Mark6 Status - Present and Future

Chet Ruszczyk, Roger Capallo, Alan Whitney November 11th 2014

MIT Haystack Observatory, Westford, MA

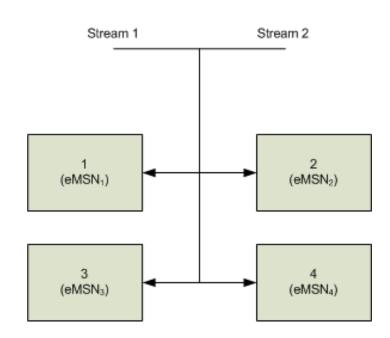
Agenda

- Mark6 Status
 - Versions
 - New Features / Major Bug Fixes
 - Documentation
- Subgroup Feature
- Correlator Operations
- Future Features

- Software Version 1.1
 - Features:
 - Mark6 service for cplane / dplane on boot up.
 - start / stop / restart / reload
 - Persistent configuration information retained
 - On reboot / reload.
 - Subgroup support
 - Major bug fix
 - Scan check not closing files after checking
 - dplane (data plane r/w to disk modules)
 - Version 1.16
 - cplane (control plane VSI-S interface)
 - Version 1.1.1

- Bugs presently under investigating
 - 2 streams of 8Gbps (16Gbps) 3% drop
 - Configuration issue
 - IRQ's and SMP_AFFINITY
 - Assignment to cores
 - Solution has been identified and under test
 - cplane 1.1.2
 - 2 streams of 8Gbps (16Gbps)
 - Standard MTU size < 1500-byte long VDIF frames.

- Documentation
 - Command Set Version 1.1
 - Subgroup memo (use cases)
- Self test software
 - Available but not user friendly
 - Has not been released
- Conditioning software
 - Under test
- Vdifuse Fuse based interface to scatter gather stored disks (Under test)



- Hardware
 - New motherboard (identifying, will evaluate)
 - Two motherboards have now reached end of life (Ah COTs hardware)
 - 64G of RAM
 - CX4 or SFP+ 10G
 - Two NIC cards (~20Gbps / NIC supported)
- Haystack has 9 systems in house
 - 3 EHT Development
 - Connected to the correlator
 - 4 Geodesy and development
 - 2 on Correlator (Mark5 Upgraded to Mark6)
- Alma Phasing Project
 - 4 at site and 1 spare
- EHT
 - (9) Ordered for March Campaign

Subgroup Feature

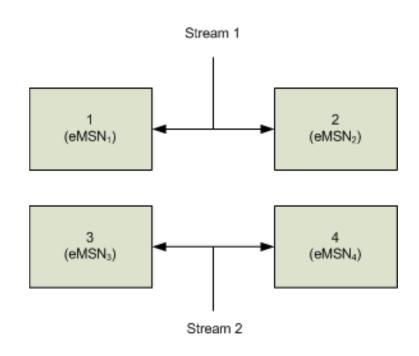
- Mark6 normal recording mode
 - group_ref = 1234
 - 4 disk modules open for recording
 - 2 input streams defined for receiving data
 - e.g. eth2, eth4
 - 8Gbps / input stream
 - 16 Gbps is written to all disk modules in group_ref

Subgroup Feature (cont)

- Imagine if each Ethernet port receives a different polarization
 - eth2 <= RCP, eth4 <= LCP

- For existing Mark6 software if correlating a specific polarization, e.g. RCP
 - Requires all 4 disk modules to be inserted at correlator for processing.

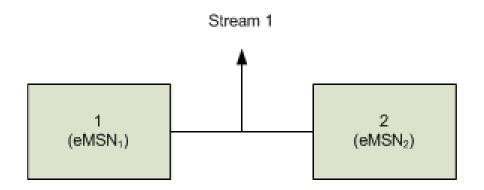
Subgroup Feature (cont)


• If one disk module is lost in shipment both RCP and LCP are lost (25% of data lost).

- The subgroup feature allows you to specify A specific input stream to be written to a "subgroup" of disk modules within the group_ref
 - granularity of 8 disks

Subgroup Example

- $group_ref = 1234$
 - 4 disk modules open for recording
- input "Stream 1"
 - 8Gbps (RCP)
 - written to disk modulesin slot 1 & 2
- input "Stream 2"
 - 8Gbps (LCP)
 - written to disk modulesin slot 3 & 4


Subgroup Example (cont)

- When modules are at the correlator awaiting processing
 - RCP is scheduled for the participating antennas to be processed
 - Previously required all 4 disk modules
 - With subgrouping requires only disk modules that were written in Slot 1 & 2 be inserted at the correlator in a Mark6 correlator system
 - eMSN₁, eMSN₂
 - Do they have to be inserted into slots 1 & 2, No

Subgroup Correlation

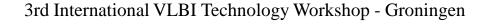
- RCP can now be processed.
 - Does not require all of group_ref
 - Only eMSN₁ and eMSN₂

Subgroup Restrictions

- Software c-plane restrictions
 - Once subgroups are defined, they must be kept for the group_ref when recording
 - No switching of subgroup's for the group, e.g.
 - input_stream $1 \Rightarrow 1,2$
 - input_stream $2 \Rightarrow 3.4$
 - record "n" scans
 - remove subgrouping as in "normal operations"
 - record "m" additional scans
 - ILLEGAL

Subgroup Restrictions

- Software c-plane restrictions (cont)
 - Subgroup assignment must use all disk modules of open group
 - Example of illegal case:
 - \Rightarrow group = open : 1234
 - » input_stream 1 => 12
 - » input_stream 2 => 3
 - » disk in slot 4 not assigned : **ILLEGAL**
 - Complete subgroup modules are required for processing
 - input_stream $1 \Rightarrow 1.2 \text{ (eMSN}_1, \text{eMSN}_2)$
 - At correlator requires both eMSN₁, eMSN₂ inserted in same Mark6


Correlator Integration

- Vdifuse (Geoff Crew)
 - Scatter / Gather Fuse interface for VDIF
 - Alma Phasing Project verified
 - General purpose version under test
- Correlator
 - Mount Mark6 Modules with vdifuse
 - process the data directly from the disk modules to DiFX
 - Alternative solution
 - Standard Mark6 system
 - Raid0 in slot 0
 - S/G in other slots
 - Gather / DQA scans to RAID for processing

Last Operational Test Status

- EHT trial run (Wf to GGAO Baseline)
 - South Pole telescope gear
 - CFA and Haystack
 - R2DBE -> Mark6
 - Roach2
 - Virtex6 FPGA
 - ADC 2Ghz bandwidth
 - 16Gbps / system
 - RDBE-G (1.4 and 3.0 firmware)
 - Success: fringes detected.
- APP Software Verification Mission completed October for 64 Gbps.
 - December 11th all bugs fixes required for submission and final version of software.

Next Steps

- New motherboard testing:
 - New OS (Debian Wheezy?)
 - Investigate 32Gbps recording to a single Mark6
 - Impact is reduction of Mark6's needed for EHT, APP.
- Disk module evaluation
 - For disks to be used at 3000m
 - 6TB and 4TB
 - using atmospheric chamber

Next Steps

• Test

- Create atmosphere for 3000m and write data to fill disk modules (99%) (4 disk modules, 16Gbps).
 - Disks to evaluate
 - He filled 6TB, Seagate 6TB, and WD black 4TB disks
- Bring atmosphere to sea level (remove disk modules)
- transfer to another system evaluate data, erase disks, remove and repeat test.
- Failures seen when disk modules returned to correlator for processing.

Future Features

- c-plane : Raid5 support for correlator operations
- d-plane:
 - Record "all" option
 - no packet checking
 - records all packets based upon:
 - Source IP / port
 - packet length filtering
 - e-VLBI
 - Store and retransmit
 - at lower data rates

Summary

- Mark6 used with:
 - Broadband Dev Westford to GGAO 12M
 - VGOS system
 - 4 RDBE-G -> Mark6 (8Gbps)
 - Alma Phasing Project (64Gbps)
 - Event Horizon Telescope (32Gbps)
- Integration with the field system (ongoing)
- Software and documentation available shortly

Thank you / Questions?

- Availability
 - Order from Conduant
 - \$15,285 US for 16Gbps system
 - 60 day lead time
 - Does not include disk module ~\$550 per
 - or disks
 - Upgrade cost for Mark5
 - \$7,588 for host
 - Plus misc items
- http://www.haystack.mit.edu/tech/vlbi/mark6/index.html

