Global (3)mm VLBI : a brief summary and overview of the standard data analysis path

T.P.Krichbaum

Max-Planck-Institut für Radioastronomie Bonn, Germany

tkrichbaum@mpifr.de

The Global Millimeter VLBI Array (GMVA)

Imaging with ~40 µas resolution at 86 GHz

Baseline Sensitivity

in Europe:

<u>30 – 300 mJy</u>

in US:

<u>100 – 300 mJy</u>

transatlantic:

<u>50 – 300 mJy</u>

Array:

<u>1 – 3 mJy / hr</u>

(assume 7σ , 100sec, 512 Mbps)

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Europe: Effelsberg (100m), Pico Veleta (30m), Plateau de Bure (35m), Onsala (20m), Metsähovi (14m), Yebes (40m), GBT (100m), planned: KVN, SRT, ALMA, ...
- USA: 8 x VLBA (25m)

Proposal deadlines: February 1st, August 1st

- a global 14 station VLBI array allowing high dynamic range imaging with an angular resolution of up to 40 μ as at 86 GHz
- 3 4 times higher sensitivity than stand-alone VLBA (standard 2 Gbps recording, max. 7σ baseline sensitivity is ~ 25-150 mJy)
- 2 epochs/year, each session ~ 3 5 days long (limitation by proposal pressure), single- or dual polarisation
- block schedule preparation by GMVA to optimize array calibration
- correlation at MPIfR Bonn correlator (including quality control)
- UV-FITS formated AIPS data files provided to user (FITLD)
- open to community by usual proposal procedures (proposal deadlines Feb. 1st for observation in autumn and Aug. 1st for observation in spring)

Typical uv-coverages of the Global 3mm VLBI Array

Dec. +70

 $\overline{D}ec. +40$

Dec. 0

3mm VLBI sensitivity enhanced by inclusion of large European mm-telescopes:

Plateau de Bure, 6 x 15 m (IRAM, France)

Baseline lengths (km):

	PV	PdB	Yb
EB	1700	658	1352
PV		1146	384
PdB			866

participating on best effort basis since 2011

fringe spacing: 0.4 - 1.8 mas, sensitivity > 35 - 65 mJy (7 σ , 512 Mbps)

SEFD ~ 164 K app. eff ~ 0.26 (for σ = 173 mm)

POSSM plot after FRING:

Green Bank 100m telescope participates in GMVA 3mm VLBI observations 1st test observations in Feb. 2013 2 Gbps, 1 RDBE, PFB mode

First fringes between KVN and GMVA at 86 GHz in spring 2013:

KVN Yonsei - P. de Bure (256 Mbps)

baseline sensitivities: KVN – GBT ~0.07 Jy KVN – IRAM ~0.15 Jy KVN – VLBA ~0.35 Jy (7 σ, t=10 sec, 1024 Mbps)

after correlation: Data export

From correlation to fringe fitting

- MK4 correlator (< 2013) and DifX correlator (> 2012)
- VLBI standard: correlators should deliver IDI-FITS files to user (Flatters 1998, AIPS Memo 102; Greisen 2009, AIPS Memo 114)
- export from old MK4 correlator: via FITLD into AIPS or through HOPS into AIPS with MK4IN (Alef & Graham)
- export from new DifX correlator: via difx2fits (into AIPS) or difx2mk4 (into HOPS)
- at present there is no 'official' path from HOPS into IDI-FITS and AIPS
- at least 3 data paths possible:
 - 1) difx2fits -> AIPS (FITLD, FRING)
 - 2) difx2mk4 -> Fourfit -> Fringex -> frx2uvf -> AIPS / Difmap
 - 3) old MK4 -> Fourfit –X -> MK4IN -> AIPS (FRING)

or -> FITLD -> AIPS(FRING)

unfortunately the correlated raw amplitudes after export using method 1, 2 and 3 seem to be not always identical, with differences of up to ~20%. This needs further investigation.

difx2fits, FITLD, FRING

test data: BLLac at 230 GHz, March 27, 2013

DIFX

(degrees)

Closure phase

0

MK4IN

comparison of closure phase

AIPS: difx2fits/FRING

HOPS: difx2mk4/fourfit

Sampler correction using autocorrelations

task ACCOR must be applied to correct the amplitudes in the cross-correlation spectra due to errors in the sampler thresholds using measurements of the auto-correlation spectra.

correction factors:

e.g.:

CarmaF – SMTO: 0.959 x 1.01=0.97

CarmaF – APEX: 1.01 x 0.934=0.94

Global Fringe fitting

GMVA/VLBA standard data analysis path

Method to apply manual phasecal

only data during this time can be used to connect phases of EU/US sub-arrays

- 1. manual phasecal for European subarray (refant 1)
- manual phasecal for US subarray (refant 2)
- find at least one STRONG scan which connects the 2 subarrays
- often more than these 3 steps are necessary to calibrate all stations (eg. MK)

Phase and Delay variations per IF versus time

Marti-Vidal+ 2012

the relative phase alignment between IFs varies on time scales of 0.5 - 1 day

need to find suitable source and reference antenna to track the phase variations!

Fringe fitting: The manual phasecal step

before

after

critical: must detect the signal in each IF, so need a bright source FRING is run with APARM(5)=0, phase and delay offsets are applied and the fringe rate is zero'ed.

After the manual phasecal has been applied, the whole data set is fringe fitted globally, make full use of the closure relations for SBD, MBD, and FRATE and the station weights. While in AIPS global fringe fitting (GFF) is station based (method Schwab & Cotton), the GFF in HOPS is baseline based (method Alef & Porcas 1986). HOPS does not yet a provide a full least square fit based GFF solution.

Experience shows that it is better to perform the amplitude calibration after GFF.

Detection threshold for VLBI:

Defining the system equivalent flux density SEFD_i [Jy] of the i-th antenna of an interferometer

$$\mathrm{SEFD}_i = \frac{T^i_{\mathrm{sys}}}{g_i}$$

one obtains for a single VLBI baseline between antenna i and antenna j the 1 σ -detection threshold σ_{ij} [Jy]:

$$\sigma_{ij} = \frac{1}{\eta_c} \cdot \sqrt{\frac{\text{SEFD}_i \cdot \text{SEFD}_j}{2 \cdot \Delta \nu \cdot \tau_{\text{integ}}}}$$

where the factor η_c corrects for the correlator losses due to sampling ($\eta_c = 0.64$ for 1-bit smapling, $\eta_c = 0.88$ for 2-bit sampling), $\Delta \nu$ is the observing bandwidth [Hz] and τ_{integ} is the coherent integration time [sec]. In practice, the solution interval for fringe fitting could be 5 - 10 times longer than the coherence time.

100 m telescope:
$$T_{sys} = 100$$
 K, $\eta=0.5 \rightarrow g = 1.4$ K/Jy
SEFD = 100/1.4 Jy = 71 Jy
VLBI of two 100m RT 's: $\sigma = 0.4$ mJy (for $\Delta v=256$ MHz, $\tau=100$ sec)

Rayleigh-Jeans:

Antenna Calibration:

$$A_{eff} = \eta_{\rm A} A_{geom}$$

An antenna i of diameter D_i [m] and aperture efficiency η_A [%] measures for a source of flux density S [Jy] an antenna temperature T_A [K]. The gain of the antenna g_i [K/Jy] is then given by:

$$g_i = \frac{T_A}{S} = 2.845 \cdot 10^{-4} \cdot \eta_A^i \cdot {D_i}^2$$

The aperture efficiency η_A and therefore the gain g_i are for most antennas elevation dependent, with a maximum typically at $30 - 45^{\circ}$ elevation. The gain therefore often is given as a (polynomial) function of elevation $g_i = f(elv)$ or zenit angle $g_i = f'(z)$. If f(elv) or f'(z) are the gain curves normalized to 1 at their peak, the gain is often given as:

$$g_i = DPFU \cdot f(elv) = DPFU \cdot f'(z)$$

with the peak gain being called DPFU (degrees per flux unit). In practice on measures the gain, or the aperture efficiency, using sources of known brightness (primary calibrators), which at mm-wavelengths could be the planets (e.g. Mars, Uranus), some minor planets (e.g. Ceres), planetary nebula (e.g. NGC 7027), compact HII regions (e.g. K3-50 A), etc.

Amplitude Calibration: AIPS task ANTAB reads Tsys and gain information

Calibration file:

possible inputs are on a per station basis

Tsys vs. time

Gaincurve (elv,t)

or:

Tant (t)

or SEFD(t)

the output is a SNtable, which can be edited and smoothed

Atmospheric attenuation and opacity:

Observing the "empty sky" at a given elevation elv yields an observed antenna temperature

$$T_A = T_{\mathrm{Rx}} + T_{\mathrm{Atm}} \cdot \eta_l \cdot \left(1 - e^{-\frac{\tau_0}{\sin(elv)}}\right) + T_{\mathrm{amb}}(1 - \eta_l)$$

where T_{Rx} is the receiver temperature, T_{Atm} is the effective temperature of the atmosphere, T_{amb} is the ambient temperature, and η_l is the feed efficiency (typically $\eta_l = 0.9$). The atmospheric opacity is given by $\tau = \tau_0 A$, where τ_0 is the zenit opacity and the airmass is approximated by

The atmospheric zenit opacity is usually determined from tipping scans $T_{\rm sys} = f(elv)$, which measure the system temperature as a function of elevation (sky dip). For A < 3 the following linearization allows an easy determination of τ_0 and $T_{\rm Rx}$ from a fit of a straight line to $T_{\rm sys}$ versus A

$$T_{\rm sys} = T_{\rm Rx} + T_{\rm Atm} \cdot \tau_0 \cdot A = T_{\rm Rx} + T_{\rm Atm} \cdot \frac{\tau_0}{\sin(elv)}$$

Opacity fit done either manually or with AIPS task "APCAL" (opac; dofit 1)

Correction for atmospheric absorption in AIPS: APCAL

Task APCAL: writes a new SN-table

OPCODE: 'opac' or 'grid'

SOLINT: several hours

TRECVR: reasonale start value, eg. 100

TAU0: reasonable start value, eg. 0.08

DOFIT: 1 (or 0 if TRECVR and tau0 are known)

Weather table or ASCII file if available

Stat.	Pol				Rece	eiver	Temp.		Zenit	Opacity	
BR	RCP	0/	8h	1m	Trec	(K):	64.61	Zen.	opac.:	0.077	
BR	LCP	0/	8h	1m	Trec	(K):	77.17	Zen.	opac.:	0.112	
HN	RCP	0/	8h	1m	Trec	(K):	104.89	Zen.	opac.:	0.140	
HN	LCP	0/	8h	1m	Trec	(K):	95.70	Zen.	opac.:	0.144	
KP	RCP	0/	8h	1m	Trec	(K):	73.33	Zen.	opac.:	0.065	
KP	LCP	0/	8h	1m	Trec	(K):	85.99	Zen.	opac.:	0.073	l i
LA	RCP	0/	8h	1m	Trec	(K):	78.75	Zen.	opac.:	0.072	'
LA	LCP	0/	8h	1m	Trec	(K):	90.59	Zen.	opac.:	0.069	
MK	RCP	0/	8h	1m	Trec	(K):	59.83	Zen.	opac.:	0.033	
MK	LCP	0/	8h	1m	Trec	(K):	67.51	Zen.	opac.:	0.036	
NL	RCP	0/	8h	1m	Trec	(K):	71.03	Zen.	opac.:	0.172	
NL	LCP	0/	8h	1m	Trec	(K):	61.28	Zen.	opac.:	0.187	
ov	RCP	0/	8h	1m	Trec	(K):	85.46	Zen.	opac.:	0.067	9
ov	LCP	0/	8h	1m	Trec	(K):	88.08	Zen.	opac.:	0.066	6
PT	RCP	0/	8h	1m	Trec	(K):	75.54	Zen.	opac.:	0.063	•
PT	LCP	0/	8h	1m	Trec	(K):	74.11	Zen.	opac.:	0.060	
SC	RCP	0/	8h	1m	Trec	(K):	89.40	Zen.	opac.:	0.179	
SC	LCP	0/	8h	1m	Trec	(K):	93.60	Zen.	opac.:	0.182	
FD	RCP	0/1	.0h	2m	Trec	(K):	74.33	Zen.	opac.:	0.089	
FD	LCP	0/1	.0h	2m	Trec	(K):	77.14	Zen.	opac.:	0.105	

Note: don' forget to set source fluxes with SETJY before running APCAL

Polarisation calibration

Polarisation: remove right-left phase and delay difference

AIPS task: RLDLY

note: works best on highly polarized sources and/or stations with high instrumental polarization. Assumption: R-L differences are constant.

Polarisation: Feed selfcal for antennas

AIPS task LPCAL:

determine D-terms using an Imap (of a compact source)

assume that source brightness distribution can be separated in a finite set of N (\leq 10) compact and polarized regions.

task determines the complex (amp & phase) D-terms for each antenna (new AN-table).

other AIPS tasks can correct for instrumental polarisation (DOPOL > 1)

Ant 1=	BR	BX= -	-21120	065.2071	BY= -3705	5356.5016	BZ= 4726	813.6687
Mount=ALA2	2 Axis	offset	= 2.3	1290 mete	ers IFf	ì	IFB	
Feed pola	rization	type :	=		R		L	
Lin. appro	DX. IF(1) as	amp,	phase =	0.1626,	-111.2	0.1330,	-61.0
Lin. appro	DX. IF(2) as	amp,	phase =	0.1636,	-105.5	0.1358,	-67.0
Lin. appro	DX. IF(3) as	amp,	phase =	0.1685,	-124.2	0.1402,	-48.8
Lin. appro	DX. IF(4) as	amp,	phase =	0.1706,	-110.0	0.1493,	-67.6
Lin. appro	DX. IF(5) as	amp,	phase =	0.1745,	-114.1	0.1511,	-70.0
Lin. appro	DX. IF(6) as	amp,	phase =	0.1700,	-122.5	0.1552,	-76.0
Lin. appro	DX. IF(7) as	amp,	phase =	0.1347,	-141.4	0.1562,	-58.4
Type Q to	stop, j	just hit	t RETI	JRN to co	ontinue			
v1b056	PRTANC	31DEC19	5)	459	02-JUN-20	915 19:19	9:16 Pag	ge 2
File=BLLAC	C-IT4	.MULTI	. :	1 An	ver= 1	Vol=	6 Use:	r= 459
Array= VLI	BA	Free	f= 86%	203.87500)0 MHz	Ref.date	e= FUNNY Di	ATE
Ant 2 =	EB	BX=	40339	947.2570	BY= 486	5990.7907	BZ= 4900	430.9946
Mount=ALA2	2 Axis	offset	= 0.0	9130 meta	ers IFf	ì	IFB	
Feed polai	rization	∣type ÷	=		R		L	
Lin. appro	DX. IF(1) as	amp,	phase =	0.0292,	124.3	0.0668,	58.4
Lin. appro	DX. IF(2) as	amp,	phase =	0.0184,	173.8	0.0653,	39.8
Lin. appro	DX. IF(3) as	amp,	phase =	0.0111,	88.6	0.0658,	72.0
Lin. appro	DX. IF(4) as	amp,	phase =	0.0278,	123.0	0.0581,	47.8
Lin. appro	DX. IF(5) as	amp,	phase =	0.0197,	90.9	0.0666,	72.1
Lin. appro	DX. IF(6) as	amp,	phase =	0.0165,	44.7	0.0662,	57.3
Lin. appro	DX. IF(7) as	amp,	phase =	0.0270,	94.1	0.0604,	86.4

Note: pay attention to antenna mount-type (e.g. ALAZ or NASMYTH) !!

Leppänen, Zensus, Diamond 1995 (AJ)

Instrumental Polarisation Calibration

(complex D-terms per IF)

note: phase of D-term may vary with frequency (across IFs)

accuracy depends much on parallactic angle coverage of source, choose many sources and average

Polarimetry at 86 GHz: Example BLLac

Ant 2 = EB amp, phase = 0.0179, $101.7 \ 0.0624$, 64.2Ant 3 = FD amp, phase = 0.1137, $8.8 \ 0.0890$, -142.3Ant 4 = GB amp, phase = 0.0710, $46.9 \ 0.1201$, -95.9Ant 5 = KP amp, phase = 0.0220, $-143.4 \ 0.0391$, 107.9Ant 6 = MK amp, phase = 0.0870, $-4.3 \ 0.0736$, -101.4Ant 7 = NL amp, phase = 0.0652, $-34.3 \ 0.0922$, -144.1Ant 8 = OV amp, phase = 0.0906, $-168.3 \ 0.0899$, 75.4Ant 9 = PT amp, phase = 0.1855, $-9.6 \ 0.1777$, -134.2

z=0.0686

0.2

 $100 \ \mu as = 0.13 \ pc$

Map peak: 2.32 Jy/beam

-0.2

Right Ascension (mas)

Contours %: -0.5 0.5 1 2 4 8 16 32 64 Beam FWHM: 0.05 × 0.05 (mas) at 0°

Map center: RA: 22 02 43.291, Dec: +42 16 39.980 (2000.0)