M2O Newsletter, No. 28

Maser activity reported: 22 GHz moderate flare in G081.174-0.100.

Follow-ups Effelsberg, VLA and EAVN (See below and Record Keeping)

EVN mini sympoisum: Proceedings submitted describing the Irbene single-baseline interferometer, Lead Author: Janis Steinbergs

Talks: 50min presentation introducing the M2O to the Division of Science at NAOJ (National Astronomical Observatory of Japan) last week. There was quite some interest in our activities (R. Burns)

Nobeyama 45m telescope: will be transitioning to paid telescope time. This is unfortunate situation but rises some opportunities too. See more in Reports (R. Burns)

1 Activity since the previous Telecom

- **SamePage:** +0: total 79 members.
- Papers accepted: +1; Total: 19

O. Bayandina et al., Astronomical Journal, "A multi-transition methanol maser study of the accretion burst source G358.93-0.03-MM1" $\,$

- Papers in revision:
- Papers in prep:
 - Burns et al., 6.7 GHz VLBI movie in G358. Drafting and further analyses (see Telecom18 Report)
 Orosz et al., 7.6 and 7.8 GHz methanol masers in G358, aiming for ApJL
 - Hirota et al., G24.33+0.14 ALMA follow-up; pre- and post- flare phases. (see Telecom 20 Report)
 - Kobak et al., VLBI images and SD monitoring of G24.33 during the maser flare(s).
 - Gray et al., Two additions to the maser flare series: compression and skyplane overlap scenarios.

• New observing proposals:

ATCA Resubission of the trigger proposal (MacCarthy; submitted)

• M2O targets:

Name	Maser	Pre-burst	Max	Current	Reported	Reobserved	Status
	[GHz]	Flux [Jy]	Flux [Jy]	Flux [Jy]	by	by	
G359.617-0.251	6.7	120	200	90	Yonekura	Ib, Hh,	decreasing
Orion S6	6.7	3.1	9	2	Yonekura	Ib, Tr, Sz, Hh	variable
$G85.411{+}0.002$	6.7	12	95	80	Yonekura	Ib, Ef, Sz, Tr, Hh, Ky, Vs	decreasing
G33.641-0.228	6.7	-	236	60	Bringfried	Hh, Ib, Vs	eruptive
IRAS 16293-2422	22	-	30k	-	Sunada, Mc	Vr, Mc, Hh, Sz, Ib, Mc	-
NGC2071	22	1k	7k	920	Sunada, Hh	Vr, Hh, Sz, Ib	post-burs
G53.22-0.08	22	3	800	30	Sunada	Vr, Hh, Ib	post-burst
G358.93-0.03	6.7	5	1000	15	Yonekura	Hh, Ib	decreasing
G24.33 + 0.14	6.7	-	800	5	Torun	Hh, Ib, Vs, Mc	decreasing
$G25.65 {+} 1.05$	22	-	60k	2150	Volvach	Hh, Sz, Mc	post-burs
G034.196-0.592	22	-	120	120	Ladeyschikov	Sz, Oa, Hh, Mc	?
G35.20-0.74	22	600	4k	4k	Volvach	Sz, Hh, Ib	?
$G024.541 {+} 0.312$	6.7	~ 5	60	60	Durjasz	Ib, Hh, Vr	Active
G081.174-0.100	22	10	45	45	Ladeyschikov	Ef	Active

(Ib = Ibaraki) (Tr = Torun) (Sz = Simeiz) (Hh = HartRAO) (Ef = Effelsberg) (Ky = KVN Yonsei) (Vs = Ventspil) (Vr = VERA stations) (Mc = Medicina) (Ps = Puschino) (Oa = OAO-WFC)

• Active trigger proposals:

Array	Code	Grade	Hours granted	Hours	Active	Resubmit
			target x epoch x hour	remaining	period	deadline
EVN	EB083	1.2 / 5.0 (0 is best)	(3x2x8)x2 bands = 96	96	15/SEP/20 - 15/SEP/21	1/JUN/22 *
KaVA	EAVN21A-213	7.6 / 10.0 (10 is best)	$2 \ge 1 \ge 8 = 16$	16	16/JAN/21 - 15/JAN/22	15/NOV/21~#
EAVN	EAVN21A-214	8.3 / 10.0 (10 is best)	$1 \ge 2 \ge 8 = 16$	16	16/JAN/21 - 15/JAN/22	15/NOV/21 ~#
LBA	V581	4.1 / 5.0 (5 is best)	96	88	01/OCT/20 - 01/OCT/21	16/JUN/22 *
VLBA	BB428	0.59 / 10.0 (0 is best)	48	48	01/AUG/21 - 01/AUG/22	01/FEB/22
VLA	VLA/21A-035	score	12	12	[dates]	-
SOFIA	90053	[score]	3.46	3.46	[dates]	-
ATCA	C3321	[score]	50	50	[dates]	-
Subaru	S20B0051N	score	0.5^{*2} or 1 night	0.5^{*2} or 1 night	01/AUG/20 - 01/JAN/21	-
JWST	01906	1st quintile	24.9	24.9	Cycle 1	-

(*/#) New proposals already (submitted/accepted) for the following observing semester

Blue coded proposals have public links (Ctr-F search the page for the code if it is not initially identifiable)

• Follow-up observations conducted (see Record Keeping):

Effelsberg: Monitoring of 22 GHz water maser in G081 (PI: K Menten, Y. Gong, D. Ladeyschikov) <u>VLA:</u> Trigger approved for G081, obs pending, C/K bands (PI: O Bayandina et al.) <u>EAVN:</u> Trigger VLBI obs of G081 (epoch 1 of three), 22 GHz (PI: R Burns et al.)

 $^{{\}bf LBA}$ Resubission of the trigger proposal (Burns; submitted)

2 Reports

Short reports on specific activities, please send me an email (ross.burns@nao.ac.jp) in advance if you have something to report in an upcoming telecom.

Nobeyama 45m Radio Telescope, changes to observing procedures: Ross Burns As some of you may be aware the Nobeyama 45m Radio Telescope will be transitioning to a paid-time observing strategy from the next call for proposals. On the 14th of December there was an announcement by the NRO director Kenichi Tatematsu at the Users Meeting which detailed the current draft of these plans.

While the exact situation is not yet fully defined and publicly announced I was told it is OK to share basic information about what we can expect. Essentially the proposal system will be replaced by purchasing telescope time in which users are expected to handle observations themselves. This favors experineced users of the telescope, which itself is in good condition and continues to receive development work, such as the addition of an extended Q-band receiver which I am presently involved in the installation and commissioning. With a coverage of 30-50 GHz, and the 45m radius dish providing high sensitivity needing only a few minutes per target, this seems like an ideal instrument to survey for some of the newly discovered masers found during the G358 flare by our team.

You can probably see where I am going with this, but I suggest we consider raising funds to observe a survey of high-mass star forming regions for these masers. Since they are new and poorly understood we might find these masers in some unexpected places. I will handle fund raising by grant applications, research budget and any other means available depending on how much time we need and the total cost.

I plan to lead this campaign from the first opening of paid telescope time, the details of which will be announced when the particulars are all clarified and approved by NRO and NAOJ, sometime in 2022. If you're interested in this observing survey contact me by email or SamePage (I'll start a new page on SamePage soon for this). If you have any questions about this transition for the NRO45m in general please do ask me and if I cant answer with what I already know I can at least ask someone who does on your behalf. Hopefully we can support the observatory against closure.

Record keeping

M2O Publications

No.	Target	Facility	Author	Frequency (GHz)	Status	Ref	Journal
1	W49N	Sm, Tr	Volvach+	22.2	Published	(1)	MNRAS L
2	W49N	Sm, Tr, Mc, Ef	Volvach+	22.2	Published	(2)	A&A
3	W49N	Sm, Tr, Mc, Ef, Kvazar	Volvach+	22.2	Published	(3)	Ast.Rep.
4	W49N	Sm	Volvach+	22.2	Published	(4)	MNRAS
5	G25	VLA	Bayandina+	6.7, 12.2, 22	Published	(5)	ApJ
6	G25	$\rm Sim/Hh/Tr$	Volvach+	22	Published	(6)	MNRAS_L
7	G25	KVASAR	Volvach+	22	Published	(7)	Ast.Rep.
8	G25	EVN	$\operatorname{Burns}+$	22	Published	(8)	MNRAS
9	G25		Aberfelds +	6.7	in prep		-
10	G25		Bayandina+	12.2, 23.1	in prep		-
11	G25		MacLeod+	6.7, 22	in prep		-
12	G358	ATCA	Breen+	mm	Published	(9)	ApJ
13	G358	ALMA-SMA	$\operatorname{Brogan}+$	mm	Published	(10)	ApJL
14	G358	Hh	MacLeod+	New Methanol masers	Published	(11)	MNRAS
15	G358	LBA	$\operatorname{Burns}+$	6.7	Published	(12)	Nat.Ast.
16	G358	Various VLBI	$\operatorname{Burns}+$	6.7 movie	in prep		-
17	G358	Various VLBI	$\operatorname{Burns}+$	Maps of rare masers	in prep		
18	G358	VLBA	$\operatorname{Burns}+$	6.7 and 12.18	in prep		
19	G358	Asia-Pacific VLBI	Orosz+	7.6, 7.8	in prep.		ApJL
20	G358	VLA	Chen+	multiple lines methanol	Published	(13)	ApJL
21	G358	VLA	Chen+	New lines $+$ Methanol	Published	(14)	Nat. Ast.
22	G358		MacLeod+	6.7 GHz monitoring	in prep		
23	G358		MacLeod+	6.2, 12.2, 20.3, 20.9	in prep		-
24	G358	VLA	Bayandina+	6.7, 12.2, 22.2	Accepted		AJ
25	G358	SOFIA	$\operatorname{Stecklum}+$	FIR	Published	(15)	A&A
26	G358	Sm and Hh	Volvach+	19.9, 20.9	Published	(16)	MNRASL
27	G24.33	EVN, VLBA	Olech+	6.7, 12.2, 22.2	in prep		-
28	G24.33	Tr	Olech+	OH, Meth	in prep		-
29	G24.33	$_{ m Hh}$	v. d. Heever+		in prep		-
30	G24.33	ALMA	Hirota+	Thermal and maser	in prep		-
31	$\mathrm{G24.33}+\mathrm{G359}$	ATCA	MacCarthy+	6.7. 22. Rare transitions	Published	(17)	MNRAS
32	IRAS 16293-2422	Simeiz	Volvach+	Water maser flare	Published	(18)	MNRAS

References

- Volvach, L. N., Volvach, A. E., Larionov, M. G., MacLeod, G. C. & Wolak, P. Unusual flare activity in the extremevelocity 81 kms1 water-maser feature in W49N. *Monthly Notices of the Royal Astronomical Society: Letters* 487, L77-L80 (2019). URL https://doi.org/10.1093/mnrasl/slz088.
- [2] Volvach, L. N. et al. Flaring water masers associated with W49N. A&A 628, A89 (2019).
- [3] Volvach, L. N. et al. An unusually powerful water-maser flare in the galactic source w49n. Astronomy Reports 63, 652-665 (2019). URL https://doi.org/10.1134/S1063772919080067.
- [4] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Unusually powerful flare activity of the H₂O maser feature near a velocity of -60 km s⁻¹ in W49N. MNRAS 496, L147–L151 (2020).
- [5] Bayandina, O. S., Burns, R. A., Kurtz, S. E., Shakhvorostova, N. N. & Val'tts, I. E. JVLA overview of the bursting H\$ 2\$O maser source G25.65+1.05. arXiv e-prints arXiv:1812.11353 (2018).
- [6] Volvach, L. N. et al. Powerful bursts of water masers towards G25.65+1.05. MNRAS 482, L90-L92 (2019).
- [7] Vol'vach, L. N. et al. A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602. Astronomy Reports 63, 49–65 (2019).
- [8] Burns, R. A. et al. VLBI observations of the G25.65+1.05 water maser superburst. MNRAS **491**, 4069–4075 (2020).
- [9] Breen, S. L. et al. Discovery of Six New Class II Methanol Maser Transitions, Including the Unambiguous Detection of Three Torsionally Excited Lines toward G 358.9310.030. ApJ 876, L25 (2019).
- [10] Brogan, C. L. et al. Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core. ApJL 881, L39 (2019).
- [11] MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. MNRAS 489, 3981–3989 (2019).
- [12] Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nature Astronomy 10 (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp...10B.
- [13] Chen, X. et al. ¹³CH₃OH Masers Associated With a Transient Phenomenon in a High-mass Young Stellar Object. ApJL 890, L22 (2020). URL https://ui.adsabs.harvard.edu/abs/2020ApJ...890L..22C.
- [14] Chen, X. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nature Astronomy (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp..144C.
- [15] Stecklum, B. et al. Infrared observations of the flaring maser source G358.93-0.03. SOFIA confirms an accretion burst from a massive young stellar object. A&A 646, A161 (2021).
- [16] Volvach, A. E. et al. Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03. MNRAS 494, L59–L63 (2020).
- [17] McCarthy, T. P. et al. Molecular line search towards the flaring 6.7-GHz methanol masers of G 24.33+0.13 and G 359.62-0.24: rare maser transitions detected. MNRAS 509, 1681–1689 (2022).
- [18] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Composite powerful short flare of water maser emission in IRAS 16293-2422. MNRAS 507, L52–L56 (2021).

M2O follow-up data

No.	Target	Facility	Date	Frequency (GHz)	Code	PI/comment
1	G25	VLA	Oct 2017	6.7, 12.2, 22	17B-408	OB / Reduced
2	G25+W49N	EVN	Oct 2017	22	RB004	RB / Reduced
3	G25+W49N	KaVA	Oct 2017	22	K17RB01A	RB / Reduced
4	G25+W49N	VLBA	Oct 2017	22	BO058	GO / Reduced
5	G25	VERA	2007-2013	22, 16 x epochs	[archival]	K. Motogi / On hold
6	G358	VERA	31 Jan 2019	6.7	-	SY / Reduced
7	G358	VERA	3 Mar 2019	6.7	-	SY / Reduced
8	G358	VERA	1 Apr 2019	6.7	-	\mathbf{SY} / Reduced
9	G358	VERA	3 May 2019	6.7	-	SY / Reduced
10	G358	LBA	2 Feb 2019	6.7	vc026a	RB / Published
11	G358	LBA	3 Feb 2019	23.1	vc026b	GO / Abandoned
12	G358	LBA	28 Feb 2019	6.7	vc026c	RB / Published
13	G358	EVN	13 Mar 2019	$6.7, \underline{6.18}$	RB005	RB / Reduced
14	G358	KVN	25 Mar 2019	22, 44, 95, 120	n19rb01a	RB / Reduced
15	G358	VLBA	19 May 2019	6.7, 12.2, 23.1	BB414	RB / Reduced
16	G358	VLBA	7 Jun 2019	6.7, 12.2, 20.7	BB412	RB / Reduced
17	G358	LBA+E.Asia	17 May 2019	7.6, 7.8	vx028a	GO,SE / Reduced
18	G358	LBA+AusSCOPE	28 Sep 2019	6.7	v581a	RB / Reduced
19	G358	LBA+AusSCOPE	18 Aug 2020	6.7	v581b	RB / Reduced
20	G358	SOFIA	30 April 2019	50120 μm		BS, JE / Published
$21 \\ 22$	G358 G358	GROND SMA	8 Feb 2019 several 2019	NIR		HL,BS,AC / Published THunter,CB / Published
$\frac{22}{23}$	G358 G358	ALMA	several 2019	mm Bands 5,6,7		CB / Published
$\frac{23}{24}$	G358 G358	VLA	2019	C, Ku bands		OB / I ublished OB
$\frac{24}{25}$	G358	VLA	2019	K band	-	OB
26 26	G358	VLA	2019	HNCO	_	XC,AS
20	G24	LBA	8 Sep 2019	6.7	vx026d	RB,MO / Correlated
$\frac{21}{28}$	G24 G24	LBA	13 Sep 2019	6.7	s002a	RB,MO / Correlated
$\frac{20}{29}$	G24 G24	LBA	28 Sep 2019	6.7	v581a	RB,MO / Correlated
$\frac{25}{30}$	G24 G24	EVN	22 Sep 2019	22	RB006A	RB,MO / QuickLook
31	G24	EVN+Merlin	7 Oct 2019	6.7	RB006B	RB,MO / QuickLook
32	G24	EVN+Merlin	17 Nov 2019	1.667	RB007	RB,MO / correlated
33	G24	VLBA	27 Sep 2019	6.7, 12.2, 22	BB416A	RB,MO / QuickLook
34	G24	VLBA	27 Oct 2019	6.7, 12.2, 22	BB416B	RB,MO / correlated
35	G24	VLBA	02 Dec 2019	6.7, 12.2, 22	BB416C	RB,MO / correlated
36	G24	ALMA	26 Sep 2019	Band6	-	THirota / Reduced
37	G24	SOFIA	25 Oct 2019	FIR		$_{ m BS,JE}$
38	G24	ATCA	26 Nov 2019	K-band	C3321	GO,SB
39	G24	ATCA	27 Nov 2019	C-band	C3321	GO,SB
40	NGC2071, Ori-S6	KaVA	13 Mar 2020	22/44/95/130	a20d3a	RB / QuickLook
41	NGC2071, Ori-S6	KaVA	$16 { m Apr} 2020$	22/44/95/130	a20d3b	RB / QuickLook
42	NGC2071, Ori-S6	KaVA	11 May 2020	22/44/95/130	a20d3c	RB / Quick Look
43	$G85.411 {+} 0.002$	VLBA	$24/\mathrm{Apr}/2020$	L/C/Ku/K	BB421B	RB / QuickLook
44	$G85.411 {+} 0.002$	VLBA	$22/{ m May}/2020$	L/C/Ku/K	BB421A	RB / QuickLook
45	$G85.411 {+} 0.002$	VLBA	$22/\mathrm{June}/2020$	L/C/Ku/K	BB421C	RB / Quick Look
46	G359.617-0.251	LBA	18/Aug/2020	6.7	V581B	RB / Quick Look
47	G359.617-0.251	VLBA	$21/\mathrm{Aug}/2020$	$6.7 \ / \ 12.2 \ / \ 22$	BB418A	RB / Quick Look
48	G359.617-0.251	ATCA	$25-26/\mathrm{July}/2020$	6-10 GHz	C3321	GO / Submitted
49	G034.196-0.592	VLA	19/NOV/2020	С	VLA/20B-441	DL / Calibrated
50	G034.196-0.592	VLA	29/NOV/2020	K	VLA/20B-441	DL / Calibrated
51	G034.196-0.592	KaVA	12/DEC/2020	K(QWD)	a20d4a	RB / Quick Look
52	G034.196-0.592	KaVA	$23/\mathrm{JAN}/2021$	K(QWD)	a21d1a	RB / Quick Look
53	G034.196-0.592	KaVA	$18/\mathrm{FEB}/2021$	K(QWD)	a21d1b	RB / Quick Look
54	G35.200.74	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Quick Look
55	G35.200.74	KaVA	$18/\mathrm{FEB}/2021$	K(QWD)	a21d1b	$\operatorname{RB}'/\operatorname{Quick}\operatorname{Look}$
56	S255 and G188	EVN	3/NOV/2021	C	EB087	RB / Correlating
57	G024.541+0.312	VLBA	$\frac{16/NOV/2021}{16/NOV/2021}$	C/Ku/K	BB428A	RB / Correlating
58	G024.341+0.312 G081.174-0.100		9/DEC/2021	, ,		, ,
90	GU01.174-0.100	EAVN	9/ DEC/ 2021	K(QWD)	a21d2a	RB / observing

Reminders:

Please consult the original reporters of flare events on how they request their input to be acknowledged in follow-up proposals and publications.

All G25.65+0.15 papers should include a member from the <u>Volvach et al.</u> group in the author list and an acknowledgement of their funding.

All G358 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G24.33 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All Orion-S6 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All NGC2071 papers should include a member from the <u>VERA / Sunada</u> team in the author list and an acknowledgement of their funding.

All G53.22-0.08 papers should include a member from the $\underline{\text{VERA} / \text{Sunada}}$ team in the author list and an acknowledgement of their funding.

All G85 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G359 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G034.196-0.592 papers should include a member from the Ladeyschikov et al. group in the author list and an acknowledgement of their funding.

All G35.200.74 papers should include a member from the <u>Volvach et al.</u> group in the author list and an acknowledgement of their funding.

All 024.541+0.312 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All G081.174-0.100 papers should include a member from the Ladeyschikov et al. team in the author list and an acknowledgement of their funding.