EHT Amplitude Calibration

Lindy Blackburn, CfA Michael Johnson, Vincent Fish, and others

> mm-VLBI data processing workshop Leiden, NL 6/8/2015

EHT Network (2013)

A,— APEX

Amplitude systematics

Single dish

- T_{sys} (T_{rx} , T_{atm} , T_{spill} , ...)
- atmospheric opacity
- pointing, focus
- Phased array
 - phasing efficiency
 - common local noise

Correlation amplitude

- · LO jitter
- bandpass shape, colored noise
- atmospheric phase
- polarization leakage
- incoherent averaging systematics

Amplitude systematics

relative error

Single dish

Phasing efficiency (CARMA)

visibility amplitude tracks sub-scan phasing efficiency variation at CARMA

Day 85, BL Lac

Phasing efficiency (SMA)

PhRInGES (2013)

SWARM (2015)

- median efficiencies 83% (low band), 65% (high band)
- single reference antenna
- 30s averaging period
- 8 channels
- no auto-correlation

- high 90-% phasing efficiency
- full correlation network
- ~10s averaging period
- 16384 channels
- · auto-correlation amplitudes

Atmospheric phase

predictable loss in amplitude due to phase variation within coherent average may be approximated by a gain factor

- pre-2013: try different averaging timescales until SNR is maximized
- post-2013: measure structure function coefficient on strong baselines, calculate ideal averaging timescale and amplitude correction factor

Network redundancy

Hour

DifX vs Mark4

Noise only (off-fringe data)

Mark4/DiFX Comparison, Low-Band, Day 80, All Scans

DifX vs Mark4

5% correction factor applied to Mark4 noise estimate DifX not available for many scans (disk failure)

Trivial closure amplitude

Network solution

solve for site gain factors consistent with measured and modeled baseline visibility amplitudes

$$|V_{\text{meas}}| = G_1 G_2 |V_{\text{exact}}|$$

Connecting the array

- data cuts (few %):
 - SNR < 6
 - anomalous LCP/RCP gain ratio at CARMA Phased
 - $\cdot \ > 4\sigma$ inconsistency between high and low band amplitude
 - · >4 σ inconsistency between short and adjacent long scans
- daily:
 - · LCP/RCP gain ratios estimated at each site
 - LCP/RCP ratio at SMA using adjacent P+Q scans and CARMA Phased, and assumed equal for high/low band
- per scan:
 - solve for site gain ratios and missing model baseline visibilities using measured and assumed model visibilities, with thermal + 2% systematic error added to measured values in χ^2 fit.
 - zero baseline (CARMA-CARMA, JCMT-SMA) assumed equal to CARMA-Phased estimate.
 - For SgrA* assume CARMA-SMT is close to zero-baseline
 - otherwise assume SMT calibration for absolute LCP gain

D: E: F:	CARMA Ref LCP CARMA Ref RCP CARMA Phased LCP
G:	CARMA Phased RCP
J:	JCMT RCP
P :	SMA Phased LCP
Q:	SMA Phased RCP
s:	SMT LCP
Т:	SMT RCP

Solution amplitudes

Calibration validation

Averaging

closure amplitudes

 $1 \cdot 1$

0.0

≠ 1

AB·CD	AB·CD
AC·BD	AD · BC

EHT 2015

- 2 GHz single-channel in time domain
 - easier to correlate (no band matching)
 - bandpass effects (even if channelizing at correlation)

• SMT

- severe slope in pass band
- LMT single-dish site
 - pointing uncertainty
 - new receiver
- SWARM-correlator phased array at SMA
 - new complicated frequency-domain data product
 - more stable phasing