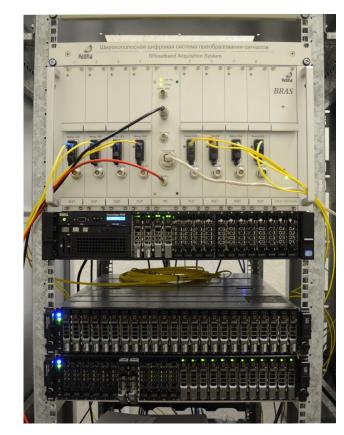


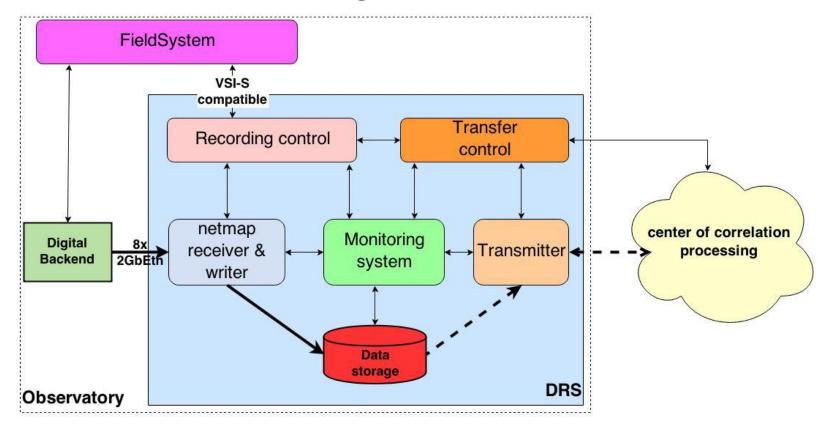
Data recording system compatible with VGOS

Ilya Bezrukov¹, Andrey Vylegzhanin^{2,3}, Alexandre Salnikov¹, Vladislav Yakovlev¹.

- 1. Institute of Applied Astronomy Russian Academy of Sciences
- 2. Joint-Stock Company "Institute of Applied Astronomy"
- 3. Ioffe Physical Technical Institute Russian Academy of Sciences


Review

- DRS: General Key features;
- Software design;
- Hardware and Software layout;
- Disk subsystem;
- Main results and future plan.

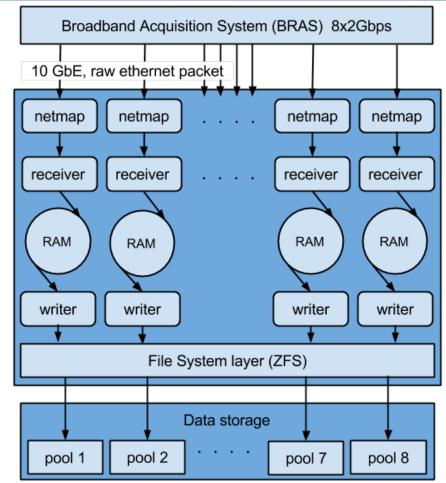

DRS: General Key features

- Registration of 8 parallel data streams with a common recording rate up to 16Gbps;
- 2. Recording <u>raw ethernet packets</u> (VDIF or any protocols based on ethernet);
- 3. e-transfer simultaneous with the data registration;
- 4. Daily storage of the observational data.

DRS: Software design

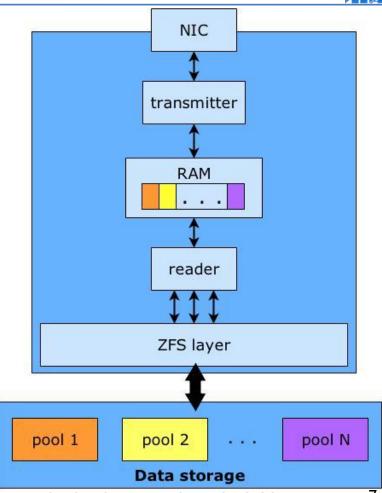
DRS: software layout

- OS: Freebsd 10.1;
- FS: ZFS (Zettabyte Filesystem);
- Netmap: a novel framework for fast packet I/O.



Receiver & Writer

- Each channel digital backend processed separately;
- Data is stored as a file;


 By default, the file size is limited to 256MB(1 sec).

Transmitter design

- transmit data at a speed of external channel to CCP;
- ZFS I/O sheduler & write throttle.

Monitoring system

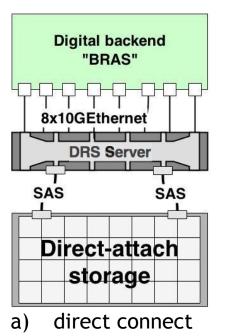
Main goal:

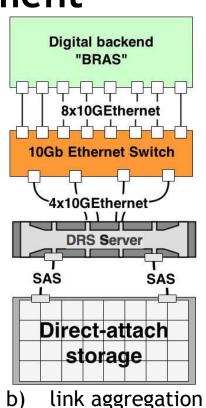
- synchronization;
- supervision.

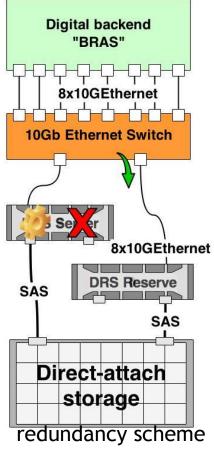
Monitoring:

- NIC (netstat);
- disk subsystem (iostat, zfs utilities);
- CPU and memory (vmstat).

DRS: hardware layout


Direct-attached storage		
HBAs, 6Gb/s SAS	PERC H800	
Drives	Up to 24 2.5" hot-pluggable SAS or SSD/NL-SAS/SATA	


Server		
CPU	2 x Intel Xeon Processor E5-2643 V2 @3.50 GHz	
RAM	256 Gb 1600 MHz	
PCI-express v 3.0	1 x16; 6 x8	
Internal HBAs (SAS2008)	PERC H310 (analog LSI SAS 9211-8i)	
External HBAs (SAS2008)	2 x 6Gbps SAS HBA (analog LSI SAS 9200-8e)	
NIC	4 x Intel(R) 10G 2P X520 Adapter	
Disk	up to 16 2.5" SAS/SSD/NL-SAS/SATA	



DRS: optional equipment

10Gb Ethernet Switch

C)

Disk subsystem

- Registration of 8 parallel data streams with a common recording rate up to 16Gbps (2Gbps from each channel);
- e-transfer simultaneous with the registration data (e-transfer rate -> recording rate);
- Fault tolerance disk storage (soft raid).

We tested:

- SAS 10k rpm;
- low cost MLC SSD;
- NL SAS 7.2k rpm;
- 3.5 SATA 7.2k rpm drives.

Test utilities:

- dd;
- netmap packet generator;
- digital backend BRAS.

Disk subsystem: results

Results of testing disk performance for various observation cycle

Observational cycle recording/pointing, sec	1 channel write rate, MBps	type of disks
guiding the source	250	SAS
40/20	190	SAS
30/30	141	SAS/SATA
7.5/22.5	65	SAS/SATA

^{*}We recommend using SAS or NL SAS drives

Main results

- Recording 16 Gbps (8x2Gbps BRAS). Without packet loss;
- e-transfer simultaneous with the data recording;
- Test recording 32 Gbps (8x4Gbps netmap packat generator);
- Currently, our system is installed in the observatories "Zelenchukskaya" and "Badary".

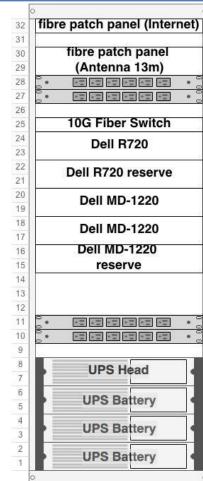
Upcoming plans

- Complete development of software components;
- In the near future we plan to record intensive session on the basis of a 32-meter radio telescope complex Quasar-KVO using two channels (out of eight) of BRAS;
- After that we plan to conduct record of all 8 channels on new 13-meter antennas.

Thank you for your attention

Third International VLBI Technology Workshop, Groningen/Dwingeloo, Netherlands, November 10-13,2014

Third International VLBI Technology Workshop, Groningen/Dwingeloo, Netherlands, November 10-13,2014


Third International VLBI Technology Workshop, Groningen/Dwingeloo, Netherlands, November 10-13,2014

Third International VLBI Technology Workshop, Groningen/Dwingeloo, Netherlands, November 10-13,2014

Third International VLBI Technology Workshop, Groningen/Dwingeloo, Netherlands, November 10-13,2014