JVLA OVERVIEW OF MASER ACTIVITY IN THE BURSTING SOURCE G25.65+1.05*

*Unpublished results - ApJ article in preparation

M2O-VLBI meeting 2018-05-14

METHANOL MASER ACTIVITY DURING A WATER MASER SUPER-BURST IN G25.65+1.05 (JVLA OVERVIEW OF MASER ACTIVITY IN THE BURSTING SOURCE G25.65+1.05)

O. S. BAYANDINA,¹ R. A. BURNS,² S. E. KURTZ,³ N. N. SHAKHVOROSTOVA,¹ AND I. E. VAL'TTS¹

¹Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119333, Russia ²Joint Institute for VLBI ERIC (JIVE), Postbus 2, NL-7990 AA Dwingeloo, the Netherlands ³Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, Morelia 58089, México

(Received January 1, 2018; Revised January 7, 2018; Accepted April 30, 2018)

Submitted to ApJ

ABSTRACT

An overview on a maser activity in the source of outstanding H₂O maser bursts G25.65+1.05 (RAFGL7009S) is presented. Spectral line observations of the water maser at 22 GHz, the methanol maser transitions at 6.7, 12.2 and 44 GHz, and the continuum in all listed frequency bands with The Karl G. Jansky Very Large Array (JVLA) were conducted on the post-burst epoch of 2017. For the first time ever the maps of 22 GHz H₂O and 44 GHz CH₃OH maser spots are obtained and the absolute position of the 22 GHz H₂O bursting feature is determined with a milliarcsecond accuracy. Four continuum sources, unresolved in the previous observations, are detected in the region. It is shown that there are at least two areas in the star-forming region that are at the different stages of evolution. One of them, associated with the known UCHII region, contains a protostellar disk of ~1000 AU detected at 6.7 GHz, while another, separated from UCHII region by 0.7'' (~1500 AU) and probably more young, contains the bursting H₂O maser associated with the front of the shock from compact disk of ~40 AU detected at 22 GHz. Bursting H₂O maser components appear to trace a V-shaped structure. Other relationships of detected continuum and maser sources as well as possible models of the H₂O maser burst are discussed.

Keywords: ISM: evolution, masers

Frequency	Obs. Date	Integ. Time	Continuum			Spectral Line			
			Synth. Beam	PA	σ	Vel. res.	Synth. Beam	PA	σ
(GHz)		(\min)	(arcsec)	(°)	(mJy/beam)	$(\rm km/s)$	(arcsec)	(°)	(mJy/beam)
6.7	2017-Dec-09	10	1.82×1.15	23.01	8	0.04	$1.24{ imes}0.86$	19.78	35
12	2017-Dec-09	12	$0.70 { imes} 0.47$	20.51	10	0.05	0.62×0.44	19.16	53
22	2017-Dec-09	12	0.48×0.33	15.43	15	0.11	$0.35{ imes}0.25$	11.25	60
44	2017-Nov-02	10	0.33×0.19	44.27	41	0.05	0.24×0.14	33.08	36

 Table 1. Observation parameters

Continuum images of G25.65+1.05 at 6.7, 12, 22, and 44 GHz

Detection of spectral maser line emission

Spectral line emission is detected in all frequency bands except Ku-band (15 GHz) - no 12 GHz class II CH₃OH maser emission is found above 5 level.

Objects detected toward G25.65+1.05 with the JVLA

- Black arrows represent the direction and the position angle (but not the actual position) of bipolar outflow from Sanchez-Monge et al. (2013).
- Positional offsets are relative to the JVLA 1 continuum source.
- The physical scale label (in pc) assumes the distance to the source of 2.08 kpc (the BeSSeL Survey Bayesian Distance Calculator).

Distribution of 22 GHz H_2O and 6.7 GHz CH_3OH maser spots detected in vicinity of JVLA 1 and 2 sources

- The diameter of each spot is proportional to the flux.
- Plot is color-coded by radial velocity.

Distribution of 22 GHz H2O maser spots detected in JVLA 1 region

Possible model of the bursting source

Distribution of 6.7 GHz CH_3OH and 22 GHz H_2O maser spots detected in JVLA 2 region

10

6.7 GHz CH_3OH maser cluster: map with a least squares fitting of ellipse and p-v diagram

Distribution of 44 GHz CH₃OH maser spots

Objects detected toward G25.65+1.05 with the JVLA are overplotted on SiO(2-1), SiO(5-4), and HCO+(1-0) outflow maps from Fig.2 in Sanchez-Monge et al. (2013)

- average position of continuum sources yellow star,
- 44 GHz cIMMs magenta squares,
- position of IRAS 18316-0602 is indicated by black circle,
- gray scale corresponds to the N₂H⁺ integrated emission,
- blue-solid and red-dashed contours represent blue- and red-shifted integrated wing emission, respectively.

Objects detected toward G25.65+1.05 with the JVLA are overplotted on continuumsubtracted = $1-0 S(1) H_2$ image from Fig.2 in Todd & Howat (2006)

- continuum sources yellow stars,
- 44 GHz cIMMs magenta crosses,
- position of IRAS 18316-0602 is indicated by red circle.