Line-VLBI Observations

Ciriaco Goddi BlackHoleCam Project Scientist

Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, Nijmegen, Netherlands Allegro, ALMA ARC node, Leiden Observatory, Netherlands

Why do spectral line VLBI at mm waves?

- Science driven: science depends on frequency! (spectroscopy)
- Gives you a 3rd axis
 -Which implies lots of extra information:
 - velocity information (kinematics and dynamics)
 - Column density (amount of gas)
 - Excitation conditions (temperature and density)
 - Chemical history (gas composition)
 - And magnetic fields, distances, etc.

What kind of mm spectral lines for VLBI?

- <u>Emission</u>: non-thermal, i.e. **masers** :
 - H₂O, SiO, CH₃OH,.....(Humphreys et al. 2007)
 - Galactic star-forming regions and evolved stars,
 - AGNs

- <u>Absorption</u> against continuum :
 - HCO⁺, HCN, HC₃N, (Muller et al. 2011)
 - Cosmological sources/ high-redshift galaxies

Preparing Line Observations

- <u>Doppler/Redshift</u>: Know the velocity/redshift of your target and set the observing frequency
 - For high-redshift sources, is the line within the available receivers' bands?
 - For galactic sources, is the line frequency well centred in your narrow-band?
- <u>Spectral resolution</u>: enough to sample and fully cover the line (+ line-free channels for cont.)
 - maser lines can be very narrow, 0.5 km/s: this requires Dv~0.1 km/s or **80 KHz** at 230 GHz
 - absorption features can be very broad, 300 km/s: this requires **BW>200 MHz** at 230 GHz
- <u>Sensitivity</u>: ask for enough time to reach the required sensitivity on target per spectral channel(*NOT* per entire bandwidth)
- <u>Scheduling</u> your line experiment:
 - include scans on continuum calibrators (fringe-finders, bandpass, phase-reference)
 - 2 passes of correlation:

continuum ("broad-band") for calibrators and line ("narrow-band") for target

- Spectral line observations use several channels over a total BW
 => much like continuum but with more channels!
- •Absorption line data is processed like cont. except ignoring line channels
- •For emission lines (masers) a few additional elements must be considered
 - a. Presence of RFI. More important
 - b. Fringe-fitting. Different techniques
 - c. Bandpass calibration. More important
 - d. Doppler corrections. Unique to line
 - e. Continuum subtraction. Unique to line
 - f. Self-calibration . Different techniques
 - g. Imaging of a data Cube. Unique to line

a) Editing spectral line data (as a function of v)

Produce scalar-averaged cross-power spectra of calibrators (i.e. <u>continuum</u> sources) to spot narrowband RFI.

RFI at the JVLA L-Band

RFI at the EVN L-Band

Flagging RFI: Primarily a low frequency problem

a) Editing spectral line data

3mm SiO maser line (VLBA)

Cross-power spectra on different VLBA baselines

b) Fringe-fitting: <u>Delays</u>

- Independent clocks, atmospheric propagation, and geometric errors in the earth model at the correlator cause delay residual errors
- No pulse cal system for line observations!
 =>need "manual" phase-calibration
 =>Fringe-fit the data to calibrate your delays! FRING in AIPS
- Cannot determine delay errors from line source (i.e. the target maser)
- Delay calibration requires a continuum calibrator
 => fringe fit a scan on a strong continuum source and apply delay corrections to all scans/sources

b) Fringe-fitting: (Residual Delays +) <u>Rates</u> "Global" fringe-fitting: *FRING* or *KRING* in AIPS

- For weak lines, use a nearby (<1⁰ for v>43GHz) strong continuum calibrator source to calibrate phases, delays, rates (<u>phase-reference</u>)
- 2. For strong line emission (i.e., maser), do fringe-fitting on the target itself
 - maser emission consists of many individual bright and compact "spots"
 - a spectral channel with a single strong spot is an excellent calibrator
 - fringe-fit to derive the rates and remove from all other spectral channels
 - could also apply target solutions to phase-reference calibrator for astrometry (*indirect phase-reference*)

c) Bandpass computation

<u>Definition</u>: Given the visibility $Vij(t,v)_{obs} = Vij(t,v)$ Gij(t) **Bij(t,v)**

Bandpass calibration is the process of deriving the frequencydependent part of the gains, **Bi j(t,v)**

- In theory, B_{ij}(t,v) for each baseline can be estimated from the frequency spectrum of the visibilities of a flat-spectrum calibrator
 => but this requires very high S/N.
- Most corruption of the bandpass is linked to individual antennas
 => solve for antenna-based gains instead of baselines:
 B_{ij}(t,v) ≈ B_i(t,v) B_j(t,v)* = b_i(t,v)b_j(t,v) exp[i (ph_i(t,v)ph_j(t,v))]
- Given N antennas, now only N complex gains to solve for compared with N(N - 1)/2 for a baseline-based solution.
 - => less computationally intensive

=> improvement in S/N of ~ sqrt[(N-1)/2]

c) Bandpass computation

How BP calibration is performed?

<u>Commonly used method :</u>

- Uses a strong calibrator whose data is divided by a source model or continuum (Channel 0), which removes any source structure effects and any uncalibrated continuum gain changes
- The antenna-based gains are solved for as free parameters channel-by-channel.

AIPS task BPASS. No task in HOPS? Limited to a BW< 500 MHz?

Modified approach:

- For VLBI, compact strong cont. sources to detect with high S/N on all baselines are rare
 => use autocorrelation spectra to calibrate the amplitude part of the bandpass
 - Signal-to-noise too low to fit channel-by-channel?
 => try polynomial fit across the band. AIPS task CPASS
- At mm wavelengths, strong continuum sources are rare.
 - polynomial fit across the band?
 - use artificial noise source? 🗡

c) Bandpass computation

Assessing the Quality of the Bandpass Calibration

Poor-quality bandpass solutions

Good bandpass solutions

- Amplitude has different normalization for different antennas
- Noise levels are high, and are different for different antennas
- Solutions look comparable for all antennas.
- Mean amp~1 and ph~0 across useable portion of the band
- No sharp variations in amp or phase (not noise-dominated)

Line Data Calibration d) Doppler Correction

• The velocity/redshift of a source is a crucial number as this dictates what sky frequency a line is observed.

- Source velocities need to be corrected relative to a rest frame
- Observing from Earth, our velocity with respect to astronomical sources is not constant in time or direction.

Correct for	<u>Amplitude</u>	<u>Rest frame</u>	
Nothing	0 km/s	Topocentric	
Earth rotation	< 0.5 km/s	Geocentric	
Earth around Sun	< 30 km/s	Heliocentric	
Sun peculiar motion	< 20 km/s	Local Standard of Rest	
Galactic rotation	< 300 km/s	Galactocentric	

Line observing frequency: Rest Frames

Conventions:

Radio-LSR $V_{radio}/c = (v_{rest}-v_{obs})/v_{rest}$ - Mainly Galactic work Optical-heliocentric $V_{opt}/c = (v_{rest}-v_{obs})/v_{obs} = cz$ - Extragalactic work (approximations to relativistic formulas, differences become large as redshift increases)

Line Data Calibration d) Doppler Correction

- **Doppler tracking** can be applied in real time to track a spectral line in a given reference frame, and for a given velocity definition (e.g., radio vs. optical)
- Note that the BP shape is really a function of frequency, not velocity!
 - Applying Doppler tracking introduces a time-dependent and position dependent frequency shift
- VLBI is done with <u>fixed frequency</u> (Doppler setting not <u>tracking</u>)
- => The spectra must be shifted in frequency to correct for constant velocity

e) Continuum subtraction

Basic concept

- Spectral-line data often contain continuum sources (either from the target or from nearby sources in the field of view) as well as line data.
- This continuum emission should be subtracted in your spectral-line data set
 - use line-free channels to estimate the continuum level
 - Subtract this continuum model from all channels
 - Iterate if necessary

Only necessary if strong continuum presents

- rarely an issue for maser emission
- very important for weak absorption lines

f) Self-calibration

Same as continuum, but two cases (like in the fringe-fitting):

- <u>Strong line emission (i.e. maser)</u>
 - Self-cal the "reference channel" used for the global fringe fitting and apply solutions to all other channels
 - Allows imaging of weak continuum with >snr
- <u>Weak line and strong continuum phase-reference source</u>
 - Self-cal the continuum source and apply solutions from the continuum to individual channels
 - Allows imaging of weak lines with >snr

g) Imaging: <u>Cleaning and Deconvolution</u>

- Deconvolution of spectral line data often poses special challenges:
- Cleaning many channels is computationally expensive
- Emission distribution & structure change from channel to channel
 => labour-intensive (setting clean boxes, interactive cleaning, etc)
- One is often interested in *both* high sensitivity (to detect faint emission) and high spatial/spectral resolution (to study kinematics)
 => cannot smooth your data to boost your sensitivity

g) Imaging: Line Cubes Data Analysis

- After mapping all channels in the data set, we get not a *map* but a 3D data *cube* (RA, Dec, Velocity)
- The price to pay is more complexity to handle (large data sets, visualisation methods/softwares, etc.)
- To visualize the information we usually make 1-D or 2-D projections:
 - Line profiles (1-D slices along velocity axis)
 - Channel maps (2-D slices along velocity axis)
 - Movies (2-D slices along velocity axis)
 - Position-vel. plots (slices along spatial dimension)
 - Moment maps (integration along the vel. axis)

Random points for discussion

- 1. Data volumes output from the correlator for processing
- 2. Data Calibration:
 - Bandpass necessary for the wide-band data?
 - Amplitude calibration with auto-correlation spectra on strong maser lines?
- 3. Fringe-fitting: line-sources (i.e. masers) as calibrators?
- Data Analysis: continuum subtraction for (weak) absorption lines
- 5.

Extra Slides

Amplitude calibration with auto-correlations

- Autocorrelation spectra of strong masers can be used to calibrate variations in antenna gain, Tsys, etc.
- Use template spectrum (from most sensitive telescope) to fit scaling to others

Pros:

• Excellent relative amplitude calibration (good within 1%)

<u>Cons</u>:

• Absolute calibration depends on accuracy of flux scale for template

c) Bandpass computation

Bandpass quality: apply to a continuum source

Before accepting the BP solutions, apply to a continuum source and use cross-correlation spectra to check:

- That phases are flat across the band
- That amplitudes are constant (for continuum sources)
- That the noise is not increased by applying the BP
- Absolute flux level is not biased high or low

How long to observe a BP calibrator?

- Applying the BP calibration means that every complex visibility spectrum will be divided by a complex bandpass, so noise from the bandpass will degrade all data.
- Need to spend enough time on the BP calibrator so that SNR_{BPcal} > SNR_{target}. A good rule of thumb is to use

SNR_BPcal > 2*SNR_target

which then results in an integration time:

t_BPcal = 2(S_target /S_BPcal)2 t_target

(Sub)mm Maser Lines in Alma Bands

Band	θ _{B(16km/1km)} (mas)	H ₂ O (GHz)	SiO (GHz)	HCN (GHz)
3	40 / 650	96		
5	20 / 320	183		177
6	16 / 250	232	214, 216, 257, 259	
7	10-15 / 160-240	293, 321, 325, 336, 354	300, 302, 336*, 343, 345	
8	9 / 145	437, 439, 471		
9	6 / 100	658		
10	5 / 80		*isopotomer	805, 891