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Outline of today’s talk

- Our motivation to work on the imaging technique


- Application of the sparse modeling to the interferometric imaging


- The basic idea 
(see §2 in Honma, KA, Uemura & Ikeda 2014, PASJ)


- Mathematical description 
(see §3 in Honma, KA, Uemura & Ikeda 2014, PASJ)


- Results of the sparse modeling on observational/simulated data


- Practical issue: Imaging pipeline with the sparse modeling
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Angular diameter of super massive black holes

Source BH Mass 
(Msolar)

Distance 
(Mpc)

Angular 
radius of Rs 

(μas)

Sgr A* 
(Galactic 
Center)

4 x 106 0.008 10

M87 
(Virgo A) 3 - 6 x 109 17.8 3 - 7

M104 
(Sombrero 

Galaxy)
1 x 109 10 2

Cen A 5 x 107 4 0.25
Photon sphere: (few - 3)         x Rs (3 Rs for non-spinning BH)

ISCO size:         (several - 10) x Rs 
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Event Horizon Telescope after 2015

(Honma, KA, Uemura & Ikeda 2014, PASJ)

Maximum Baseline length: ~10,000 km

Synthesized beam size: 
   1.3 mm/10,000 km ~ 27 μas

Beam-convolved 
imageModel Image
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Our Motivation

- Even with the full EHT, the size of the synthesized beam (~20 μas) 
will be comparable to expected shadow sizes for Sgr A* and M87 

- might be not enough? (particularly in low-mass case of M87)

- require a shaper restoring beam for CLEAN (= super resolution)


- Is there a technique to enable robust high resolution imaging 
  for ensuring a feasibility of EHT to take a picture of BH shadow


-  particularly, resolution higher than λ/D  (= super resolution)

       equivalent to build up larger arrays.
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- Basic Equation: 2D Fourier Transform between the image and visibility 

- Spatial frequency (u, v): baseline vectors seen from the target source


- What does interferometer observe?: 
Fourier components at various baseline lengths (i.e. spatial frequencies)


- How to Image:  
In actual case, discrete Fourier transform of sampled visibility 
is performed to obtain images

Imaging with the interferometer (I)
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Imaging with the interferometer (II)
- In actual case：Imperfect sampling of Fourier components 

- 0-padding is used to obtain an image 
   assuming visibilities of zero for unsampled Fourier components


- This cause finite resolutions and side lobes  
    resolution: Θ ～ λ / B （λ：wavelength、B：baseline length）

(e.g.) Point Source
Sampled spatial frequencies 

 = uv coverage

Observed image: 
Synthesized beam 
= DFT of uv coverage

2D DFT

visibility: Uniform

u

X

u

vv
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Imaging with the interferometer (II)

(e.g.) Black hole shadow
Synthesized beam

(DFT of uv coverage)Real image

convolution (Dirty image)
visibility on uv coverage

u

v

2D DFT

- In actual case：Imperfect sampling of Fourier components 
- 0-padding is used to obtain an image 
   assuming visibilities of zero for unsampled Fourier components


- This cause finite resolutions and side lobes  
    resolution: Θ ～ λ / B （λ：wavelength、B：baseline length）
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Imaging with the interferometer (II)

Traditional method (CLEAN = Matching Pursuit in Statistical Mathematics)

Synthesized beamReal

convolution (Dirty image)

-

Synthesized beam

=>

Reconstructed 

Image:  

consisting of 


a minimum number 

of point sources

reconstructing sparse images on the image plane 

- In actual case：Imperfect sampling of Fourier components 
- 0-padding is used to obtain an image 
   assuming visibilities of zero for unsampled Fourier components


- This cause finite resolutions and side lobes  
    resolution: Θ ～ λ / B （λ：wavelength、B：baseline length）
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Sparse Modeling

Ill-posed problems 
- Linear equations can be solved if number of equations M is larger than 

number of parameters N  (i.e., requires M > N)


- Otherwise(M<N), it becomes an ill-posed problem (can not be solved)


Idea of the sparse modeling to solve ill-posed problems 
- If number of effective parameters (non-0 parameters) N’ is smaller than M,  

equations can be solved (sparse solution)


- Mathematical background: 
(Donoho, Candes & Tao 2006; 
 Compressive sensing)


- Compressing Sensing is now one of  
standard techniques for MRI 
(e.g. Lustig et al. 2008) without Sparse Modeling with Sparse Modeling

MRI image of the cerebral blood vessel
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Sparse modeling and interferometric imaging

- Observation Equation（2D DFT）can be written in a linear equation. 
 
 

 
 

- Observation Matrix A: dimension of M x N2  

 M: Number of visibility, N: Number of image grids  

- ill-posed problem: In normal case, M < N2 : requiring 0 padding 

- For the case of target sources of EHT, we can expect “sparse images” 
 (the emission structure would be very compact compared with F.O.V) 
→　We can apply the sparse modeling
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Idea of imaging with CLEAN (Matching Pursuit)

I1        V1 
I2        V2 
I3      =      　 V3 
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- do 0 padding to equal numbers of data and image grids 
- Try to find a sparse solution on the image plane

x A-1 
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Idea of imaging with the sparse modeling

- ill-posed equations can be solved 
by focusing on “sparseness” of solutions.


- Try to find a sparse solution in the visibility plane

- Reconstructed image not affected by 0-padding 
→　possibly we can get super-resolved image

V1        I1 
V2        I2 
V3       =     　      I3 
…        … 
VM        … 
         … 
         IN
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grids w
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• Problem without noise 

Mathematical description of the sparse modeling (I)

Equation:

What to solve?

solver: combinatorial optimization (CO)


- practically difficult to be solved for large N (say N~100)

0-dimensional norm:

= Number of non-zero parameters
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Mathematical description of the sparse modeling (II)

• Problem without noise (Compressive Sensing)

Equation:

What to solve?

1-dimensional norm:

solver: linear programming (LP) 

- can be solved even for large N (say N>10,000)

n-dimensional norm:

Equivalent for  

the sparse solution 

(Donoho et al. 2006)
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Mathematical description of the sparse modeling (III)

• Problem with noise (LASSO; Least Absolute Shrinkage and Selection Operator)

Equation:

What to solve?

(Tibshirani 1996)
S determines the number of non-zero parameters

- Large S: ||I||0 = N 
- Small S: ||I||0 = 1

χ2 term

(Tibshirani 1999)
solver: quadratic programming (QP) 

- can be solved even for large N (say N>10,000)

Equivalent
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LASSO and Bayesian Statistics

LASSO

Multiplying by -1/2 and then taking exponential

Likelihood P(V|I) x Prior Prob. P(I)

∝ Posterior Prob. P(I|V)

Chi-square + Regularization
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- Data set: 
Make visibilities from model images on actual uv-coverages


- Noise treatment: thermal, homogeneous 
thermal noise at a 5 %-level of the total flux 
   (- SNR ~ 20 for the intra-site baselines, but no intra-site baselines) 
   - much lower SNR for VLBI baselines 
   - Similar to or worth than current observations


- Modeling method: LASSO + additional regularization term 
Solver : QP solver (original; MATLAB-based)

Simulation with Sparse Modeling (I)
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Simulation with Sparse Modeling (I)

uv-coverage
model beam-convolved image

(Honma, KA, Uemura & Ikeda 2014, PASJ)

M87, Shadow Diameter ~ 20 uas (for the case of MBH = 3 x 109 Msolar)
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Simulation with Sparse Modeling (I)

• S

model beam-convolved image

(Honma, KA, Uemura & Ikeda 2014, PASJ)

Sliced image

M87, Shadow Diameter ~ 20 uas (for the case of MBH = 3 x 109 Msolar)
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Simulation with Sparse Modeling (I)

Choice of the Lambda

(Honma, KA, Uemura & Ikeda 2014, PASJ)

M87, Shadow Diameter ~ 20 uas (for the case of MBH=3x109 Msolar)
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- Data set: Simulated data on physically motivated models for M87 
MAPS Simulated Data-sets with parameters same to Lu et al. 2014, ApJ 
   Models in Akiyama, Lu & Fish et al. 2014, ApJ, in press. 
                 approaching-jet-dominated type (Broderick+) 
                 counter-jet-dominated type         (Dexter+) 
                 accretion-disk-dominated type   (Dexter+)


- Noise treatment: thermal, different by baselines 
Realistic thermal noises are included  

- Modeling method: LASSO + additional regularization term 
Solver : QP solver (original; MATLAB-based); common threshold

Simulation with Sparse Modeling (II)
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Simulation with Sparse Modeling (II)

model without noise with noise

M87, Shadow Diameter ~ 40 uas (for the case of MBH = 6 x 109 Msolar)
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Simulation with Sparse Modeling (II)

model λ=1 λ=10 λ=100

M87, Shadow Diameter ~ 40 uas (for the case of MBH = 6 x 109 Msolar)
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Application to observational data

- Data set:  VLBA 43 GHz / 7mm data of M87 
                (published in Hada et al. 2011, Nature)


- Modeling method: LASSO + additional regularization term 
Solver : QP solver (original; MATLAB-based); common threshold
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Application to observational data
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Hybrid mapping with the sparse modeling (3 mm or longer-λ data)

Initially Calibrated Visibility 
data fmt: UVFITS

Model Image 
data fmt: image FITS

Self-calibrated Visibility 
data fmt: UVFITS

Edited image 
data fmt: image FITS

Self-calibration 
correcting residual gains


using an edited image as model

Final Products 
Image and Calibrated visibility


(UV FITS + image FITS)

Image Editing 
removing noise features

Imaging with LASSO

SAO DS9 (select area)

+


Python script (editing)

 Currently: MALAB-based 
 now translating to  
         Fortran 90 + python Python script 

using Parsel Tongue (AIPS)
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Hybrid mapping with the sparse modeling (3 mm or longer-λ data)

How to determine parameters? 

            the pixel size of the image (spatial resolution) 

            Λ-term                                (sparseness)

AIC (Akaike's Information Criterion)

AIC = χ2  + 2 || I ||0
BIC (Bayesian Information Criterion)

BIC = χ2  + (Ndata - || I ||0) ln Ndata

Evaluating goodness-of-fit with some information criterions
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Hybrid mapping with the sparse modeling (EHT data; Case 1)

Initially Calibrated Visibility 
(Amplitude + Closure Phase)

Model Image 
data fmt: image FITS

Self-calibrated Visibility 
data fmt: UVFITS

Edited image 
data fmt: image FITS

Self-calibration 
correcting residual gains


using an edited image as model

Final Products 
Image and Calibrated visibility


(UV FITS + image FITS)

Image Editing 
removing noise features

Phase Reconstruction

Initial Full Complex Visibility 
Data fmt: UVFITS

Imaging with LASSO
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This problem can be solved with quadratic programming (QP)


Hybrid mapping with the sparse modeling (EHT data; Case 1)

Phased Reconstruction from the closure phase 

min C(φ, ξ)   subject  to

visibility phase

closure phase

Assumption: visibility phase is smoothly distributed

(Ikeda, Tazaki, KA et al. to be subm.)
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Hybrid mapping with the sparse modeling (EHT data; Case 1)

(Ikeda, Tazaki, KA et al. to be subm.)

Reconstructed Image  from full-complex visibility

Reconstructed Image  from visibility amp. + reconstructed phase
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Hybrid mapping with the sparse modeling (EHT data; Case 2)

Initially Calibrated Visibility 
(Amplitude + Closure Phase)

Model Image 
data fmt: image FITS

Self-calibrated Visibility 
data fmt: UVFITS? OIFITS?

Edited image 
data fmt: image FITS

Self-calibration 
correcting residual gains 

using an edited image as model

Final Products 
Image and Calibrated visibility


(UV FITS + image FITS)

Image Editing 
removing noise features

Imaging with non-linear LASSO 
Reconstruct image directly from 
Amplitude + Closure Phase 

(with MCMC; under development!!)
Which software???

 AIPS for UVFITS 

? for OIFITS
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