M2O Telecom, No. 21

ALMA proposals submitted: See below

Warkworth 30m: Tsys unit has been installed. Maser monitoring possible after its calibration.

Cumulative M2O source list: Stations have given approval to use the source list sky-plot on the M2O website (click this link: masermonitoring.org)

Irbene single-baseline interferometer: Progress made in solving phase and delay residuals. Pipeline is approaching 50% complete.

New maser flares: None reported this month

1 Activity since the previous Telecom

SamePage: +0, total 76 members.
Papers accepted: +0; Total: 16

• Papers in revision:

A.E. Volvach, L.N. Volvach, M.G. Larionov, "Composite powerful short flare of water maser in young binary system IRAS 16293-2422"

• Updates on papers in prep:

- Bayandina et al., VLA masers in G358, first draft ready
- Burns et al., 6.7 GHz VLBI movie in G358. Drafting and further analyses (see Telecom18 Report)
- Burns et al., VLBI maps of rare maser lines in G358. (See Telecom15 Report)
- Orosz et al., 7.6 and 7.8 GHz methanol masers in G358, aiming for ApJL
- Hirota et al., G24.33+0.14 ALMA follow-up; pre- and post- flare phases. (see Telecom 20 Report)
- Kobak et al., VLBI images and SD monitoring of G24.33 during the maser flare(s).
- Gray et al., Two additions to the maser flare series: compression and skyplane overlap scenarios.
- MacCarthy et al., ATCA observations of the G24 and G359 methanol maser flare events.

• M2O targets:

Name	Maser	Pre-burst	Max	Current	Reported	Reobserved	Status
	[GHz]	Flux [Jy]	Flux [Jy]	Flux [Jy]	by	by	
G359.617-0.251	6.7	120	200	90	Yonekura	Ib, Hh,	decreasing
Orion S6	6.7	3.1	9	2	Yonekura	Ib, Tr, Sz, Hh	variable
G85.411 + 0.002	6.7	12	95	80	Yonekura	Ib, Ef, Sz, Tr, Hh, Ky, Vs	decreasing
G33.641-0.228	6.7	-	236	60	Bringfried	Hh, Ib, Vs	eruptive
IRAS 16293-2422	22	-	30k	-	Sunada, Mc	Vr, Mc, Hh, Sz, Ib	-
NGC2071	22	1k	7k	920	Sunada, Hh	Vr, Hh, Sz, Ib	post-burst
G53.22-0.08	22	3	800	30	Sunada	Vr, Hh, Ib	post-burst
G358.93-0.03	6.7	5	1000	15	Yonekura	Hh, Ib	decreasing
G24.33 + 0.14	6.7	-	800	5	Torun	Hh, Ib, Vs	decreasing
G25.65 + 1.05	22	-	60k	2150	Volvach	Hh, Sz	post-burst
G034.196-0.592	22	-	120	120	Ladeyschikov	Sz, Oa, Hh	?
G35.200.74	22	600	4k	4k	Volvach	Sz, Hh, Ib	?

 $\begin{array}{l} ({\rm Ib\ =\ Ibaraki})\;({\rm Tr\ =\ Torun})\;({\rm Sz\ =\ Simeiz})\;({\rm Hh\ =\ HartRAO})\;({\rm Ef\ =\ Effelsberg})\;({\rm Ky\ =\ KVN\ Yonsei})\;({\rm Vs\ =\ Ventspil})\;({\rm Vr\ =\ VERA\ stations})\;({\rm Mc\ =\ Medicina})\;({\rm Ps\ =\ Puschino})\;({\rm Oa\ =\ OAO\text{-}WFC}) \end{array}$

• New observing proposals:

<u>Pre-emptive imaging</u> of 183 and 325 GHz H2O masers and submm continuum preceding the expected 2024 superflare in Orion KL (PI: Tomoya Hirota).

<u>Triggered ToO</u> observations of HMYSO accretion bursts, triggered on maser flares (PI: Todd Hunter) <u>Both can be seen in detail on SamePage > Workspace > Proposals</u>

• Active trigger proposals:

Array	Code	Grade	Hours granted	Hours	Active	Resubmit
			target x epoch x hour	remaining	period	deadline
EVN	EB083	1.2 / 5.0 (0 is best)	(3x2x8)x2 bands = 96	96	15/SEP/20 - 15/SEP/21	1/JUN/21
KaVA	EAVN21A-213	7.6 / 10.0 (10 is best)	$2 \times 1 \times 8 = 16$	16	01/FEB/21 - 01/SEP/21	1/JUN/21
EAVN	EAVN21A-214	8.3 / 10.0 (10 is best)	$1 \ge 2 \ge 8 = 16$	16	01/FEB/21 - 01/SEP/21	1/JUN/21
$_{ m LBA}$	V581	4.1 / 5.0 (5 is best)	96	88	01/OCT/20 - 01/OCT/21	16/JUN/21
VLBA	BB418	1.82 / 10.0 (0 is best)	48	48	01/AUG/20 - 01/AUG/21	01/FEB/21
VLA	VLA/21A-035	[score]	12	12	[dates]	-
SOFIA	90053	[score]	3.46	3.46	[dates]	-
ATCA	C3321	[score]	50	50	[dates]	-
Subaru	S20B0051N	[score]	0.5*2 or 1 night	0.5*2 or 1 night	01/AUG/20 - 01/JAN/21	-
JWST	01906	1st quintile	24.9	24.9	Cycle 1	

• Follow-up observations conducted (see Record Keeping): None this month

2 Reports

Short reports on specific activities, please send me an email (ross.burns@nao.ac.jp) in advance if you have something to report in an upcoming telecom.

Upcoming conferences / registration dates?

IAU symposium 362: THE PREDICTIVE POWER OF COMPUTATIONAL ASTROPHYSICS, November 8-12

Abstract and registration deadline: September 15th. A. Sobolev will give a talk. Event details can be found here.

EVN mini symposium and users meeting, July 12-14

Abstract and registration deadline: May 15th. Probably many people will participate. Lets discuss on SamePage. Event details can be found here.

Baltic Applied Astroinformatics and Space data Processing" (BAASP), Sep 23-24 The specific themes are: astronomy, radio astronomy, space technologies, remote sensing. Abstract and registration deadline: July 31st. Event details can be found here.

Next Newsletter / Telecom: 31st March 2021, 18:00 JST

Record keeping

3 M2O Publications

No.	Target	Facility	Author	Frequency (GHz)	Status	Ref	Journal
1	W49N	Sm, Tr	Volvach+	22.2	Published	(1)	MNRAS_L
2	W49N	Sm, Tr, Mc, Ef	Volvach+	22.2	Published	(2)	A&A
3	W49N	Sm, Tr, Mc, Ef, Kvazar	Volvach+	22.2	Published	(3)	Ast.Rep.
4	W49N	Sm	Volvach +	22.2	Published	(4)	MNRAS
5	G25	VLA	Bayandina+	6.7, 12.2, 22	Published	(5)	ApJ
6	G25	$\mathrm{Sim}/\mathrm{Hh}/\mathrm{Tr}$	Volvach+	22	Published	(6)	MNRAS L
7	G25	KVASAR	Volvach+	22	Published	(7)	Ast.Rep.
8	G25	EVN	$\mathrm{Burns} +$	22	Published	(8)	MNRAS
9	G25		${\bf Aberfelds} +$	6.7	in prep		-
10	G25		Bayandina+	12.2, 23.1	in prep		-
11	G25		${\bf MacCleod} +$	6.7, 22	in prep		
12	G358	ATCA	Breen+	mm	Published	(9)	ApJ
13	G358	ALMA- SMA	Brogan +	mm	Published	(10)	m ApJL
14	G358	Hh	MacCleod+	New Methanol masers	Published	(11)	MNRAS
15	G358	$_{ m LBA}$	$\mathrm{Burns} +$	6.7	Published	(12)	Nat.Ast.
16	G358	Various VLBI	$\operatorname{Burns}+$	6.7 movie	in prep		-
17	G358	Various VLBI	$\operatorname{Burns}+$	Maps of rare masers	in prep		
18	G358	VLBA	$\mathrm{Burns} +$	6.7 and 12.18	in prep		
19	G358	Asia-Pacific VLBI	${\rm Orosz} +$	7.6, 7.8	in prep.		$_{ m ApJL}$
20	G358	VLA	$\operatorname{Chen}+$	multiple lines methanol	Published	(13)	ApJL
21	G358	VLA	$\operatorname{Chen}+$	New lines $+$ Methanol	Published	(14)	Nat. Ast.
22	G358		MacCleod+	6.7 GHz monitoring	in prep		
23	G358		MacCleod+	6.2, 12.2, 20.3, 20.9	in prep		-
24	G358	VLA	Bayandina+	6.7, 12.2, 22.2	in prep		-
25	G358	SOFIA	${\rm Stecklum} +$	FIR	published	(15)	A&A
26	G358	Sm and Hh	Volvach+	19.9, 20.9	Published	(16)	MNRASL
_27	G358	ATCA	Breen+	Rare transitions	in prep		_
28	G24.33	EVN, VLBA	Olech+	6.7, 12.2, 22.2	in prep		-
29	G24.33	${ m Tr}$	$\mathrm{Olech}+$	OH, Meth	in prep		-
30	G24.33	Hh	v. d. Heever+		in prep		-
31	G24.33	ALMA	Hirota+	Thermal and maser	in prep		_

References

- [1] Volvach, L. N., Volvach, A. E., Larionov, M. G., MacLeod, G. C. & Wolak, P. Unusual flare activity in the extreme-velocity 81 kms1 water-maser feature in W49N. *Monthly Notices of the Royal Astronomical Society: Letters* 487, L77–L80 (2019). URL https://doi.org/10.1093/mnras1/slz088.
- [2] Volvach, L. N. et al. Flaring water masers associated with W49N. A&A 628, A89 (2019).
- [3] Volvach, L. N. et al. An unusually powerful water-maser flare in the galactic source w49n. Astronomy Reports 63, 652–665 (2019). URL https://doi.org/10.1134/S1063772919080067.
- [4] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Unusually powerful flare activity of the H₂O maser feature near a velocity of -60 km s⁻¹ in W49N. MNRAS 496, L147–L151 (2020).
- [5] Bayandina, O. S., Burns, R. A., Kurtz, S. E., Shakhvorostova, N. N. & Val'tts, I. E. JVLA overview of the bursting H\$_2\$O maser source G25.65+1.05. arXiv e-prints arXiv:1812.11353 (2018).
- [6] Volvach, L. N. et al. Powerful bursts of water masers towards G25.65+1.05. MNRAS 482, L90-L92 (2019).
- [7] Vol'vach, L. N. et al. A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602. Astronomy Reports 63, 49-65 (2019).
- 49-03 (2019).
 [8] Burns, R. A. et al. VLBI observations of the G25.65+1.05 water maser superburst. MNRAS **491**, 4069-4075 (2020).
- [9] Breen, S. L. et al. Discovery of Six New Class II Methanol Maser Transitions, Including the Unambiguous Detection of Three Torsionally Excited Lines toward G 358.9310.030. ApJ 876, L25 (2019).
- [10] Brogan, C. L. et al. Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core. ApJL 881, L39 (2019).
- [11] MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. MNRAS 489, 3981-3989 (2019).
- [12] Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nature Astronomy 10 (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp...10B.
- [13] Chen, X. et al. ¹³CH₃OH Masers Associated With a Transient Phenomenon in a High-mass Young Stellar Object. ApJL 890, L22 (2020). URL https://ui.adsabs.harvard.edu/abs/2020ApJ...890L..22C.
- [14] Chen, X. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nature Astronomy (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp..144C.
- [15] Stecklum, B. et al. Infrared observations of the flaring maser source G358.93-0.03 SOFIA confirms an accretion burst from a massive young stellar object. arXiv e-prints arXiv:2101.01812 (2021). URL https://ui.adsabs.harvard.edu/abs/2021arXiv210101812S.
- [16] Volvach, A. E. et al. Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03. MNRAS 494, L59–L63 (2020).

M2O follow-up data

	120 10110 11 6					
No.	Target	Facility	Date	Frequency (GHz)	Code	PI/comment
1	G25	VLA	Oct 2017	6.7, 12.2, 22	17B-408	OB / Reduced
2	G25+W49N	EVN	Oct 2017	22	RB004	RB / Reduced
3	G25+W49N	KaVA	Oct 2017	22	K17RB01A	RB / Reduced
4	G25+W49N	VLBA	Oct 2017	22	BO058	GO / Reduced
5	G25	VERA	2007-2013	22, 16 x epochs	[archival]	K. Motogi / Processing
6	G358	VERA	31 Jan 2019	6.7	-	SY / Reduced
7	G358	VERA	3 Mar 2019	6.7	-	SY / Reduced
8	G358	VERA	1 Apr 2019	6.7	-	SY / Reduced
9	G358	VERA	3 May 2019	6.7	-	SY / Reduced
10	G358	LBA	2 Feb 2019	6.7	vc026a	RB / Reduced
11	G358	LBA	3 Feb 2019	23.1	vc026b	GO / Abandoned
12	G358	LBA	28 Feb 2019	6.7	vc026c	RB / Reduced
13	G358	EVN	13 Mar 2019	$6.7, \underline{6.18}$	RB005	RB / Reduced
14	G358	KVN	25 Mar 2019	22, 44, 95, 120	n19rb01a	RB / Reduced
15	G358	VLBA	19 May 2019	6.7, 12.2, 23.1	BB414	RB / QuickLook
16	G358	VLBA	7 Jun 2019	6.7, 12.2, 20.7	BB412	RB / Reduced
17	G358	LBA+E.Asia	17 May 2019	7.6, 7.8	vx028a	GO,SE / QuickLook
18	G358	LBA+AusSCOPE	28 Sep 2019	6.7	v581a	RB / Reduced
19	G358	LBA+AusSCOPE	18 Aug 2020	6.7	v581b	RB / Reduced
20	G358	SOFIA	30 April 2019	$50120 \ \mu m$		BS,JE
21	G358	GROND	8 Feb 2019	NIR		HL,BS,AC
22	G358	SMA	several 2019	mm		THunter,CB
23	G358	ALMA	several 2019	Bands 5,6,7		СВ
24	G358	VLA	2019	GHz	-	OB
25	G358	VLA	2019	GHz	-	OB
	G358	VLA	2019	HNCO	-	XC,AS
27	G24	LBA	8 Sep 2019	6.7	vx026d	RB,MO / Correlated
28	G24	LBA	13 Sep 2019	6.7	s002a	RB,MO / Correlated
29	G24	LBA	28 Sep 2019	6.7	v581a	RB,MO / Correlated
30	G24	EVN	22 Sep 2019	22	RB006A	RB,MO / QuickLook
31	G24	EVN+Merlin	7 Oct 2019	6.7	RB006B	RB,MO / QuickLook
32	G24	EVN+Merlin	17 Nov 2019	1.667	RB007	RB,MO / correlated
33	G24	VLBA	27 Sep 2019	6.7, 12.2, 22	BB416A	RB,MO / QuickLook
34	$\begin{array}{c} G24 \\ G24 \end{array}$	VLBA	27 Oct 2019	6.7, 12.2, 22	BB416B	RB,MO / correlated
$\frac{35}{36}$	G24 G24	VLBA ALMA	02 Dec 2019	6.7, 12.2, 22	BB416C	RB,MO / correlated
37	G24 G24	SOFIA	26 Sep 2019 25 Oct 2019	Band6 FIR	-	THirota / QuickLook
38	G24 G24	ATCA	26 Nov 2019	K-band	C3321	$_{ m GO,SB}^{ m BS,JE}$
39	G24 G24	ATCA	27 Nov 2019 27 Nov 2019	C-band	C3321 C3321	GO,SB GO,SB
39 40						· · · · · · · · · · · · · · · · · · ·
	NGC2071, Ori-S6	KaVA	13 Mar 2020	22/44/95/130	a20d3a	RB / QuickLook
41	NGC2071, Ori-S6	KaVA	16 Apr 2020	22/44/95/130	a20d3b	RB / QuickLook
42	NGC2071, Ori-S6	KaVA	11 May 2020	22/44/95/130	a20d3c	RB / Correlated
43	G85	VLBA	24/Apr/2020	L/C/Ku/K	BB421B	RB / QuickLook
44	G85	VLBA	$\frac{22}{\text{May}} \frac{2020}{2020}$	L/C/Ku/K	BB421A	RB / QuickLook
45	G85	VLBA	22/June/2020	L/C/Ku/K	BB421C	RB / correlated
46	G359.617-0.251	LBA	18/Aug/2020	6.7	V581B	RB / Observed
47	G359.617-0.251	VLBA	$21/\mathrm{Aug}/2020$	$6.7 \ / \ 12.2 \ / \ 22$	BB418A	RB / Correlated
48	G359.617-0.251	ATCA	25-26/July/2020	6-10 GHz	C3321	GO / Processing
49	G034.196-0.592	VLA	19/NOV/2020	С	VLA/20B-441	DL / Processing
50	G034.196-0.592	VLA	29/NOV/2020	K	VLA/20B-441	DL / Processing
51	G034.196-0.592	KaVA	$12/\mathrm{DEC}/2020$	K(QWD)	a20d4a	RB / Quick Look
52	G034.196-0.592	KaVA	$23/\mathrm{JAN}/2021$	K(QWD)	a21d1a	RB / Correlating
53	G034.196-0.592	KaVA	18/FEB/2021	K(QWD)	a21d1b	RB / Observed
54	G35.200.74	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Correlating
55	G35.200.74	KaVA	18/FEB/2021	K(QWD)	a21d1b	RB / Observed
			, ,	· · · /		,

Reminders:

All G25.65+0.15 papers should include a member from the <u>Volvach et al.</u> in the author list and an acknowledgement of their funding.

All G358 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G24.33 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All Orion-S6 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All NGC2071 papers should include a member from the $\underline{\text{VERA} / \text{Sunada}}$ team in the author list and an acknowledgement of their funding.

All G53.22-0.08 papers should include a member from the <u>VERA / Sunada</u> team in the author list and an acknowledgement of their funding.

All G85 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G359 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G034.196-0.592 papers should include a member from the <u>Ladeyschikov et al.</u> in the author list and an acknowledgement of their funding.

All G35.200.74 papers should include a member from the <u>Volvach et al.</u> in the author list and an acknowledgement of their funding.