## Introducing the Maser Monitoring Organisation (M2O)

#### Ross A. Burns EACOA, NAOJ, KASI









## **High-mass star formation**

<u>"High-mass stars" (> 8 M<sub>o</sub>).</u>

- Drivers of Galactic evolution; produce heavy elements beyond Iron.
- They represent less than 1% of stellar populations and reach MS in < 150 kyr</li>

#### **Theory**

- Necessarily high continuous accretion rates are not backed up observationally
- Disk-aided 'episodic accretion' bursts; between long quiescent phases
- Simulations predict that accretion bursts are extremely rare events (typically every 10^3-4 yrs) with a short, transient duration (typically a few years or less)

#### Lacking observational evidence

- High-mass stars typically form in deeply embedded environments at large distances, making them difficult to observe at high spatial resolution.
- 3 published observationally confirmed accretion bursts in high-mass protostars



### **Observational tool: Masers**





Population inversion (maser) at ~ 150 K

Population inversion (maser) in shocks

There exist many more molecular maser species, but these are most commonly used



Methanol in the disks of high-mass protostars emit maser emission at 6.7 GHz.

The brightness of this emission is highly sensitive to temperature and density.

Changes in maser flux reveal changes in the disk radiation field.



Credit: Wolfgang Steffen /Chalmers/Boy Lankhaar

### The Maser Monitoring Organisation (M2O)

#### **Prior:**

- Maser monitoring programmes already existed, but were not talking to each other.
- Transient events were only reported long after their occurrence.



**<u>Participants</u>**: Australia, Canada, China, France, Italy, Japan, Korea, Latvia, Poland, Russia, South Africa, Thailand, Ukraine, USA

#### Initial goals of the M2O:

- Initiate communications between monitoring programs to avoid duplicating efforts
- To alert the community to transient events

### The Maser Monitoring Organisation (M2O)

#### **Prior:**

- Maser monitoring programmes already existed, but were not talking to each other.
- Transient events were only reported long after their occurrence.



### The Maser Monitoring Organisation (M2O)

#### VLBI observations of the G25.65+1.05 water maser superburst

R A Burns 🔤, G Orosz, O Bayandina, G Surcis, M Olech, G MacLeod, A Volvach, G Rudnitskii, T Hirota, K Immer ... Show more

Monthly Notices of the Royal Astronomical Society, Volume 491, Issue 3, January 2020, Pages 4069–4075, https://doi.org/10.1093/mnras/stz3172

Published: 14 November 2019 Article history v

Share • Permissions 66 Cite

#### ABSTRACT

This paper reports observations of a 22 GHz water maser 'superburst' in the G25.65+1.05 massive star-forming region, conducted in response to an alert from the Maser Monitoring Organisation (M2O). Very long baseline interferometry (VLBI) observations using the European VLBI Network (EVN) recorded a maser flux density of  $1.2 \times 10^4$  Jy. The superburst was investigated in the spectral, structural, and temporal domains and its cause was determined to be an increase in maser path length generated by the superposition of multiple maser emitting regions aligning in the line of sight to the observer. This conclusion was based on the location of the bursting maser in the context of the star-forming region, its complex structure, and its rapid onset and decay.

#### , but were not talking to each other. their occurrence.

#### Next | ADS ]

#### aser Burst from G25.65+1.05 o Telescope RT-22

arisa N. Volvach (Crimean Astrophysical pek Radio Astronomy Observatory), Evgueny E. stronomical Institute, Moscow State University), ino Radio Astronomy Observatory) 17: 19:14 UT

gij Rudnitskij (gmr@sai.msu.ru)

sient, Young Stellar Object

353, 11042



I2O line in the star-forming region G25.65+1.05 density of the main feature at VLSR = 42.5 km/s dio telescope); 2017 May 12 - 400 Jy (Simeiz);

#### Initial goals of the M2O

- To alert the communi

2017 June 13 - 410 Jy (Simeiz); 2017 July 25 - 316 Jy (Pushchino RT-22 radio telescope); 2017 August 10 - 620 Jy (Simeiz); 2017 August 21 - 840 Jy (HartRAO); 2017 August 25 - 813 Jy (Pushchino); 2017 August 27 - from 1400 Jy to 2500 Jy (Simeiz); 2017 September 7 - 17000 Jy Initiate communicatie (Simeiz); 2017 September 8 - 20500 Jy (Simeiz); 2017 September 9 - 21000 Jy (HartRAO). As ng efforts observed previously in Pushchino, the H2O maser G25.65+1.05 had a strong flare in November-December 2016, its peak flux density exceeding 40000 Jy (paper submitted to Astronomy Reports). Follow-up observations of this source are highly desirable.



This map was created by a user. Learn how to create your own.





# M2O operations

**Monitoring station** 

**Other radio frequencies** 



**Interferometers (ex. ALMA)** 





Mid/Far Infrared



NIR (ex. Subaru)







# M2O operations



# M2O operations



### Maser flare: G358.93-0.03

First flare of the 6.7 GHz methanol maser reported to the M2O



© Ibaraki Univ. http://vlbi.sci.ibaraki.ac.jp/iMet/G358.9-00-190114/ KS, Y. Yonekura, et al. (2019), ATel

Daily monitoring

H<sub>2</sub>O

## Maser flare: G358.93-0.03

First flare of the 6.7 GHz methanol maser reported to the M2O



18304060900

#### © Ibaraki Univ.

KS, Y. Yonekura, et al. (2019), ATel http://vlbi.sci.ibaraki.ac.jp/iMet/G358.9-00-190114/

mid January 2019

**Daily monitoring** 

H<sub>2</sub>O

### Results from the M2O: Monitoring



### Results from the M2O: Monitoring

#### **Burst duration was about 4 months**

After the burst the maser stayed brighter than pre-burst

Many new/rare masers were detected

doi:10.1093/mmes/st-2412

Monthly Netters was a second of the second MNRA3 444, 9581-3369 (2019) Advance Access publication 2019 September 13

Detection of new methanol maser transitions associated with G358.93-0.03

G. C. MacLeod,<sup>1,2\*</sup> K. Sugiyama,<sup>3\*</sup> T. R. Hunter,<sup>4\*</sup> J. Quick,<sup>2</sup> W. Baan<sup>9</sup>,<sup>5</sup> S. L. Breen<sup>9</sup>,<sup>6</sup> C. L. Brogan,<sup>4</sup> R. A. Burns<sup>9</sup>,<sup>3,7</sup> A. Caratti o Garatti,<sup>8</sup> X. Chen,<sup>9,10</sup> J. O. Chibueze,<sup>11,12</sup> M. Houde<sup>9</sup>,<sup>1</sup> J. F. Kaczmarek<sup>9</sup>,<sup>13</sup> H. Linz,<sup>14</sup> F. Rajabi,<sup>15,16</sup> Y. Saito,<sup>17</sup> S. Schmidl,<sup>18</sup> A. M. Sobolev,<sup>15</sup> B. Stecklum,<sup>18</sup> S. P. van den Heever<sup>2</sup> and Y. Yonekura<sup>17</sup>

Affillations are listed at the end of the paper

Accepted 2019 August 22. Received 2019 August 20; in original form 2019 June 23

ABSTRACT

We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star forming region G358.93–0.03, which are flaring on similarly short druescales (days) as the 6.568 GHz methanol masers also associated with this source. The brightest 12.178 GHz channel increased by a factor of over 700 in just 90.4. The masers found in the 12.229 and 20.347 GHz methanol transitions are the first even reported and this is only the fourth object to exhibit associated 23.121 GHz methanol masers. The 12.178 GHz methanol maser emission appears to have a higher flux density than that of the 5.668 GHz emission, which is unusual. No associated near infrared flure counterpart was found, suggesting that the energy source of the flare is deeply embedded.



### Results from the M2O: ALMA



### **Results from the M2O:** ALMA



The environment is a cluster

Identified the bursting source: MM1

Found 14 new maser transitions, this implies unusual physics and chemistry

First proof of the torsionally excited maser

**Velocity coherent** maser structure ~1200 AU

### Results from the M2O: ALMA

Jy/beam 0.00 0.02 0.05 0.10 0.20

The environment is a cluster

THE ASTROPHYSICAL JOURNAL LETTERS, 881:L39 (9pp), 2019 August 20 © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/ab2f8a



#### Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core



### Results from the M2O: SOFIA



### Results from the M2O: SOFIA



https://arxiv.org/abs/2101.01812

#### **SED** shows **FIR** enhancement

L ~ 5000 Lo M ~ 10 Mo

#### Mass accretion rate:

However, since MM1 is likely in an earlier evolutionary stage, preceding the ZAMS, the above assumption may not hold. A different and presumably more realistic approach is possible using the stellar radius from the RT modeling of the pre-burst SED together with the stellar mass of  $12 \pm 3 \text{ M}_{\odot}$  derived from the kinematic model of the spiral-arm accretion flows (Chen et al. 2020b). This leads to  $M_{\text{acc}} = 5.3 \pm 11.1 \times 10^{-4} \text{ M}_{\odot}$ , and  $\dot{M}_{\text{acc}} = 3.2 \pm 5.4 \times 10^{-3} \text{ M}_{\odot} \text{ yr}^{-1}$ . The large positive error range is mainly due to the corresponding large uncertainty of the stellar radius. To put this into perspective, during its short burst G358 MM1 consumed about 180 Earth masses. Notably, because of the small disk mass, the accreted fraction represents 16% of the total. This raises the question whether the lightweight disk is a stable or transient feature.

### Results from the M2O:

Astronomy & Astrophysics manuscript no. G358-SOFIA January 7, 2021 ©ESO 2021

ary

old. ble

ırst om

#### Infrared observations of the flaring maser source G358.93–0.03\*

#### SOFIA confirms an accretion burst from a massive young stellar object

B. Stecklum<sup>1</sup>, V. Wolf<sup>1</sup>, H. Linz<sup>2</sup>, A. Caratti o Garatti<sup>3</sup>, S. Schmidl<sup>1</sup>, S. Klose<sup>1</sup>, J. Eislöffel<sup>1</sup>, Ch. Fischer<sup>4</sup>, C. Brogan<sup>5</sup>, R. Burns<sup>6</sup>, O. Bayandina<sup>7</sup>, C. Cyganowski<sup>9</sup>, M. Gurwell<sup>10</sup>, T. Hunter<sup>4</sup>, N. Hirano<sup>11</sup>, K.-T. Kim<sup>12</sup>, G. MacLeod<sup>13</sup>, K. M. Menten<sup>14</sup>, M. Olech<sup>15</sup>, G. Orosz<sup>16</sup>, A. Sobolev<sup>17</sup>, T. K. Sridharan<sup>10</sup>, G. Surcis<sup>18</sup>, K. Sugiyama<sup>6</sup>, J. van der Walt<sup>19</sup>, A. Volvach<sup>20</sup>, and Y. Yonekura<sup>21</sup>

(Affiliations can be found after the references)

Received October 11, 2020; accepted December 21, 2020



et al. 2020b). This leads to  $M_{\rm acc} = 5.3 + 10^{-1} \times 10^{-4} \,\mathrm{M_{\odot}}$ , and  $\dot{M}_{\rm acc} = 3.2 + 5.4 \times 10^{-3} \,\mathrm{M_{\odot}yr^{-1}}$ . The large positive error range is mainly due to the corresponding large uncertainty of the stellar radius. To put this into perspective, during its short burst G358 MM1 consumed about 180 Earth masses. Notably, because of the small disk mass, the accreted fraction represents 16% of the total. This raises the question whether the lightweight disk is a stable or transient feature.

Stecklum et al. 2020, accepted to A&A https://arxiv.org/abs/2101.01812





# VLBI images of methanol masers during an accretion burst

G358-MM1 **High-mass protostar** which underwent an accretion burst in 2019 **Beamsize:** 10 x 3 mas **Contours: MOM**0 (flux density) **Colours:** MOM1 (Velocity [km/s]) White cross: ALMA mm core

Declination (J2000)





- Implies a translocation of 1-2 mas/day, which is 11,700 to 23,400 km/s at the source's kinematic distance of 6.75 kpc (equivalent to 0.04 to 0.08c).
- Methanol masers die at v >10 km/s i.e. Too fast to be proper motion.

- Compact (260 au @ 6.75 kpc)
- Ring-like
- Center on MM1 (Brogan+ 19)





Burns et al., 2020, Nature Astronomy, vol 4, 506

- Compact (260 au @ 6.75 kpc)
- Ring-like
- Center on MM1 (Brogan+ 19)





Masers trace a "heat-wave" of accretion energy propagating outward.

Burns et al., 2020, Nature Astronomy, vol 4, 506

# LBA, EVN, VLBA



ew Vexico

DE Plamos exes New Mexico

St. Croix Virgin slands









17 43 10.110 10.105 10.100 10.095 Right Ascension (J2000)

# Eventually the ring of masers disappeared









We can see the suggestion of spiral arms or accretion flows in the combined image

The combined PV diagram shows the signature of an inflating Keplarian disk

The dynamic mass is estimated to be 1.6 Mo, However we know the true mass is ~10 Mo from SED analyses, this means the system is face-on.

The combined M2O data set gives the most detailed picture of an accretion burst in a high-mass protostar

# What we learned from the G358 maser flare

**Regarding high-mass star formation** 

- Strongest evidence yet for episodic accretion in high mass star formation
- Accretion events show variety (S255-IR, NGC6334, G358)
- Accretion events give rise to exotic maser emission (need new models)
- Disks show structure / clumsiness, consistent with epi. acc. theory

#### **Regarding M2O operations**

- The 6.7 GHz methanol maser readily identifies accretion events
- Is also easy to monitor with radio telescopes
- Our operations model for flare alerts and collaborations works
- Multi-wavelength and multi-epoch follow-up observations needed
- Collaboration (Radio, mm, NIR, MIR, FIR, etc.)

#### Triggerable Target of Opportunity proposals are necessary to catch bursts

### Activities after the G358 maser flare

### Expanded observing resources

More radio telescopes monitoring

More partners specialising in a wide range of facilities

| Triggerable ToO proposale |
|---------------------------|
|                           |
| EVN                       |
| KaVA                      |
| LBA                       |
| VLBA                      |
| Subaru                    |

| M2O follow-up data |                 |              |                 |                  |             |                        |  |  |  |  |  |
|--------------------|-----------------|--------------|-----------------|------------------|-------------|------------------------|--|--|--|--|--|
| No.                | Target          | Facility     | Date            | Frequency (GHz)  | Code        | PI/comment             |  |  |  |  |  |
| 1                  | G25             | VLA          | Oct 2017        | 6.7, 12.2, 22    | 17B-408     | OB / Reduced           |  |  |  |  |  |
| 2                  | G25+W49N        | EVN          | Oct 2017        | 22               | RB004       | RB / Reduced           |  |  |  |  |  |
| 3                  | G25+W49N        | KaVA         | Oct 2017        | 22               | K17RB01A    | RB / Reduced           |  |  |  |  |  |
| 4                  | G25+W49N        | VLBA         | Oct 2017        | 22               | BO058       | GO / Reduced           |  |  |  |  |  |
| 5                  | G25             | VERA         | 2007-2013       | 22, 16 x epochs  | [archival]  | K. Motogi / Processing |  |  |  |  |  |
| 6                  | G358            | VERA         | 31 Jan 2019     | 6.7              | -           | SY / Reduced           |  |  |  |  |  |
| 7                  | G358            | VERA         | 3 Mar 2019      | 6.7              | -           | SY / Reduced           |  |  |  |  |  |
| 8                  | G358            | VERA         | 1 Apr 2019      | 6.7              | -           | SY / Reduced           |  |  |  |  |  |
| 9                  | G358            | VERA         | 3 May 2019      | 6.7              | -           | SY / Reduced           |  |  |  |  |  |
| 10                 | G358            | LBA          | 2 Feb 2019      | 6.7              | vc026a      | RB / Reduced           |  |  |  |  |  |
| 11                 | G358            | LBA          | 3 Feb 2019      | 23.1             | vc026b      | GO / Abandoned         |  |  |  |  |  |
| 12                 | G358            | LBA          | 28 Feb 2019     | 6.7              | vc026c      | RB / Reduced           |  |  |  |  |  |
| 13                 | G358            | EVN          | 13 Mar 2019     | 6.7, <u>6.18</u> | RB005       | RB / Reduced           |  |  |  |  |  |
| 14                 | G358            | KVN          | 25 Mar 2019     | 22, 44, 95, 120  | n19rb01a    | RB / Reduced           |  |  |  |  |  |
| 15                 | G358            | VLBA         | 19 May 2019     | 6.7, 12.2, 23.1  | BB414       | RB / QuickLook         |  |  |  |  |  |
| 16                 | G358            | VLBA         | 7 Jun 2019      | 6.7, 12.2, 20.7  | BB412       | RB / Reduced           |  |  |  |  |  |
| 17                 | G358            | LBA+E.Asia   | 17 May 2019     | 7.6, 7.8         | vx028a      | GO,SE / QuickLook      |  |  |  |  |  |
| 18                 | G358            | LBA+AusSCOPE | 28 Sep 2019     | 6.7              | v581a       | RB / Reduced           |  |  |  |  |  |
| 19                 | G358            | SOFIA        | 30 April 2019   | $50120 \ \mu m$  |             | BS,JE                  |  |  |  |  |  |
| 20                 | G358            | GROND        | 8 Feb 2019      | NIR              |             | HL,BS,AC               |  |  |  |  |  |
| 21                 | G358            | SMA          | several 2019    | mm               |             | THunter,CB             |  |  |  |  |  |
| 22                 | G358            | ALMA         | several 2019    | Bands 5,6,7      |             | CB                     |  |  |  |  |  |
| 23                 | G358            | VLA          | 2019            | GHz              | -           | OB                     |  |  |  |  |  |
| 24                 | G358            | VLA          | 2019            | GHz              | -           | OB                     |  |  |  |  |  |
| 25                 | G358            | VLA          | 2019            | HNCO             | -           | XC,AS                  |  |  |  |  |  |
| 26                 | G24             | LBA          | 8 Sep 2019      | 6.7              | vx026d      | RB,MO / Correlated     |  |  |  |  |  |
| 27                 | G24             | LBA          | 13 Sep 2019     | 6.7              | s002a       | RB,MO / Correlated     |  |  |  |  |  |
| 28                 | G24             | LBA          | 28 Sep 2019     | 6.7              | v581a       | RB,MO / Correlated     |  |  |  |  |  |
| 29                 | G24             | EVN          | 22 Sep 2019     | 22               | RB006A      | RB,MO / QuickLook      |  |  |  |  |  |
| 30                 | G24             | EVN+Merlin   | 7 Oct 2019      | 6.7              | RB006B      | RB,MO / QuickLook      |  |  |  |  |  |
| 31                 | G24             | EVN+Merlin   | 17 Nov 2019     | 1.667            | RB007       | RB,MO / correlated     |  |  |  |  |  |
| 32                 | G24             | VLBA         | 27 Sep 2019     | 6.7, 12.2, 22    | BB416A      | RB,MO / QuickLook      |  |  |  |  |  |
| 33                 | G24             | VLBA         | 27 Oct 2019     | 6.7, 12.2, 22    | BB416B      | RB,MO / correlated     |  |  |  |  |  |
| 34                 | G24             | VLBA         | 02 Dec 2019     | 6.7, 12.2, 22    | BB416C      | RB,MO / correlated     |  |  |  |  |  |
| 35                 | G24             | ALMA         | 26 Sep 2019     | Band6            | -           | THirota / QuickLook    |  |  |  |  |  |
| 36                 | G24             | SOFIA        | 25 Oct 2019     | FIR              | (10000)     | BS,JE                  |  |  |  |  |  |
| 37                 | G24             | ATCA         | 26 Nov 2019     | K-band           | C3321       | GO,SB                  |  |  |  |  |  |
| 38                 | G24             | ATCA         | 27 Nov 2019     | C-band           | C3321       | GO,SB                  |  |  |  |  |  |
| 39                 | NGC2071, Ori-S6 | KaVA         | 13 Mar 2020     | 22/44/95/130     | a20d3a      | RB / QuickLook         |  |  |  |  |  |
| 40                 | NGC2071, Ori-S6 | KaVA         | 16 Apr 2020     | 22/44/95/130     | a20d3b      | RB / QuickLook         |  |  |  |  |  |
| 41                 | NGC2071, Ori-S6 | KaVA         | 11 May 2020     | 22/44/95/130     | a20d3c      | RB / Correlated        |  |  |  |  |  |
| 42                 | G85             | VLBA         | 24/Apr/2020     | L/C/Ku/K         | BB421B      | RB / QuickLook         |  |  |  |  |  |
| 43                 | G85             | VLBA         | 22/May/2020     | L/C/Ku/K         | BB421A      | RB / QuickLook         |  |  |  |  |  |
| 44                 | G85             | VLBA         | 22/June/2020    | L/C/Ku/K         | BB421C      | RB / correlated        |  |  |  |  |  |
| 45                 | G359.617-0.251  | LBA          | 18?Aug/2020     | 6.7              | V581A       | RB / Observed          |  |  |  |  |  |
| 46                 | G359.617-0.251  | VLBA         | 21/Aug/2020     | 6.7 / 12.2 / 22  | BB418A      | RB / Correlated        |  |  |  |  |  |
| 47                 | G359.617-0.251  | ATCA         | 25-26/July/2020 | 6-10 GHz         | C3321       | GO / Processing        |  |  |  |  |  |
| 48                 | G034.196-0.592  | VLA          | 19/NOV/2020     | С                | VLA/20B-441 | DL / Processing        |  |  |  |  |  |
| 49                 | G034.196-0.592  | VLA          | 29/NOV/2020     | K                | VLA/20B-441 | DL / Processing        |  |  |  |  |  |

n ..... !.. . !.....

### Activities after the G358 maser flare

#### More members

(Currently 71)

#### **More publications**

(Currently 16 published or accepted)

#### **More maser flares**

#### • M2O targets:

| Name                | Maser | Pre-burst | Max       | Current   | Reported     | Reobserved                 | Status     |
|---------------------|-------|-----------|-----------|-----------|--------------|----------------------------|------------|
|                     | [GHz] | Flux [Jy] | Flux [Jy] | Flux [Jy] | by           | by                         |            |
| G359.617-0.251      | 6.7   | 120       | 200       | 150       | Yonekura     | Ib, Hh,                    | decreasing |
| Orion S6            | 6.7   | 3.1       | 9         | 4         | Yonekura     | Ib, Tr, Sz, Hh             | stable     |
| $G85.411 {+} 0.002$ | 6.7   | 12        | 95        | 110       | Yonekura     | Ib, Ef, Sz, Tr, Hh, Ky, Vs | rising     |
| G33.641-0.228       | 6.7   | -         | 236       | 236       | Bringfried   | Hh, Ib, Vs                 | eruptive   |
| IRAS 16293-2422     | 22    | -         | 30k       | -         | Sunada, Mc   | Vr, Mc, Hh, Sz, Ib         | -          |
| NGC2071             | 22    | 1k        | 7k        | 920       | Sunada, Hh   | Vr, Hh, Sz, Ib             | post-burst |
| G53.22-0.08         | 22    | 3         | 800       | 30        | Sunada       | Vr, Hh, Ib                 | post-burst |
| G358.93-0.03        | 6.7   | 5         | 1000      | 20        | Yonekura     | Hh, Ib                     | decreasing |
| G24.33 + 0.14       | 6.7   | -         | 800       | 8         | Torun        | Hh, Ib, Vs                 | decreasing |
| G25.65 + 1.05       | 22    | -         | 60k       | 2150      | Sz           | Hh, Sz                     | post-burst |
| G034.196-0.592      | 22    | -         | 120       | 120       | Ladeyschikov | Sz, Oa, Hh                 | rising     |

(Ib = Ibaraki) (Tr = Torun) (Sz = Simeiz) (Hh = HartRAO) (Ef = Effelsberg) (Ky = KVN Yonsei) (Vs = Ventspil) (Vr = VERA stations) (Mc = Medicina) (Ps = Puschino) (Oa = OAO-WFC)

Our interests are not restricted to high-mass star formation.

We are always looking for more ways to collaborate and use transient maser emission as tracers for astrophysical processes

### Thank you for listening