Design of a parallel software correlator

Nico Kruithof Joint Institute for VLBI in Europe (JIVE) The Netherlands

VLBI

Software correlator

Telescopes

Software correlator

Tracks e.g. 64 / 128 Mbs 12 + 10 log N_f, with N_f in [32, 1024] 1 float per 2 bits sample 5 log N_f, with N_f in [32, 1024]

8 operations / baseline

Delay correction

Operations per 2 bits sample

5 log $N_f \approx [25, 50]$ flops

6 flops, complex multiplication

5 log $N_f \approx [25, 50]$ flops

6 flops, complex multiplication

Total: 12 + 10 log $N_f \approx [62, 112]$ flops

Some more numbers.

- Current JIVE correlator 16 stations, 1Gb/s 8 bands, 2 polarisations (4 pairs) 32 spectral points (N_f) Total: **1.8 Tflops**
- EVLA correlator: 27 stations, 32 Gb/s 4 bands, 2 polarisations (4 pairs), 128 spectral points Total: 244 Tflops
- Break point of linear part and quadratic part 1 polarisation: 20 telescopes
 2 polarisations: 5 telescopes

Software correlator on a cluster

Outline of the correlator

Design of a node

- Each node is a state machine
- Each node has
 - several controllers
 - a log writer
 - functionality for delegating MPI messages
- A controller can
 - Process MPI messages
- Examples of controllers are:
 - Handeling input/output
 - Dedicated controllers for the node

Preliminary results

Running time

