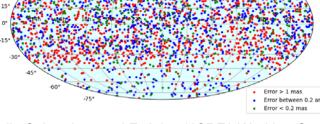
JUMPING JIVE - WP7 Astrometry and geodesy

Patrick Charlot Laboratoire d'Astrophysique de Bordeaux

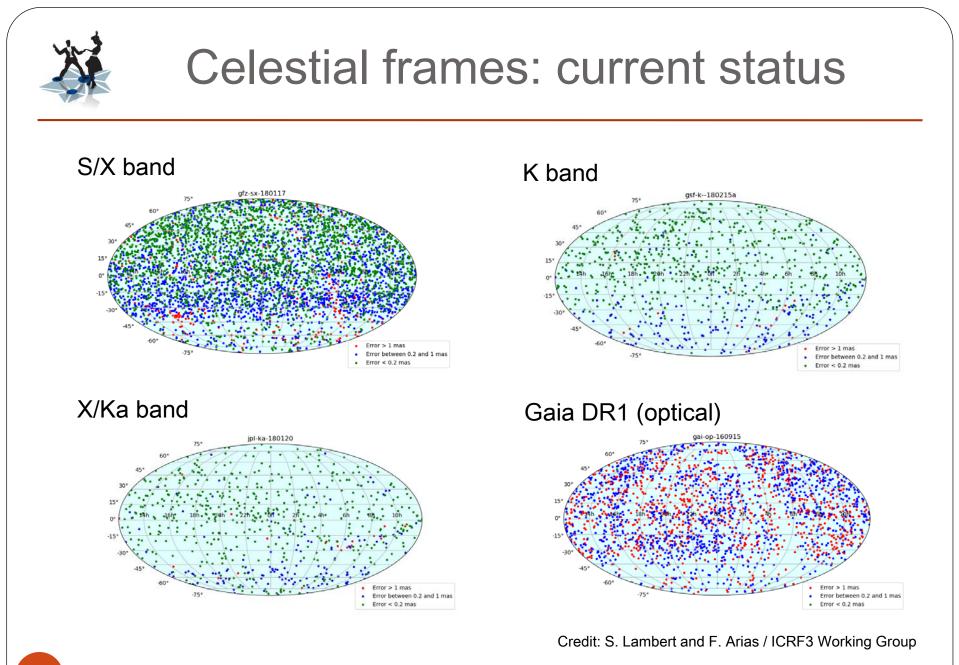
Outline

• Will cover three fields

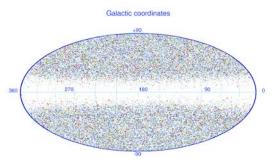
- >Astrometry (global, i.e. celestial reference frames)
- The Earth's rotation
- Geodesy (i.e terrestrial reference frames)


• For each field, attempt to address

- Where we are
- ➤ Where we are going
- Potential role of the EVN


Celestial frames: background

- ICRF2 (International Celestial Reference Frame, 2nd realization)
 - Includes 3414 extragalactic sources
 - ≻ 295 « defining » sources
 - Noise floor of 60 µas
 - Built in 2009, hence outdated


- ICRF3 (3rd realization)
 - Is currently built by a Working Group of the IAU, chaired by P. Charlot
 - Will use state-of-the-art astronomical and geophysical modeling
 - > Twice as many observations compared to ICRF2

• Release of ICRF3

- Must be finalized by summer 2018
- To be presented at IAU General Assembly 2018 for adoption as the new IAU fundamental celestial reference frame (in replacement of ICRF2)
- Should be a multi-frequency frame (including positions at S/X, K and X/Ka bands)
- Release of Gaia DR2 (optical)
 - On 25 April 2018
 - Will comprise > 500 000 quasars
 - Position accuracy comparable to ICRF3



Credit: Slezak and Mignard (2008)

Celestial frames: the future

- Areas of work (beyond ICRF3)
 - Improving the density of sources in the far South
 - Improving the North-South geometry
 - Continue to develop the frame at the higher frequencies (K and X/Ka bands)
 - Align at best the VLBI and Gaia frames
- Science (excluding « practical » applications)
 - Comparison of the location of the radio and optical emission for any source in the sky (extragalactic of Galactic) at sub-mas level
 - Detection of core shifts in AGN by comparison of the S/X, K and X/Ka band VLBI positions
 - Measurement of galactocentric acceleration
 - Upper limit (or detection) of gravitational wave background (through proper motions of quasars)

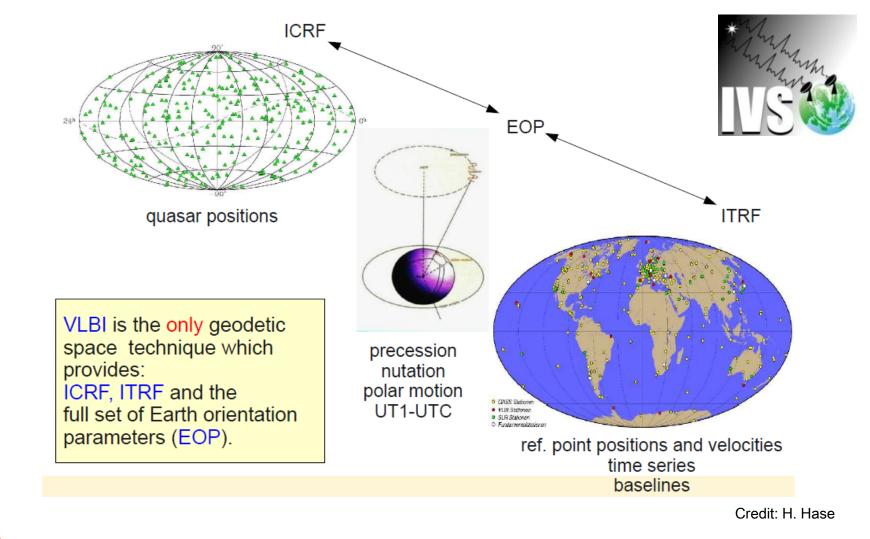
Credit: Gwinn et al. (1997)

P. Charlot

JUMPING JIVE WP7 - Zaandam - 28 February 2018

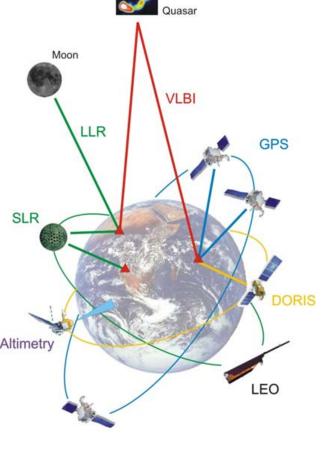
Jointly with the AVN (African VLBI Network)

 Strengthen the North-South geometry and contribute to improving position accuracy at mid-southern declinations
 Densify the K band frame by taking advantage of the high sensitivity of the network

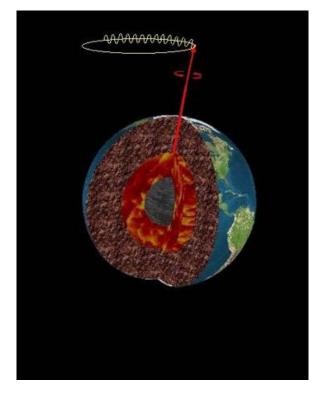

Jointly with the AVN and SKA1

Densify massively the radio frame
 Build the radio counterpart of the Gaia optical frame...

8


Moving to Earth rotation and geodesy...

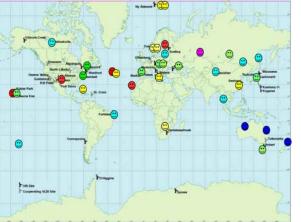
The geodetic space techniques


- Geodetic space techniques (VLBI, GPS,Galileo, SLR, LLR, DORIS,...) are used to:
 - Monitor the Earth's orientation
 - Establish the terrestrial reference frame (e.g. ITRF2014)
- VLBI is unique for determining:
 - > UT1-UTC
 - Precession and nutation
- Note: superconducting gravimeters Altimetry are becoming competitive for
 measuring nutation

Nutation: key challenges

- Detection of the solid inner core
 - Through monitoring of the VLBI nutation with the highest accuracy
 - Independent from seismic data
- Understanding the origin/variability of the FCN (free core nutation)
 - Requires regular, long-term VLBI monitoring
 - Progress in global circulation models
 - Progress in the theory of the Earth's rotation

Question: does the nutation annual Nutation allows one to learn about the Earth's interior


JUMPING JIVE WP7 - Zaandam - 28 February 2018

The Earth's rotation: role of EVN

- Requires regular, permanent monitoring with VLBI
- Is to be done by the future VGOS network of the IVS (with some VGOS stations at EVN sites)

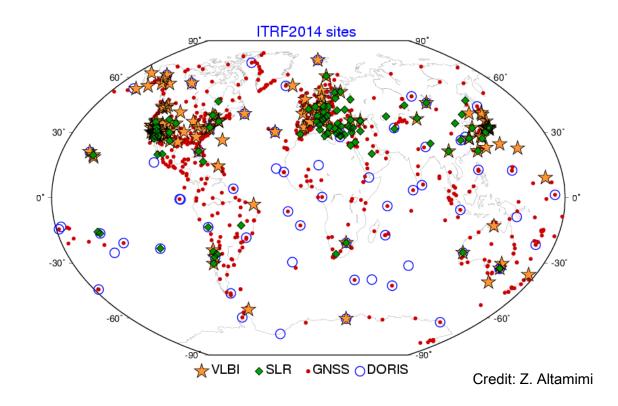
New VGOS radio telescopes for IVS

Credit: H. Hase

- operational
 under construction
- funded
- proposal submitted
- planning phase
- planning phase upgrade

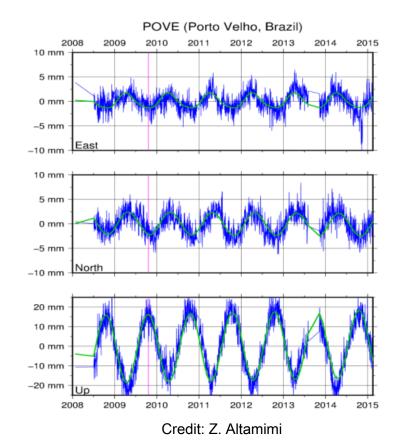
based on available information October 2016

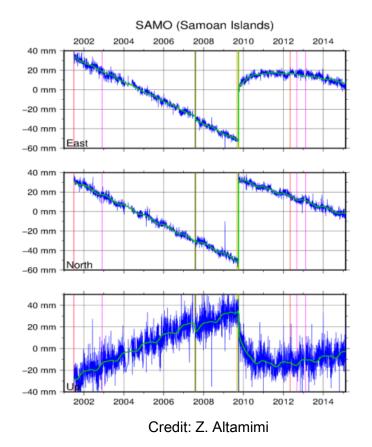
 Not sure the EVN has a role to play here (but help with correlating VGOS data may be needed...)


JUMPING JIVE WP7 - Zaandam - 28 February 2018

12

Terrestrial reference frames


International Terrestrial Reference Frame Current version: ITRF 2014



ITRF2014: new features

Seasonal signals

Post-seismic deformations

- Current VLBI observing not designed for terrestrial frame work: sparse network, sparse sessions
 Situation may be different for VGOS (continuous observing)
- VLBI contributes to defining the ITRF scale
 > Together with SLR
 - Unsolved issue: disagreement between VLBI and SLR scale (1.37 +/- 0.10 ppb)
- Have not yet really thought about the possible role of EVN in this context...