M2O Telecom, No. 19

The main news items this month:

Papers: Stecklum et al. accepted, Hirota et al. in internal review, Bayandina et al., first draft

Maser flares: Water maser flare in G35.200.74, discovered by A. Vlovach (Sz). Followed up with KaVA (R. Burns) and Hart (22, 6.7, 12 GHz, F. v.d. Heever). No flare seen in 6.7 GHz (Y. Yonekura).

New proposals: RB: Plans to submit EVN regular proposal to image post-flare 6.7 GHz targets. Also resubmit our VLBA trigger proposal (Deadline 1 Feb 2021 for both).

Announcements: PhD position (Claudia Cyganowski), and JCMT transients collab.. (See Reports)

1 Activity since the previous Telecom

- SamePage: +2 (Doug Johnstone JCMT transients, Claudia Cyganowski) total 72 members.
- Papers accepted: +1 (Stecklum et al. accepted to A&A); Total: 16
- Papers in revision:
- Updates on papers in prep:
 - Bayandina et al., VLA masers in G358, first draft ready
 - Burns et al., 6.7 GHz VLBI movie in G358. Drafting and further analyses (see Telecom18 Report)
 - Burns et al., VLBI maps of rare maser lines in G358. (See Telecom15 Report)
 - Orosz et al., 7.6 and 7.8 GHz methanol masers in G358, aiming for ApJL
 - Hirota et al., G24.33+0.14 ALMA follow-up; pre- and post- maser flare phases. (see SP). Int. rev.
 - Olech et al., VLBI images of G24.33 during its maser flare.
 - Gray et al., Two additions to the maser flare series: compression and skyplane overlap scenarios.

• M2O targets:

Name	Maser	Pre-burst	Max	Current	Reported	Reobserved	Status
	[GHz]	Flux [Jy]	Flux [Jy]	Flux [Jy]	by	by	
G359.617-0.251	6.7	120	200	100	Yonekura	Ib, Hh,	stable
Orion S6	6.7	3.1	9	2	Yonekura	Ib, Tr, Sz, Hh	variable
$G85.411{+}0.002$	6.7	12	95	95	Yonekura	Ib, Ef, Sz, Tr, Hh, Ky, Vs	decreasing
G33.641-0.228	6.7	-	236	43	Bringfried	Hh, Ib, Vs	eruptive
IRAS 16293-2422	22	-	30k	-	Sunada, Mc	Vr, Mc, Hh, Sz, Ib	-
NGC2071	22	1k	7k	920	Sunada, Hh	Vr, Hh, Sz, Ib	post-burst
G53.22-0.08	22	3	800	30	Sunada	Vr, Hh, Ib	post-burst
G358.93-0.03	6.7	5	1000	20	Yonekura	Hh, Ib	decreasing
G24.33 + 0.14	6.7	-	800	7	Torun	Hh, Ib, Vs	post-burst
$G25.65{+}1.05$	22	-	60k	2150	Volvach	Hh, Sz	post-burst
G034.196-0.592	22	-	120	120	Ladeyschikov	Sz, Oa, Hh	?
G35.200.74	22	600	4k	4k	Volvach	Sz, Hh, Ib	?

 $\begin{array}{l} (\mathrm{Ib}=\mathrm{Ibaraki}) \; (\mathrm{Tr}=\mathrm{Torun}) \; (\mathrm{Sz}=\mathrm{Simeiz}) \; (\mathrm{Hh}=\mathrm{HartRAO}) \; (\mathrm{Ef}=\mathrm{Effelsberg}) \; (\mathrm{Ky}=\mathrm{KVN} \; \mathrm{Yonsei}) \; (\mathrm{Vs}=\mathrm{Ventspil}) \; (\mathrm{Vr}=\mathrm{VERA} \; \mathrm{stations}) \; (\mathrm{Mc}=\mathrm{Medicina}) \; (\mathrm{Ps}=\mathrm{Puschino}) \; (\mathrm{Oa}=\mathrm{OAO}\text{-WFC}) \\ \end{array}$

• New observing proposals:

EVN Post-burst follow-up imaging (Burns; in prep.): Which targets? **VLBA** Triggerable ToO (Burns; in prep.)

• Active trigger proposals:

Array	Code	Grade	Hours granted	Hours	Active	Resubmit
			target x epoch x hour	remaining	period	deadline
EVN	EB083	$1.2 \ / \ 5.0 \ (0 \ {\rm is \ best})$	(3x2x8)x2 bands = 96	96	15/SEP/20 - 15/SEP/21	1/JUN/21
KaVA	EAVN21A-213	7.6 / 10.0 (10 is best)	$2 \ge 1 \ge 8 = 16$	16	01/FEB/21 - 01/SEP/21	1/JUN/21
EAVN	EAVN21A-214	8.3 / 10.0 (10 is best)	$1 \ge 2 \ge 8 = 16$	16	01/FEB/21 - 01/SEP/21	1/JUN/21
LBA	V581	4.1 / 5.0 (5 is best)	96	88	01/OCT/20 - 01/OCT/21	16/JUN/21
VLBA	BB418	1.82 / 10.0 (0 is best)	48	48	01/AUG/20 - 01/AUG/21	01/FEB/21
Subaru	S20B0051N	accepted	0.5^{*2} or 1 night	0.5^{*2} or 1 night	$01/\mathrm{AUG}/20$ - $01/\mathrm{JAN}/21$	-

• Follow-up observations conducted this month (see Record Keeping):

KaVA ((K)QWD) of G034.196-0.592 2nd epoch, with G35.200.74 1st epoch piggy-back, both are 22 GHz maser flare sources.

2 Reports

Short reports on specific activities, please send me an email (ross.burns@nao.ac.jp) in advance if you have something to report in an upcoming telecom.

JCMT Transient program collaboration (R. Burns)

In the previous telecom there was discussion about the need for increasing ground based IR facilities. In line with this, possible collaboration ideas with the JCMT transients programme was initiated. We had a Zoom call on 16 Dec 2020 M2O participants included Kt. Kim, Y. Yonekura, and R. Burns

Link to the JCMT transients program survey paper: https://ui.adsabs.harvard.edu/abs/2017ApJ...843...55M/abstract

<u>JCMT</u>: 450, 850 micron (FIR) [remember SOFIA G358] Monthly Monitoring 20srcs in 8 regions (Perseus, Orion, Ophiucius, Serpens) Looking for evidence of protostellar accretion. Src list contains 6 HMSFRs Observations processed in a day or so. Can find transients with plenty of time to pull triggers.

<u>Collaboration ideas</u>: JCMT finds flare -> M2O follows up M2O finds flare -> JCMT follows up To support this possibility Doug Johnstone has joined M2O SamePage and I have been allowed to join their Slack communications

Another, more focused collab idea:

[']Blind' M2O SD maser search of JCMT monitoring FOVs to look for 6.7 GHz maser emission: Search for previously undetected 6.7 GHz masers (incl. previously missed due to variability) Revisit previously known 6.7 GHz masers to look for recent flux changes.

What this would entail:

1. Crossmatch: JCMT FOVs, the MaserDB, the cumulative M2O list of monitored masers

2. Designing (sensitivity and declination limits) and conducting a SD observation program

Therefore: I revived efforts at establishing a Cumulative M2O maser list. So far I've got maser src lists from several observatories. In the case that observatories dont want to share their latest source list info I will go on their past publications.

Other benefits of establishing an M2O source list:

Identifying masers not yet being monitored by crossmatch M2O list with the MaserDB Advising source lists for new monitoring proposals and new facilities Useful to know the total number of monitored source when writing proposals

PhD position opening. Forwarded message from C. Cyganowski

Hello everyone, Karl Menten and I have funding for a joint PhD position (co-tutelle between St Andrews and Bonn) related to accretion bursts in high-mass star formation and submillimetre-wavelength methanol masers and wanted to advertise it to the M2O community-please could you distribute the ad https://www.st-andrews.ac.uk/study/fees-and-funding/postgraduate/scholarships/global-astrophysics/ to potentially interested students and/or relevant lists? The position is fully funded (3.5 years) and open to students of any nationality, application deadline Feb 15; Informal inquiries welcome to me (cc243 at st-andrews.ac.uk) or Karl.

Thanks, and best wishes,

Claudia

Next Newsletter / Telecom: 26th Feb 2020, 18:00 JST

Record keeping

No.	Target	Facility	Author	Frequency (GHz)	Status	Ref	Journal
1	W49N	Sm, Tr	Volvach+	22.2	Published	(1)	MNRAS_L
2	W49N	Sm, Tr, Mc, Ef	Volvach+	22.2	Published	(2)	A&A
3	W49N	Sm, Tr, Mc, Ef, Kvazar	Volvach+	22.2	Published	(3)	Ast.Rep.
4	W49N	Sm	Volvach+	22.2	Published	(4)	MNRAS
5	G25	VLA	Bayandina+	6.7, 12.2, 22	Published	(5)	ApJ
6	G25	$\rm Sim/Hh/Tr$	Volvach+	22	Published	(6)	$MNRAS_L$
7	G25	KVASAR	Volvach+	22	Published	(7)	Ast.Rep.
8	G25	EVN	$\operatorname{Burns}+$	22	Published	(8)	MNRAS
9	G25		Aberfelds +	6.7	in prep		-
10	G25		Bayandina+	12.2, 23.1	in prep		-
11	G25		MacCleod+	6.7, 22	in prep		-
12	G358	ATCA	$\operatorname{Breen}+$	mm	Published	(9)	ApJ
13	G358	ALMA-SMA	$\operatorname{Brogan}+$	mm	Published	(10)	ApJL
14	G358	Hh	MacCleod+	New Methanol masers	Published	(11)	MNRAS
15	G358	LBA	$\operatorname{Burns}+$	6.7	Published	(12)	Nat.Ast.
16	G358	Various VLBI	$\operatorname{Burns}+$	6.7 movie	in prep		-
17	G358	Various VLBI	$\operatorname{Burns}+$	Maps of rare masers	in prep		
18	G358	VLBA	$\operatorname{Burns}+$	6.7 and 12.18	in prep		
19	G358	Asia-Pacific VLBI	Orosz+	7.6, 7.8	in prep.		ApJL
20	G358	VLA	Chen+	multiple lines methanol	Published	(13)	ApJL
21	G358	VLA	Chen+	New lines + Methanol	Published	(14)	Nat. Ast.
22	G358		MacCleod+	6.7 GHz monitoring	in prep		
23	G358		MacCleod+	6.2, 12.2, 20.3, 20.9	in prep		-
24	G358	VLA	Bayandina+	6.7, 12.2, 22.2	in prep		-
25	G358	SOFIA	$\operatorname{Stecklum}+$	FIR	published	(15)	A&A
26	G358	Sm and Hh	Volvach+	19.9, 20.9	Published	(16)	MNRASL
27	G358	ATCA	$\operatorname{Breen}+$	Rare transitions	in prep		-
28	G24.33	EVN, VLBA	Olech+	6.7, 12.2, 22.2	in prep		-
29	G24.33	Tr	Olech+	OH, Meth	in prep		-
30	G24.33	$_{ m Hh}$	v. d. Heever+		in prep		-
31	G24.33	ALMA	Hirota+	Thermal and maser	in prep		-

3 M2O Publications

References

- Volvach, L. N., Volvach, A. E., Larionov, M. G., MacLeod, G. C. & Wolak, P. Unusual flare activity in the extremevelocity 81 kms1 water-maser feature in W49N. *Monthly Notices of the Royal Astronomical Society: Letters* 487, L77-L80 (2019). URL https://doi.org/10.1093/mnrasl/slz088. http://oup.prod.sis.lan/mnrasl/article-pdf/487/1/ L77/28864243/slz088.pdf.
- [2] Volvach, L. N. et al. Flaring water masers associated with W49N. A&A 628, A89 (2019).
- [3] Volvach, L. N. et al. An unusually powerful water-maser flare in the galactic source w49n. Astronomy Reports 63, 652-665 (2019). URL https://doi.org/10.1134/S1063772919080067.
- [4] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Unusually powerful flare activity of the H₂O maser feature near a velocity of -60 km s⁻¹ in W49N. MNRAS 496, L147–L151 (2020).
- [5] Bayandina, O. S., Burns, R. A., Kurtz, S. E., Shakhvorostova, N. N. & Val'tts, I. E. JVLA overview of the bursting H\$_2\$O maser source G25.65+1.05. arXiv e-prints arXiv:1812.11353 (2018). 1812.11353.
- [6] Volvach, L. N. et al. Powerful bursts of water masers towards G25.65+1.05. MNRAS 482, L90–L92 (2019).
- [7] Vol'vach, L. N. et al. A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602. Astronomy Reports 63, 49–65 (2019).
- [8] Burns, R. A. et al. VLBI observations of the G25.65+1.05 water maser superburst. MNRAS 491, 4069–4075 (2020).
 1911.12634.
- [9] Breen, S. L. et al. Discovery of Six New Class II Methanol Maser Transitions, Including the Unambiguous Detection of Three Torsionally Excited Lines toward G 358.9310.030. ApJ 876, L25 (2019). 1904.06853.
- [10] Brogan, C. L. et al. Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core. ApJL 881, L39 (2019). 1907.02470.
- [11] MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. MNRAS 489, 3981–3989 (2019). 1910.00685.
- [12] Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nature Astronomy 10 (2020).
- [13] Chen, X. et al. ¹³CH₃OH Masers Associated With a Transient Phenomenon in a High-mass Young Stellar Object. ApJL 890, L22 (2020).
- [14] Chen, X. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nature Astronomy (2020).
- [15] Stecklum, B. et al. Infrared observations of the flaring maser source G358.93-0.03 SOFIA confirms an accretion burst from a massive young stellar object. arXiv e-prints arXiv:2101.01812 (2021). 2101.01812.
- [16] Volvach, A. E. et al. Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03. MNRAS 494, L59–L63 (2020).

No.	Target	Facility	Date	Frequency (GHz)	Code	PI/comment
1	G25	VLA	Oct 2017	6.7, 12.2, 22	17B-408	OB / Reduced
2	G25+W49N	EVN	Oct 2017	22	RB004	RB / Reduced
3	G25+W49N	KaVA	Oct 2017	22	K17RB01A	RB / Reduced
4	G25+W49N	VLBA	Oct 2017	22	BO058	GO / Reduced
5	G25	VERA	2007-2013	$22, 16 \ge pochs$	[archival]	K. Motogi / Processing
6	G358	VERA	31 Jan 2019	6.7	-	SY / Reduced
7	G358	VERA	3 Mar 2019	6.7	-	SY / Reduced
8	G358	VERA	1 Apr 2019	6.7	-	SY / Reduced
9	G358	VERA	3 May 2019	6.7	-	SY / Reduced
10	G358	LBA	2 Feb 2019	6.7	vc026a	$\mathbf{RB}'/\mathbf{Reduced}$
11	G358	LBA	3 Feb 2019	23.1	vc026b	GO / Abandoned
12	G358	LBA	28 Feb 2019	6.7	vc026c	RB / Reduced
13	G358	EVN	13 Mar 2019	6.7, 6.18	RB005	$\mathbf{RB} / \mathbf{Reduced}$
14	G358	KVN	25 Mar 2019	22, 44, 95, 120	n19rb01a	RB / Reduced
15	G358	VLBA	19 May 2019	6.7, 12.2, 23.1	BB414	RB / QuickLook
16	G358	VLBA	7 Jun 2019	6.7, 12.2, 20.7	BB412	RB / Reduced
17	G358	LBA+E.Asia	17 May 2019	7.6, 7.8	vx028a	GO,SE / QuickLook
18	G358	LBA+AusSCOPE	28 Sep 2019	6.7	v581a	RB / Reduced
19	G358	LBA+AusSCOPE	18 Aug 2020	6.7	v581b	RB / Reduced
20	G358	SOFIA	30 April 2019	50120 µm		BS,JE
21	G358	GROND	8 Feb 2019	NIR		HL,BS,AC
22	G358	SMA	several 2019	mm		THunter,CB
23	G358	ALMA	several 2019	Bands 5.6.7		CB
24	G358	VLA	2019	GHz	-	OB
25	G358	VLA	2019	GHz	-	OB
26	G358	VLA	2019	HNCO	-	XC,AS
27	G24	LBA	8 Sep 2019	6.7	vx026d	B.B.MO / Correlated
28	G24	LBA	13 Sep 2019	6.7	s002a	RB.MO / Correlated
$\frac{-3}{29}$	G24	LBA	28 Sep 2019	6.7	v581a	RB.MO / Correlated
30	G24	EVN	22 Sep 2019	22	RB006A	RB.MO / QuickLook
31	G24	EVN+Merlin	7 Oct 2019	6.7	RB006B	RB.MO / QuickLook
32	G24	EVN+Merlin	17 Nov 2019	1.667	RB007	RB.MO / correlated
33	G24	VLBA	27 Sep 2019	6.7, 12.2, 22	BB416A	RB.MO / QuickLook
34	G24	VLBA	27 Oct 2019	6.7, 12.2, 22	BB416B	RB.MO / correlated
35	G24	VLBA	02 Dec 2019	6.7, 12.2, 22	BB416C	RB,MO / correlated
36	G24	ALMA	26 Sep 2019	Band6	_	THirota / QuickLook
37	G24	SOFIA	25 Oct 2019	FIR		BS.JE
38	G24	ATCA	26 Nov 2019	K-band	C3321	GO,SB
39	G24	ATCA	27 Nov 2019	C-band	C3321	GO,SB
40	NGC2071 Ori-S6	KaVA	13 Mar 2020	22/44/95/130	a20d3a	BB / QuickLook
41	NGC2071, Ori-S6	KaVA	16 Apr 2020	22/44/95/130	a20d3b	BB / QuickLook
42	NGC2071, Ori-S6	KaVA	10 Mpr 2020 11 May 2020	$\frac{22}{44}/\frac{95}{130}$	a20d3c	RB / Correlated
	<u>G85</u>	VLBA	$\frac{24/4 \mathrm{pr}/2020}{24/4 \mathrm{pr}/2020}$	L/C/Ku/K	BB/21B	BB / QuickLook
40	G85 G85	VLBA	$24/M_{P}/2020$	L/C/Ku/K	BB421D	BB / QuickLook
45 45	G85	VLRA	22/ Jupe /2020	L/C/Ku/K	BB491C	RB / correlated
	<u>(100</u>		10/A /2020			
40	G359.017-0.251 C250.617-0.251		18/Aug/2020	0.7 67/100/00	V 981B	RB / Observed
41 18	G359.017-0.231 G359.617.0.251		21/Aug/2020 25-26/July/2020	0.1 / 12.2 / 22 6-10 GHz	DD418A C3291	GO / Processing
40	C024 106 0 502		10/NOV/2020	0-10 GHZ	VI A /00D 441	
49 50	GU34.190-U.592 C034.106.0.502	VLA VLA	19/INOV/2020 20/NOV/2020	U K	VLA/20B-441 VLA/20D-441	DL / Processing
50	C024 106 0 500	V LA KoVA	$\frac{29/1000/2020}{12/DEC/2020}$		v LA/20D-441	DL / FIOCESSIIIg
51 59	GU34.190-U.392	KaVA	12/DEC/2020 22/IAN/2021	K(QWD)	a2004a	RB / Correlating
- 52 	G034.190-0.392	NaVA	20/JAN/2021	r(QWD)	a2101a	nD / Correlating
53	G35.200.74	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Correlating

M2O follow-up data

_

Reminders:

All G25.65+0.15 papers should include a member from the <u>Volvach et al.</u> in the author list and an acknowledgement of their funding.

All G358 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G24.33 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All Orion-S6 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All NGC2071 papers should include a member from the $\underline{\text{VERA} / \text{Sunada}}$ team in the author list and an acknowledgement of their funding.

All G53.22-0.08 papers should include a member from the <u>VERA / Sunada</u> team in the author list and an acknowledgement of their funding.

All G85 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G359 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G034.196-0.592 papers should include a member from the Ladeyschikov et al. in the author list and an acknowledgement of their funding.

All G35.200.74 papers should include a member from the <u>Volvach et al.</u> in the author list and an acknowledgement of their funding.