer

main called entry

mainstack

return

address

previous

frame

pointer

entry called changeStack

previous

frame

pointer

SP

return

address

previous

frame

pointer

main called entry

return

address

entry called changeStack

FP


Newly created stack for task to run

Note: The frame pointers on the tasks stack point to the scheduler’s stack and not to the task’s stack.

There is no apperenant reason for copying the part of the stack contents of the main stack to the task’s stack. Removing this copying can improve execution performance.

After the task’s function is executed the stack is reverted back to the original stack by calling restoreStack(). This implies that the task’s stack is completely discarded and the scheduler’s stack is changed to the state as described previously.

2.11.2 BOCF interrupt

The BOCF interrupt can occur in two different situations, while executing the scheduler function entry() or while executing a task function.

When a BOCF interrupt occurs, the following actions are taken. First the entire register contents is written to stack. After this the stack pointer is stored in a intermediate storage.

After this it is checked to see if there is currently a task running. If so it’s context is saved. After this all the scheduling parameters of the tasks are updated. Finally the schedulers stack is loaded and after the interrupt return, program execution is resumed by calling entry().

A context switch is performed when a task it interrupted. At a context switch the processor state (register contents) is written to the task’s stack. A pointer to the final stack position is stored in order to be able to resume the task at a later stage. (stackArea and stackIndex are variables that identify the task’s stack location)

[image: image5.emf]interimStack

interimStack

ret.address

main called entry

entry called task function

FP

register

contents

BOCF interrupt

prev FP

ret.address

prev FP

ret.address

stackArea,stackIndex


task stack after context switch

Note: After the context switch, the frame pointer still points to the task stack. This could be a problem because local variables are referenced with respect to the frame pointer.

Note: The first position on the task stack is overwritten with a pointer to the end of the stack. The value that was available at this position of the stack (prev. FP) is overwritten and lost.

Speed optimization

This section contains a summarization of possibilities to optimize the DSP code. 

Remove volatile whenever possible. In general volatile is only required for memory mapped IO or for variables (i.e. semaphores) that are accessed in concurrent tasks. In the DSP code only the DMA semaphores are required to be volatile.

Don’t use 

Linkpointer->head

Linkpointer->tail

Instead of this declare

struct blockTCB *head;

struct blockTCB *tail;

And use these for addressing the beginning and end of the task list.

In general it is good practice to avoid pointer references.

The task list is prioritized list. So keep a pointer to the current position in the task list. Searching for the next task will continue from this position. Only after a BOCF interrupt and the accompanying update of the task list the search has to be restarted from the beginning of the list.

Change the usage and behavior of the parseMemory function. Currently this function reads a word from a memory location and extracts a bit field out of this word. In general this is not a problem except when multiple bit fields are to be extracted from the same word. In that case the word is read many times over and over again. This is especially time consuming when the word is located in dual port memory. A good example of this is the function addTCB in schedule.c. It contains a sequence of four parseMemory calls to read the same memory location. 

Note: The dynamic calculation of the shift factor in parseMemory is also a time consuming action.

A far more efficient way of doing this is

Result = readMemory(location);

Bitfield1 = (Result & MASK1) >> POSITION1

Bitfield2 = (Result & MASK2) >> POSITION2

DSP cycle time

2 * clock period = 2 * 25 nsec = 50 nsec for 40 MHz C40

IO DSP tasks

In the current implementation it is not possible to schedule tasks on the IO DSP. The software is clearly designed to perform all the processing on the processing DSP. In the current situation the IO DSP is only used to transfer correlator chip data to the processing DSP and all on initiative of this processing DSP. So on the IO DSP the scheduler is not really used.

Reading correlator data

In the lagdataread implementation a DMA transfer is started for every data item in a correlator block (i.e. right lag data, left lag data, header data). This results in 24 DMA transfers to read one correlator chip, which results in 768 DMA separate DMA transfers to read all 32 correlator chips.

The implementation also handles some seldom-used cases like storing the data on the IO processor instead of the processing DSP. The implementation is also very inefficient for discarding the validity count when it is not needed. Using a dummy one word DMA transfer for every validity count (64 in total) does this.

The following parameters are used in the DSP_lag_data_read TCB:

RIGHT_ADDR
address of a table for storing the right lag data. It must be able to hold the right lag data (32 words + 1 word validity) for each correlator block and for all correlator chips used. (size = 33 * 8 (blocks) * num_of_chips = 8448 words)

LEFT_ADDR
address of a table for storing the left lag data. It must be able to hold the left lag data (32 words + 1 word validity) for each correlator block and for all correlator chips used. (size = 33 * 8 (blocks) * num_of_chips = 8448 words)

HEAD_ADDR
address of a table for storing the header data. It must be able to hold the header data (10 words) for each correlator block and for all correlator chips used. (size = 10 * 8 (blocks) * num_of_chips = 2560 words)

RIGHT_INC
address increment for the storage position of the next correlator block in the right lag data array. Normally this value is 33. If the validity count has to be discarded, this value can be set to 32.

LEFT_INC
address increment for the storage position of the next correlator block in the left lag data array. Normally this value is 33. If the validity count has to be discarded, this value can be set to 32.

HEAD_INC
address increment for the storage position of the next correlator block in the header data array. Normally this value is 10.

Note: It is possible to define a storage table with interleaved left and right lag data, and also including header data. In that situation the values of the increments will have to be changed.

Interleaved right and left data


Address
Increment

Right
Base address
66

Left
Base address + 33
66

Header
Header Base address
10

Interleaved right, left and header data


Address
Increment

Right
Base address
76

Left
Base address + 33
76

Header
Base address + 33
76

DAT_ADDR
address of the DMA access table. This table has a fixed length of 768 words, consisting of 256 entries of 3 words for each correlator block (8 blocks for each correlator chip). The 3 words identify the position in data table, where the specific block data has to be stored. In general all three values will be the same.

SRC_DMA_ADDR
address in the IO processor memory space where the DMA table is to be created.

DST_DMA_ADDR
address in the processing DSP memory space where the DMA table is to be created.

Reading correlator data

The current implementation for reading correlator data is to complicate to use efficiently. For the final implementation the following sequence is proposed.

2.12 Correlator chip data

Task 1 : reading correlator chip data

This task supports two modes. One for setting up the DMA tables and the second mode for the actual data transfer.

Using the chip mask the correlator chips in use are identified. On the IO DSP a linked DMA list is created for transferring the correlator data for each selected correlator chip to the processing DSP. Note that an entire correlator chip is read in one go, so data including validity count and headers for all correlator blocks.

Correlator blocks are received from the IO DSP by the processing DSP and stored directly in global memory. So the data in the global memory is a direct image of the correlator data read.

A possibility should be kept to use a double buffer in the global memory for the correlator data. By allowing this it is possible to have the correlator received in one buffer, while processing (integrating) the previously receive data. (Currently not implemented)

TASK FIELD
MODE
FLAGS


I
MEM_ID
SRC_DMA_ADDR


I
MEM_ID
DST_DMA_ADDR


I
MEM_ID
DEST_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 1: TCB for lagDataRead
where

Word
Bits
Name
Explanation

4
7-0
FLAGS



15-8
MODE
1
LAGR_INIT
initialization

2
LAGR_DO_DMA
do data transfer


31-16
TASK FIELD
Not Used

5
23-0
SRC_DMA_ADDR
Source Address at which DMA table exists or is to be generated (on IO DSP)

6
23-0
DST_DMA_ADDR
Address at which destination DMA table exists or is to be generated (on Proc DSP)

7
23-0
DEST_ADDR
Destination address of correlator data in global memory

8
31-0
CHIPMASK
Mask indicating correlator chips to be read, corresponding to chips 31-0, respectively

Table 2: Explanation for lagDataRead TCB

2.13 Data transfer to PCI

Task 2 : transfer data to PCI

As soon as the correlator data is received by the processing DSP the DMA transfer can be started to transfer the data from the global memory to the PCI.

This task has two modes, one for initialization and a second mode to perform the transfer.

TASK FIELD
MODE
FLAGS


I
MEM_ID
DMA_ADDR


I
MEM_ID
SRC_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 3: TCB for lagDataToPCI
where

Word
Bits
Name
Explanation

4
7-0
FLAGS



15-8
MODE
1
CPCI_INIT
initialization

2
CPCI_DODMA
do data transfer


31-16
TASK FIELD
Not Used

5
23-0
DMA_ADDR
Source Address at which DMA table exists or is to be generated

6
23-0
SRC_ADDR
Base address of ‘right-cell’ array in global memory

7
31-0
CHIPMASK
Mask indicating correlator chips to be read, corresponding to chips 31-0, respectively

Table 4: Explanation for lagDataToPCI TCB

2.14 Header data to IO DSP

Task 3 : transfer headers to IO DSP

This task reads the headers out of the correlator data stored in the global memory. These headers are transferred back to the IO DSP. The headers are send back to the IO DSP in the same sequence as they where read from the correlator chips.

Because it is not possible to schedule tasks on the IO DSP, it is required to add a command to start processing the dynamic parameters on the IO DSP. This command has to be executed by the processing DSP after it finishes the transfer of the header data.

TASK FIELD
MODE
FLAGS


I
MEM_ID
SCR_DMA_ADDR


I
MEM_ID
DST_DMA_ADDR


I
MEM_ID
SRC_ADDR


I
MEM_ID
DST_ADDR


I
MEM_ID
HEAD_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 5: TCB for HeaderToIO
where

Word
Bits
Name
Explanation

4
7-0
FLAGS



15-8
MODE
1
HEADIO_INIT
initialization

2
HEADIO_DODMA
do data transfer


31-16
TASK FIELD
Not Used

5
23-0
SRC_DMA_ADDR
Address of the DMA table in the processing DSP

6
23-0
DST_DMA_ADDR
Address of the DMA table on the IO DSP

7
23-0
SRC_ADDR
Address where the correlator data resides in memory

8
23-0
DST_ADDR
Address where the header data must be stored on the IO DSP

8
23-0
HEAD_ADDR
Address of header address table

9
31-0
CHIPMASK
Mask indicating correlator chips to be read, corresponding to chips 31-0, respectively

Table 6: Explanation for HeadersToIO TCB

2.15 Integration

Task 4 : integrate data

This task should be able to integrate or copy the correlator data into the appropriate target buffers in the local memory buffers. This action uses a given DAT table to reorder the correlator blocks into a correct sequence. The switch from local memory A to local memory B should be made on initiative of the RT-system. (It still has to be decided how to do this synchronously)

TASK FIELD
MODE
FLAGS


I
MEM_ID
DAT_ADDR


I
MEM_ID
SRC_ADDR

Chipmask

31
24
23
16
15
8
7
0

Table 7: TCB for IntegrateData
where

Word
Bits
Name
Explanation

4
7-0
FLAGS



15-8
MODE
1
INTGR_INIT
initialization

2
INTGR_MOVE
perform no integration, just move data to local memory

3
INTGR_INT
integration to local memory buffer


31-16
TASK FIELD
Not Used

5
23-0
DAT_ADDR
DAT address

6
23-0
SRC_ADDR
Base address of correlator data

7
31-0
CHIPMASK
Mask indicating correlator chips to be read, corresponding to chips 31-0, respectively

Table 8: Explanation for IntegrateData TCB

2.16 Astron DSP Application

The four previously described tasks can make up the entire processing on the processing DSP as an application. In order to keep the details from the RT-system an application task is created which takes care of all implementation details for such an application. 

TASK FIELD
MODE
FLAGS


I
MEM_ID
DAT_ADDR


I
MEM_ID
HEAD_TABLE

Chipmask

31
24
23
16
15
8
7
0

Table 9: TCB for Application1
where

Word
Bits
Name
Explanation

4
7-0
FLAGS



15-8
MODE
1
APP1_INIT
initialization

2
APP1_REMOVE
remove all tasks and allocated memory


31-16
TASK FIELD
Not Used

5
23-0
DAT_ADDR
Addres of DAT table

6
23-0
HEAD_TABLE
Address for header address table, used in calculating dynamic parameters

7
31-0
CHIPMASK
Mask indicating correlator chips to be read, corresponding to chips 31-0, respectively

Table 10: Explanation for Application1 TCB

The DAT table is used to reorder the correlator blocks to the correct sequence. This table has to be supplied in local memory; it is however copied to DSP global memory during initialization. If no DAT table is required a NULL value can be supplied. In that situation a standard DAT table will be created internally.

Because all four tasks need initialization, there are also for initialization tasks scheduled. These tasks will be executed immediately and only once.

initialization


Priority
Period
Bocf

LagDataRead 
255
0
1

LagDataToPCI 
255
0
1

HeadersToIO
255
0
1

IntegrateData
255
0
1

For execution the four tasks must be executed every BOCF interrupt and in the correct sequence.

execution


Priority
Period
Bocf

LagDataRead 
1
1
1

LagDataToPCI 
2
1
1

HeadersToIO
2
1
1

IntegrateData
3
1
1

2.17 Starting and stopping applications

In order to be able start and stop integration and to switch from memory bank, an additional location (0x3fc) in dual port memory is defined. In order perform this control operation in a synchronized fashion, this dual port memory location is read by the DSP on the rising edge of the BOCF pulse. A copy is made for internal usage. This copy is copied to the working variable on the falling edge BOCF interrupt. By doing so it is guaranteed that all executing task refer to the same local memory bank during a BOCF period.

0x3fc
application control word. This byte can be used to pass a control word to the active application. Two bits are defined in this byte.

Bit 0 –
indicates which memory bank to use Local A (0) or local B (1)

Bit 1 –
indicates a start/stop condition for the application. (0-stop / 1-start)

Bit 2 –
indicates if hardware access is allowed for the DSPs. (0-no hardware access / 1 – hardware access)

Bit 3 –
indicates data to PCI on or off (0 – off / 1 – on)

2.18 DSP Task commands

The following DSP task commands are available for scheduling by the RT system.

0
not used

1
DSP_lag_data_read

2
DSP_static_data_r/w

3
DSP_dynamic_data_r/w

4
DSP_crossbar_write

5
DSP_set_global_mode

6
DSP_mem_to_mem

7
DSP_dpram_copy

8
DSP_mem_alloc

9
DSP_demux_data

10
DSP_zero_array

11
Application1

12
reserved

13
reserved

2.19 Inter processor communication

For communication between the DSPs on the correlator board the communication ports of the C40 DSPs are used. The C40 DSP’s each have six communications ports available. By default they have the following configuration.

COMM 0
send

COMM 1
send

COMM 2
send

COMM 3
receive

COMM 4
receive

COMM 5
receive

For communication between the two DSPs there are four of the communication ports used for each DSP. This allows for four independent communication channels, two in each direction. Therefor it is possible to have a separate data and message channel in each direction. The following table shows how the communication ports are interconnected and which purpose the channels serve. The two remaining communication ports on the processing DSP are externally available as high speed input and output.

Communication port inter connection

Processing DSP
IO DSP
function

0
-
external send

1
3
Message IO->PR

2
4
Message PR->IO

3
0
Data IO->PR

4
1
Data PR->IO

5
-
external receive

Some of the inter processor communication involves interrupts. What follows is an overview of the required communication and DMA interrupts.

Communication port interrupts are only required for the channels receiving messages, comm 4 on the IO DSP and comm 1 on the processing DSP. This interrupt signals the DSP’s for available incoming data in the communication ports input fifo. Incoming data is read from the fifo inside the interrupt service routine and is interpreted as a command and accompanying data.

Message receive interrupt on the processing DSP

Interrupt 18 (12h)

Bit 6 of the IIE register has to be set to 1 to enable the interrupt.

Message receive interrupt on the IO DSP

Interrupt 30 (1Eh)

Bit 18 of the IIE register has to be set to 1 to enable the interrupt.

For the DMA data transfers the following interrupt service routines are installed. These are called when the DMA transfer is finished.

Data transfer interrupt on DMA channel 3 of the processing DSP

Interrupt 40 (28h)

Bit 28 of the IIE register has to be set to 1 to enable the interrupt.

Data transfer interrupt on DMA channel 4 of the processing DSP

Interrupt 41 (29h)

Bit 29 of the IIE register has to be set to 1 to enable the interrupt.

Data transfer interrupt on DMA channel 0 of the IO DSP

Interrupt 37 (25h)

Bit 25 of the IIE register has to be set to 1 to enable the interrupt.

Data transfer interrupt on DMA channel 1 of the IO DSP

Interrupt 38 (26h)

Bit 26 of the IIE register has to be set to 1 to enable the interrupt.

2.20 Memory Setup for IO DSP

Because on the IO DSP it is not possible to allocated memory for buffers, it is chosen to allocate these buffers on fixed locations for the applications.

For application 1; reading correlator data, moving data to PCI, calculated dynamic parameters and integration, several buffers are required on the IO DSP.

DMA table 1
32*7 = 224
0x80039F00
for reading correlator data

DMA table 2
32*7 = 224
0x80039E00
receiving header data from processing DSP

Storage area
32*8*10 = 2560
0x80039400
buffer to store received header data before processing it.

1
13

