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1 Introduction

This document outlines the calculation anduse of the current proposeddelay andphase-
delay models supplied to the Uniboard by the JIVE Uniboard Control System (JUCS).

2 Summary of recommendations

According to the correlator design document (p.13), the correlator will operate with
16 MHz subbands for the current personality. This implies a Nyqvist sample rate of
32 MHz. This means that the sample time ts is 1

32×106 . The sample time, or tick, is the
unit used for delay calculations.

The current recommendations for delay calculations are:

• Linear polynomials over an integration (an interval of up to one second);

• Units of ticks, i.e., 1
32 × 10−6 s;

• 48-bit fixed-point coefficients;

• 8 bits after binary point for delay;

• 32 bits after binary point for delay-rate;

• May be necessary to use quadratic polynomials for RadioAstron correlations

The recommendations for phase calculations are:

• Quadratic polynomials over an integration (an interval of up to one second);

• 64-bit coefficients in units of cycles;

• All 64 bits after a notional binary point;

• Units of cycles; i.e., 1 cycle corresponds to 2π radians.

2.1 A Note on the current implementation

The current implementation in theUniboard firmware does notmatchwhat is described
in this section. It was decided to leave changes to the model until other parts of the
Uniboard implementation of correlation had been thoroughly debugged.

The current – transitional – implementation is described in Section 5 below.
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2.2 From SCHED to Erlang

Delaymodel calculations are done using the SCHEDprogram. Delays are calculated at
a one-second interval. Parameters (scan times, station and source positions) are taken
from the experiment database, which is filled from VEX files.

The version of SCHED used in the JUC CCS uses a slightly different output format
from that used by SFXC, but that is the only change, and it only affects the top-level C
wrapper, not the FORTRAN core of the program.

The calculation of the SCHED delays is intended to be done offline as part of the
preparation for correlation; the results are stored in a directory structure for the JUC
CCS that is modelled on that used in the existing Mk IV CCS.

When a correlation is started, an Erlang model-reader component reads the CALC
output file and computes the coefficients of interpolating polynomials for delay and
phase for a one second interval. The delay polynomial is linear, so it needs two delay
points; the phase polynomials are quadratic, so they use three consecutive delay points,
and a separate polynomial is calculated for each subband.

In the case that the integration time is less than a second, the polynomials sent to
the Uniboard are derived from the one-second polynomials by selecting the appropriate
“parent” polynomial and adjusting the coefficients such that they represent the same
polynomial over the integration time, effectively shifting the origin. In the rationales
given in Section 3 we consider only the most demanding case for accuracy, namely the
case where the integration time is a full second.

2.3 Subband frequencies

Frequencies are ultimately taken from the VEX file from the experiment (via the exper-
iment database). The $FREQ block stores the sky frequency which maps to 0Hz in the
BBC output for upper and lower subbands and the bandwidth of the channel. For the
upper sideband, this is the frequency used for phase; for the lower sideband we subtract
the bandwidth to calculate the frequency. In other words, we use the left-hand edge of
the channel as the reference frequency for phase calculations.

For each subband, the delays computed by CALC are multiplied by the subband’s
reference frequency (usingdouble-precisionfloating-point arithmetic) to calculatephase
delays (for each second), which are used to calculate the coefficients of an interpolating
polynomial.

2.4 Discretization and packetization

All polynomials are initially calculated using floating point arithmetic and then rescaled
to the appropriate units before discretization: ticks, in the case of delay. The phase poly-
nomial coefficients are simply reduced to their fractional part, since they are calculated
in cycles.

The only subtlety in discretization is rescaling with binary points. The delay rate
coefficient is to be stored in a 48-bit register with 32 bits after the (notional) binary
point. This simply means that we multiply the floating point value by 232 and convert
the result to an integer. The delay coefficient has eight bits after the binary point so it
is multiplied by 28 before conversion to an integer. Note that the position of the fixed
point is not stored anywhere in the data: it is simply a convention that theUniboard and
the control software share.
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Since the coefficients for phase polynomials only store fractional values in 64-bit
registers, we multiple the values by 264 and convert them to integers. The conversion
to integers is done by Erlang’s built in rounding function which converts to the nearest
integer, as opposed to truncating.

The delay coefficients for each station are collected into a packet and written to the
correlator; likewise, for each station and subband a packet of phase delay coefficients is
written to the correlator. The format of the packets is given in the correlator definition
document; it is transparent from the Erlang code and is therefore not reproduced here.

2.5 On the Uniboard

The quantum of data processed by the Uniboard is the FFT segment, made up of 2048
samples, for a given station and subband. For each FFT segment the Uniboard calcu-
lates an integer delay for the whole segment, using the delay model coefficients pro-
vided. The calculation uses the time of the central point of an FFT block to calculate the
delay. The delay is calculated usingfixed point arithmetic, and the integer and fractional
parts are used separately by the uniboard.

The integer delay is used to retrieve the data from an appropriate location in the
DDRmemory, effectively shifting it in time in the appropriate way.

As the correlator design document states (p.20), “the four most significant bits of
the fractional part represent the fine delay to an accuracy of 1/16th of a subband sample.
This is used as the input to a look up table containing phase corrections to be applied to
each frequency bin output from the poly-phase filter bank”.

The choice of eight bits after the binary point for the constant term in the delay poly-
nomial wasmade in order to make possible an accuracy of 2−8 ticks = 1.2× 10−10 s in
delay calculations, which is safely more than is actually needed.

The nine most significant bits of the phase delay for each subband are input to the
appropriate subband mixer at the input to the polyphase filter bank. For 9-bit accuracy
to bemaintained using the same phase delay polynomial coefficients over a one-second
interval we show below that the coefficients must be stored to at least 59 bit accuracy,
which it is convenient to round up to 64 bits.

3 Justifications

3.1 Fixed point

Fixed point arithmetic is much cheaper to implent in VHDL than floating point arith-
metic. If we had the luxury of floating point arithmetic on the Uniboard there would be
no need for any decisions about scaling, and we would not need the control system to
multiply delays by frequencies to calculate phases: that could all be done on the Uni-
board itself.

3.2 A priori estimates of delay coefficients

We are going to use quadratic polynomials to approximate station delays relative to the
centre of the earth. In order to get bounds for the worst case for coefficients of the poly-
nomials we consider a Taylor’s series expansion of the diurnal delay due to rotation of
the earth. Again in the interest of studying the worst case we assume a station on the
equator.
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The delay is approximated by the polynomial

delay(t+∆t) = c0 + c1∆t+ c2∆t2, (1)

with coefficients ci given by

c0 =delay =
R

c
cosΩt (2a)

c1 =
d

dt
delay = −R

c
Ω sinΩt (2b)

c2 =
1

2

d2

dt2
delay= −1

2

R

c
Ω2 cosΩt (2c)

Plugging in the numbers (Ω = 2π/(24 × 60 × 60) = 7.3 × 10−5 radians/s,R =
6.4× 106 m) we get maximum values for the coefficients (in second-based units) of

max (c0) ≈ 0.02 s (3a)

max (c1) ≈ 1.6× 10−6 s/s (3b)

max (c2) ≈ 5.6× 10−11 s/s2. (3c)

In order to rescale this to new variables Delay and T , with scaling Delay = Ldelay
and T = Lt. We get

Delay = L delay(t0) +
d

dt
delay(t0)δT +

1

2

1

L

d2

dt2
delay(t0)δT 2 (4)

In particular, scaling to the JUC’s internal unit of ticks for time gives L = 3.2 ×
107 ticks/s, giving new coefficientsCi, with values

C0 = L delay ≈ 6.4× 105 ticks (5a)

C1 =
d

dt
delay ≈ 1.6× 10−6 ticks/tick (5b)

C2 =
1

2

1

L

d2

dt2
delay ≈ 1.8× 10−18 ticks/tick2 (5c)

The quadratic coefficient C2 is very small; it corresponds to 2−58.9 ticks/ticks2, so
that at least 59 places after the fixed binary point would be needed to store it. And the
JUC uses only the four most significant bits of the fractional delay (in ticks) to calculate
the fractional delay correction, so that the quadratic term becomes relevant at a time
tquad given by

1.8× 10−18 ticks · T 2
quad = 2−4 ticks, (6)

which gives tquad ≈ 5.8 s.
The quadratic term, then, is impractical to store and of no practical use. There is no

reason to include it in our time delay model.

3.3 Shifting and sizing delay-rate coefficient

As shown in Equation 5b, the expected maximum delay rate for terrestrial observation
is 1.6× 10−6 s/s = 1.6× 10−6 ticks/tick. Since log2(1.6× 10−6) = −19.25, the first
19 bits after the binary point in the register will be empty in this case.
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For spaceobservationswithRadioAstron, thedelay rate couldbe50×10−6 ticks/tick,
corresponding to 14 empty bits after the binary point.

This suggests thatwe should left-shift the linear coefficient, so as not towaste space.
Exactly how far it should be shifted will be discussed in the next section, which is con-
cerned with controlling errors.

3.4 Controlling errors due to linear delay coefficient

Figure 1: Delay errors with 28-bit shifted linear coefficient

We now turn to estimating the errors that will result from the fixed-point represen-
tations of the constant and linear coefficients.

We introduce the time resolution, tres of the delay calculation, defined as the smallest
unit of time stored in the constant coefficient of the delay polynomial. Since we have
proposed eight bits after the binary point for this coefficient, tres = 2−8 ticks = 1.22×
10−10s.

The maximum error in the constant coefficient as a result of quantization is thus

Err0 = ±1

2
tres. (7)

We would like to have comparable accuracy for the linear term as well. The quanti-
zation error in the linear coefficient represents an error in representing the gradient of
the delay function; the resulting error in the linear term will grow linearly with time, up
to the maximum time for which the polynomial is valid.

If we use a linear coefficientwith 28bits after the binary point, the quantisation error
due to the linear term over an interval of one second (32× 106 ticks) is given by

Err1 = ±0.5× 2−28 · 32× 106 ticks ≈ 1.86× 10−9 s. (8)

To validate this prediction, we have evaluated the difference between the “true” de-
lay1 and the interpolation using the proposed model representation for the first scan

1Actually, we used Akima splines between CALC delays spaced one-second apart to represent “truth”.
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Figure 2: Delay errors with 28-bit shifted linear coefficient (detail)

of the EVN experiment EG065A. The results are shown in Figure 1, with a close-up in
Figure 2. As expected, the error is dominated by the quantization error in the linear
coefficient and grows linearly over each one-second interval.

The errors can be seen to peak at±2×10−9, in good agreementwith our prediction.
This error is much larger than the time resolution of 1.2× 10−10 s defined above. This
suggests thatwe should reconsider the representation of the linear coefficient to achieve
greater accuracy.

Figure 3 below shows the errors for a 32-bit shifted linear coefficient. The errors for
this case are less than 1.5× 10−10 s, which is comparable to the time resolution of the
JUC’s delay model.

The use of a 48-bit register in the constant delay term results from a need to accom-
modate delays of up to 2 s for experiments using the space telescopeRadioAstron. Now,
2 s = 64×106 ticks = 1.9×225 ticks, so this requires an integer part of at least 26 bits.
With 8 bits after the binary point, this won’t fit in 32 bits but will fit in 48 bits, which is
the next convenient size.

3.5 Phase coefficients

We also wish to assess the implications of quantization error for phase coefficients,
using a similar methodology to that of Section 3.4. Clearly, the quadratic term in the
phase polynomial will dominate quantization effects – it must accommodate a value of
T 2 from zero to (32× 106 ticks)2 = 1.024× 1012 ticks2.

It is proposed to add the nine most significant bits of the phase value to the inputs
of the polyphase filterbank, so our polynomial must have this level of precision over an
interval of one second.

Denoting the quantization error in the second-order coefficient for the phase poly-
nomial by Err(c2), it follows that

Err(c2)T 2
max ≤ 0.5× 2−9 = 9.8× 10−4, (9)
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Figure 3: Delay errors with 32-bit shifted linear coefficient

so that with Tmax = 32× 106 ticks we require

Err(c2) ≤ 9.54× 10−19 = 0.55× 2−59, (10)

which is to say that the second-order coefficient needs 60 bits.
It is also appropriate to reconsider the a priori estimates of Section 3.2 in the con-

text of phase delays. For this purpose, we use a maximum frequency of 20GHz. The
constant term is not very useful, since given that we use units of cycles we effectively
discard the integer part as a result of periodicity.

max(c1) ≈ 3.6× 104 cycles/s≈0.011 cycles/tick (11a)

max(c2) ≈ 1.12 cycles/s2 ≈3.5× 10−8 cycles/tick. (11b)

This shows that there isn’t any scope for shifting the phase rate register left. The
phase acceleration register, on the other hand, will have zeros in its 24 most-significant
bits for terrestrial experiments; it might be possible to exploit this fact to reduce the
register size back down to 48-bits by shifting the register left as is done with the first-
order coefficient of time delay, but it remains unclear what the phase accelerationmight
be for space experiments.

4 Implicationsof space experiments fordelay coefficients

If it wasn’t for space experiments with RadioAstron we could make do with linear time
delay coefficients of 32 bits; with RadioAstron we need 48 bit coefficients.

Themaximumdelay acceleration coefficient for space experiments is unclear; itmay
require a second-order term for delay and it may put a bound on how far the phase-
acceleration term can be shifted. The use of 64-bit unshifted coefficients for phase can
be accommodated within the resources available on the Uniboard, though, so it does
not seem important to reconsider this.
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5 Transitional implementation

The current Uniboard firmware expects delay and phase-delay coefficients 32 times a
second, with 32-bit coefficients for delay and 48-bit coefficients for phase.

This reflects the original design, andwe have beenwaiting until the existing correla-
tion firmware is mature and debugged before changing it. The existing control system
code calculates delays over a one-second interval and then copies and adjusts the coef-
ficients to make new coefficients (representing the same polynomial) over 32 smaller
intervals.
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