Using VLBI to demonstrate Long-Haul Fiber-Optic Frequency Transfer

The VLBI timing workhorse The Hydrogen Maser

NIST Yb clock: I.6E-18 in 7 hours

Optical frequency transfer

Planned WR link expected performance (J.C. Koelemeij)

The End of VLBI

• e-VLBI: transfer sampled IF over network

Clock distribution over fiber

Connected element interferometer

VLBI without H-Masers

- Higher stability optical clocks
 - Better VLBI
- New 'old' telescopes
 - e.g. former Intelsat 30m dishes (AVN, Warkworth)
- No more fringe finding
 - One less free parameter

Saving the Dwingeloo Telescope

Current antennas

- Horn for 23cm (21cm) Circular
- Double Dipole for 70cm (H and V)
- Double Yagi for 2m

The Restauration

- A National Monument since 2009
- €880.000 awarded in 2011 (70%-rule)
- Started in April 2012

Flying Saucer

Re-opening 2014-04-05

Prof. J.H. Taylor (K1JT)

Our Volunteers

One year of B0329+54

Galactic plane in H_I

Full BW recording (700Mb/s)

Astronomy ESFRI & Research Infrastructure Cluster

- Proposal submitted September 2014
- Address problems common to large or distributed astronomical facilities
- Includes research on time & frequency distribution

