Synthetic Images of Plasma at the Black Hole Event Horizon

Monika Mościbrodzka

European Research Council

Established by the European Commission

 A goal: comparison of realistic models of accretion flows and jets to EHT observations to find out what Sgr A* radio source is

- solve ideal–MHD equations on the standard Kerr metric background or other metric (MHD models in alternative gravity theories developed by BHCAM–Frankfurt)
- set initial conditions until quasi-stationary solution is obtained
- feed the simulation into the radiative transfer code to calculate the apperance which depends on
 - MHD simulation parameters (≥ 5)
 - radiative transfer parameters (≥ 6)

- rotating torus (donut) in hydrostatic equilibrium - analytical solution found in 70ties
- size of the torus
 - $R_{in} = 6 GM_{\rm BH}/c^2$
 - $R_{max} = 12 \, GM_{\rm BH}/c^2$
 - reliable disk solution within ~ R_{max}

spin of the BH: a ∈ (0, 0.98)

• size of the computational domain: $R_{out} = 40,240 \ GM_{\rm BH}/c^2$ or larger if we want to model multiwavelength emission from jets

Simulations initial conditions for B-fields and the "expensive" parameters

B-field topology: dipole loop

• B-field strength (parameterized by $\beta_{init,max} = P_{gas}/P_{mag}$)

 weak B-fields: β_{max,init} = 200; disk known to be unstable (magnetorotational instability)

 for dipole formation of a jet is guaranteed and no large scale field cancellations (reconnections in the ideal-MHD simulations produce an artificial variability)

r [Rg] Fig: 2-D slice at initial time: density (color) and magnetic field geometry (lines)

 models extensively studied in last decade; other flavors: magnetically arrested disks (big torus with weak B-fields = eventually more magnetic flux accumulates near the BH and magnetic barrier forms), thin disks, tilted disk (BH and disk angular momentum vector misaligned) ...

HARM-3D (Scott Noble version)

BHAC (new code developed by BHCAM–Frankfurt)

- has AMR to better resolve areas of interests e.g., the jet-disk boundary
- will have resistivity for physical reconnections (other B field topologies will be possible soon)
- we hope to capture more physics with the new simulations

Plasma dynamics close to the BH - spin dependence

Fig: Constant density contours of a 3-D GRMHD model, HARM3D, 25 light crossing times ($R_{out} = 40 G M_{\rm BH} / c^2$), res: $192 \times 128 \times 64$ in log spherical-polar coordinates ($N_{\log r} \times N_{\theta} \times N_{\phi}$), computation of 1 model = 24-40h on 192 CPU cores on Radboud University computer cluster

MOVIE

Fig: Constant density contours of a 3-D GRMHD model, HARM3D, 25 light crossing times ($R_{out} = 40 G M_{\rm BH}/c^2$), res: $192 \times 128 \times 64$ in log spherical-polar coordinates ($N_{\log r} \times N_{\theta} \times N_{\phi}$), computation of 1 model (40 h on 192 CPU cores on Radboud University computer cluster)

$\mathbf{M}_{\mathbf{BH}}$ - mass of the black hole

• to convert geometrized unit system (G=c=1) to something useful:

- size conversion: $[R_g] \rightarrow [cm]$
- time conversion: $[R_g] \rightarrow [\text{seconds}].$
- $M_{Sgr A*} = 3.86 \pm 0.14 \times 10^{6} M_{\odot}$ (Chatzopoulos et al. 2015)
- $M_{M87} = 3.2, 3.5$, and $6.2^{+0.9}_{-0.7} \times 10^9 M_{\odot}$ (Macchetto et al. 1997, Walsh et al. 2013, Gebhardt et al. 2011)

D - distance to the radio source

- to convert Intensity of radiation into flux
- to scale the size of the model on the sky
- D_{Sgr A*} = 8.27 ± 0.1 kpc (Chatzopoulos et al. 2015)
- D_{M87} = 16.7 ± 1.1 kpc (Mei et al. 2007)

Geometry parameter

i - our viewing angle

Geometry parameter

PA - position angle of BH spin on the sky

Plasma physics

 $T_{\rm p}/T_{\rm e}$ - describes coupling of electrons and protons in collisionless plasma

$$\frac{T_{\rm p}}{T_{\rm e}} = R_{\rm high} \frac{b^2}{1+b^2} + R_{\rm low} \frac{1}{1+b^2}$$
(1)

where $b = \beta/\beta_{crit}$ and $\beta = P_{gas}/P_{mag}$. $\beta_{crit} = 1$ (also a parameter), R_{high} and R_{low} are free parameters $\in (1, 100)$

Radiation flux normalization

- mass of the accretion disk or $\dot{\mathbf{M}}$ (~ $10^{-9} 10^{-7} M_{\odot} yr^{-1}$)
- normalize the model to 2.4 Jansky (normalzation depends on i, T_p/T_e , and GRMHD parameters e.g., *a*)

Examples of GRMHD models scaled to Sgr A* Synchrotron intensity maps at $\lambda = 1.3$ mm

ep coupling effect (disk to jet dominated - left to right) and viewing angle (30-90, top to bottom

Disk emission dominated a=(0,0.5,0.94,0.98):

Jet emission dominated a=(0,0.5,0.94,0.98):

Disk emission dominated i=(30,60,90,120,150):

MOVIE 1

Jet emission dominated i=(30,60,90,120,150):

MOVIE 2

DONE

- non-MHD models: analytical hot spots, analytical models of advection dominated accretion flows
- electron distribution functions: thermal (T_e) + power-law (η , p, γ_{min} , γ_{max})
- convolution with arbitrary scattering, visibility, closure stuff calculator (we can make a robust comparison, but no fitting the model to the data)
- synthetic images can be used to test e.g. various image reconstruction methods

UNDER DEVELOPMENT AT RADBOUD UNIVERSITY

evolution of the polarization tensor in the plasma frame

FUTURE

 interface with MeqTrees package to perform the Bayesian analysis for parameters chosen in a Monte Carlo fashion

