M2O Telecom, No. 24

Irbene single baseline interferometer update: Automatic pipeline complete. Needs testing by comparing to independent results and/or standard flux calibration sources (See Reports)

Updates on the full 6.7 GHz VLBI result of G358: The latest results will be shown by screen sharing during the Telecom. I'd like some feedback on the methods and publication plan.

Talk by T Hunter on accretion bursts : PDF and video available: Link to content

New maser flares: None reported this month

1 Activity since the previous Telecom

- SamePage: +0: total 77 members.
- Papers accepted: +0; Total: 16
- Papers in revision: A.E. Volvach, L.N. Volvach, M.G. Larionov, "Composite powerful short flare of water maser in young binary system IRAS 16293-2422" MacCarthy et al., ATCA observations of the G24 and G359 methanol maser flare events.

• Updates on papers in prep:

- Bayandina et al., VLA masers in G358, first draft ready
- Burns et al., 6.7 GHz VLBI movie in G358. Drafting and further analyses (see Telecom18 Report)
- Burns et al., VLBI maps of rare maser lines in G358. (See Telecom15 Report)
- Orosz et al., 7.6 and 7.8 GHz methanol masers in G358, aiming for ApJL
- Hirota et al., G24.33+0.14 ALMA follow-up; pre- and post- flare phases. (see Telecom 20 Report)
- Kobak et al., VLBI images and SD monitoring of G24.33 during the maser flare(s).
- Gray et al., Two additions to the maser flare series: compression and skyplane overlap scenarios.

•	M2O	targets:
---	-----	----------

Name	Maser	Pre-burst	Max	Current	Reported	Reobserved	Status
	[GHz]	Flux [Jy]	Flux [Jy]	Flux [Jy]	by	by	
G359.617-0.251	6.7	120	200	90	Yonekura	Ib, Hh,	decreasing
Orion S6	6.7	3.1	9	2	Yonekura	Ib, Tr, Sz, Hh	variable
$G85.411{+}0.002$	6.7	12	95	80	Yonekura	Ib, Ef, Sz, Tr, Hh, Ky, Vs	decreasing
G33.641-0.228	6.7	-	236	60	Bringfried	Hh, Ib, Vs	eruptive
IRAS 16293-2422	22	-	30k	-	Sunada, Mc	Vr, Mc, Hh, Sz, Ib, Mc	-
NGC2071	22	1k	7k	920	Sunada, Hh	Vr, Hh, Sz, Ib	post-burst
G53.22-0.08	22	3	800	30	Sunada	Vr, Hh, Ib	post-burst
G358.93-0.03	6.7	5	1000	15	Yonekura	Hh, Ib	decreasing
G24.33 + 0.14	6.7	-	800	5	Torun	Hh, Ib, Vs, Mc	decreasing
$G25.65{+}1.05$	22	-	60k	2150	Volvach	Hh, Sz, Mc	post-burst
G034.196-0.592	22	-	120	120	Ladeyschikov	Sz, Oa, Hh, Mc	?
G35.200.74	22	600	4k	4k	Volvach	Sz, Hh, Ib	?

• New observing proposals:

<u>EVN:</u> Triggered ToO programme resubmission (PI: R Burns) Parkes, ATCA, LBA: South Triggered ToO trio resubmissions (PIs: J. Green, T. McCarthy, R Burns)

• Active trigger proposals:

Array	Code	Grade	Hours granted	Hours	Active	Resubmit
			target x epoch x hour	remaining	period	deadline
EVN	EB083	1.2 / 5.0 (0 is best)	(3x2x8)x2 bands = 96	96	15/SEP/20 - 15/SEP/21	1/JUN/22 *
KaVA	EAVN21A-213	7.6 / 10.0 (10 is best)	$2 \ge 1 \ge 8 = 16$	16	16/JAN/21 - 15/JAN/22	15/NOV/21~#
EAVN	EAVN21A-214	8.3 / 10.0 (10 is best)	$1 \ge 2 \ge 8 = 16$	16	16/JAN/21 - 15/JAN/22	15/NOV/21 #
LBA	V581	4.1 / 5.0 (5 is best)	96	88	01/OCT/20 - 01/OCT/21	16/JUN/22 *
VLBA	BB418	0.59 / 10.0 (0 is best)	48	48	01/AUG/20 - 01/AUG/21	$01/\mathrm{FEB}/22~\#$
VLA	VLA/21A-035	score	12	12	[dates]	-
SOFIA	90053	[score]	3.46	3.46	[dates]	-
ATCA	C3321	score	50	50	dates	-
Subaru	S20B0051N	score	0.5^{*2} or 1 night	0.5^{*2} or 1 night	01/AUG/20 - 01/JAN/21	-
JWST	01906	1st quintile	24.9	24.9	Cycle 1	-

(*/#) New proposals already (submitted/accepted) for the following observing semester

• Follow-up observations conducted (see Record Keeping): None this month

2 Reports

Short reports on specific activities, please send me an email (ross.burns@nao.ac.jp) in advance if you have something to report in an upcoming telecom.

Irbene single baseline interferometer update: R Burns

There has been some development progress for the Irbene single-baseline interferometer. A science case and source list has been tentatively decided and the data processing pipeline is essentially complete, but could benefit from some additional features and also a crosscheck test against another established system such as those in Japan. The plots below show the first and final states of calibration of some test data which show that the pipeline is working as expected.

Some updates on the pipeline capabilities:

- Able to locate the FITS file, and pull in apriori antab and flag files provided by the correlator.
- Automatically distinguish between target sources and calibrators, which are then treated separately.
- BPASS bandpass calibration using a bright calibrator.
- Detect the peak maser channel which is then used for FRING to determine source phase and rate solutions which are then used to calibrate the continuum emission from the HMSFR.
- Maser LSR velocity calculated.
- Outputs VPLOT, POSSM and SN/CL plots to evaluate each step of the calibration (See below).
- Takes only a minute to run.
- Consistent results to a manual AIPS data reduction.
- Still requires some fine tuning and an independent crosscheck.

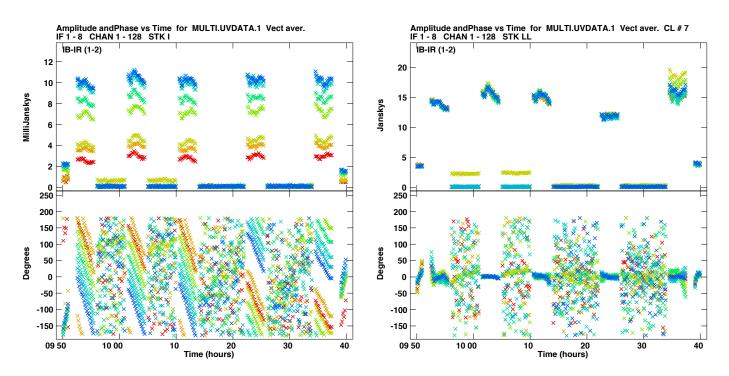


Figure 1: Visibility vs time plots (VPLOTs) of (Left) Uncalibrated data, and (Right) data calibrated using the automatic pipeline. Phases can be seen to align in both time and frequency for all sources (G85.411+0.002 and CEPA, and calibrators) and amplitudes agree across all BBCs and polarisations

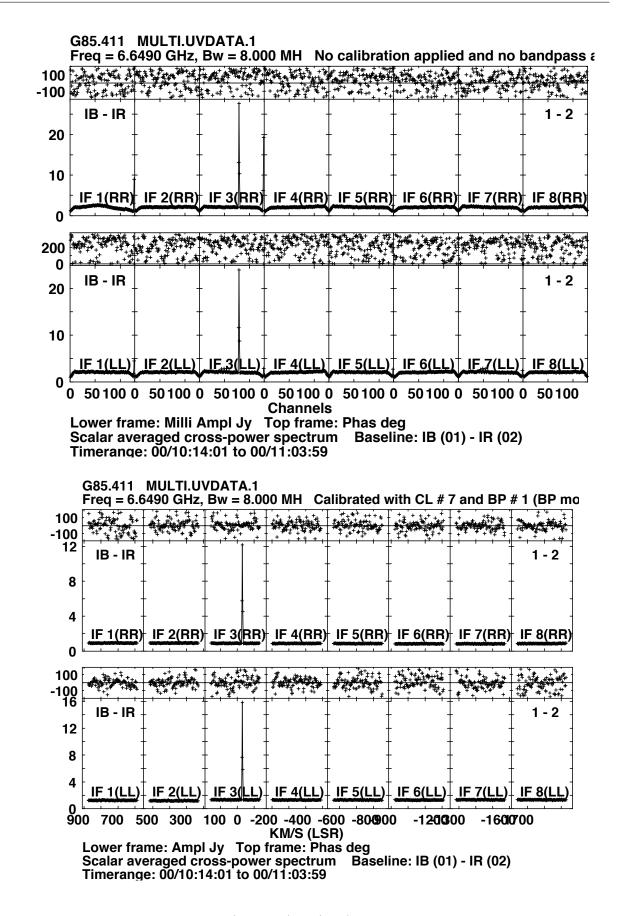


Figure 2: Visibility vs frequency plots (POSSMs) of (Top) Uncalibrated data for G85.411+0.002, and (Bottom) data calibrated using the automatic pipeline. Phases for the continuum and maser emission can be seen to become more refined around a zero phase offset value, band edge subtraction and flux calibration is seen to be working reasonably well but absolute flux calibration may need refinging as can be seen in the maser emission which differs in LL and RR flux.

Upcoming conferences / registration dates?

IAU symposium 362: THE PREDICTIVE POWER OF COMPUTATIONAL ASTROPHYSICS, November 8-12

Abstract and registration deadline: September 15th. A. Sobolev will give a talk. Event details can be found here.

EVN mini symposium and users meeting, July 12-14

Abstract and registration deadline: May 15th. Probably many people will participate. Lets discuss on SamePage. Event details can be found here.

Baltic Applied Astroinformatics and Space data Processing" (BAASP), Sep 23-24 The specific themes are: astronomy, radio astronomy, space technologies, remote sensing. Abstract and registration deadline: July 31st. Event details can be found here.

Record keeping

3 M2O Publications

No.	Target	Facility	Author	Frequency (GHz)	Status	Ref	Journal
1	W49N	Sm, Tr	Volvach+	22.2	Published	(1)	MNRAS_L
2	W49N	Sm, Tr, Mc, Ef	Volvach+	22.2	Published	(2)	A&A
3	W49N	Sm, Tr, Mc, Ef, Kvazar	Volvach+	22.2	Published	(3)	Ast.Rep.
4	W49N	Sm	Volvach+	22.2	Published	(4)	MNRAS
5	G25	VLA	Bayandina+	6.7, 12.2, 22	Published	(5)	ApJ
6	G25	$\rm Sim/Hh/Tr$	Volvach+	22	Published	(6)	MNRAS_L
7	G25	KVASAR	Volvach+	22	Published	(7)	Ast.Rep.
8	G25	EVN	$\operatorname{Burns}+$	22	Published	(8)	MNRAS
9	G25		Aberfelds +	6.7	in prep		-
10	G25		Bayandina+	12.2, 23.1	in prep		-
11	G25		MacCleod+	6.7, 22	in prep		-
12	G358	ATCA	Breen+	mm	Published	(9)	ApJ
13	G358	ALMA-SMA	$\operatorname{Brogan}+$	mm	Published	(10)	ApJL
14	G358	Hh	MacCleod+	New Methanol masers	Published	(11)	MNRAS
15	G358	LBA	$\operatorname{Burns}+$	6.7	Published	(12)	Nat.Ast.
16	G358	Various VLBI	$\operatorname{Burns}+$	6.7 movie	in prep		-
17	G358	Various VLBI	$\operatorname{Burns}+$	Maps of rare masers	in prep		
18	G358	VLBA	$\operatorname{Burns}+$	6.7 and 12.18	in prep		
19	G358	Asia-Pacific VLBI	Orosz+	7.6, 7.8	in prep.		ApJL
20	G358	VLA	Chen+	multiple lines methanol	Published	(13)	ApJL
21	G358	VLA	Chen+	New lines + Methanol	Published	(14)	Nat. Ast.
22	G358		MacCleod+	6.7 GHz monitoring	in prep		
23	G358		MacCleod+	6.2, 12.2, 20.3, 20.9	in prep		-
24	G358	VLA	Bayandina+	6.7, 12.2, 22.2	in prep		-
25	G358	SOFIA	Stecklum+	FIR	published	(15)	A&A
26	G358	Sm and Hh	Volvach+	19.9, 20.9	Published	(16)	MNRASL
27	G358	ATCA	$\operatorname{Breen}+$	Rare transitions	in prep		-
28	G24.33	EVN, VLBA	Olech+	6.7, 12.2, 22.2	in prep		-
29	G24.33	Tr	Olech+	OH, Meth	in prep		-
30	G24.33	Hh	v. d. Heever+		in prep		-
31	G24.33	ALMA	Hirota+	Thermal and maser	in prep		-

References

- Volvach, L. N., Volvach, A. E., Larionov, M. G., MacLeod, G. C. & Wolak, P. Unusual flare activity in the extremevelocity 81 kms1 water-maser feature in W49N. Monthly Notices of the Royal Astronomical Society: Letters 487, L77-L80 (2019). URL https://doi.org/10.1093/mnrasl/slz088.
- [2] Volvach, L. N. et al. Flaring water masers associated with W49N. A&A 628, A89 (2019).
- [3] Volvach, L. N. et al. An unusually powerful water-maser flare in the galactic source w49n. Astronomy Reports 63, 652-665 (2019). URL https://doi.org/10.1134/S1063772919080067.
- [4] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Unusually powerful flare activity of the H₂O maser feature near a velocity of -60 km s⁻¹ in W49N. MNRAS 496, L147–L151 (2020).
- [5] Bayandina, O. S., Burns, R. A., Kurtz, S. E., Shakhvorostova, N. N. & Val'tts, I. E. JVLA overview of the bursting H\$_2\$O maser source G25.65+1.05. arXiv e-prints arXiv:1812.11353 (2018).
- [6] Volvach, L. N. et al. Powerful bursts of water masers towards G25.65+1.05. MNRAS 482, L90–L92 (2019).
- [7] Vol'vach, L. N. et al. A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602. Astronomy Reports 63, 49–65 (2019).
- [8] Burns, R. A. et al. VLBI observations of the G25.65+1.05 water maser superburst. MNRAS 491, 4069–4075 (2020).
- [9] Breen, S. L. et al. Discovery of Six New Class II Methanol Maser Transitions, Including the Unambiguous Detection of Three Torsionally Excited Lines toward G 358.9310.030. ApJ 876, L25 (2019).
- [10] Brogan, C. L. *et al.* Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core. ApJL 881, L39 (2019).
- [11] MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. MNRAS 489, 3981–3989 (2019).
- [12] Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nature Astronomy 10 (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp...10B.
- [13] Chen, X. et al. ¹³CH₃OH Masers Associated With a Transient Phenomenon in a High-mass Young Stellar Object. ApJL 890, L22 (2020). URL https://ui.adsabs.harvard.edu/abs/2020ApJ...890L..22C.
- [14] Chen, X. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nature Astronomy (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp..144C.
- [15] Stecklum, B. et al. Infrared observations of the flaring maser source G358.93-0.03 SOFIA confirms an accretion burst from a massive young stellar object. arXiv e-prints arXiv:2101.01812 (2021). URL https://ui.adsabs.harvard.edu/ abs/2021arXiv210101812S.
- [16] Volvach, A. E. et al. Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03. MNRAS 494, L59–L63 (2020).

M2O follow-up data

IN	M2O follow-up data							
No.	Target	Facility	Date	Frequency (GHz)	Code	PI/comment		
1	G25	VLA	Oct 2017	6.7, 12.2, 22	17B-408	OB / Reduced		
2	G25+W49N	EVN	Oct 2017	22	RB004	RB / Reduced		
3	G25+W49N	KaVA	Oct 2017	22	K17RB01A	RB / Reduced		
4	G25+W49N	VLBA	Oct 2017	22	BO058	GO / Reduced		
5	G25	VERA	2007-2013	$22, 16 \ge 100$ x epochs	[archival]	K. Motogi / On hold		
6	G358	VERA	31 Jan 2019	6.7	-	SY / Reduced		
7	G358	VERA	3 Mar 2019	6.7	-	SY / Reduced		
8	G358	VERA	$1 { m Apr} 2019$	6.7	-	SY / Reduced		
9	G358	VERA	3 May 2019	6.7	-	SY / Reduced		
10	G358	LBA	2 Feb 2019	6.7	vc026a	RB / Published		
11	G358	LBA	3 Feb 2019	23.1	vc026b	GO / Abandoned		
12	G358	LBA	28 Feb 2019	6.7	vc026c	RB / Published		
13	G358	EVN	13 Mar 2019	$6.7, \underline{6.18}$	RB005	RB / Reduced		
14	G358	KVN	25 Mar 2019	22, 44, 95, 120	n19rb01a	RB / Reduced		
15	G358	VLBA	19 May 2019	6.7, 12.2, 23.1	BB414	RB / Reduced		
16	G358	VLBA	7 Jun 2019	6.7, 12.2, 20.7	BB412	RB / Reduced		
17	G358	LBA+E.Asia	17 May 2019	7.6, 7.8	vx028a	GO,SE / Reduced		
18	G358	LBA+AusSCOPE	28 Sep 2019	6.7	v581a	RB / Reduced		
19	G358	LBA+AusSCOPE	18 Aug 2020	6.7	v581b	RB / Reduced		
20	G358	SOFIA	30 April 2019	$50120 \ \mu m$		BS,JE / Published		
21	G358	GROND	8 Feb 2019	NIR		HL,BS,AC / Published		
22	G358	SMA	several 2019	mm		THunter, CB / Published		
23	G358	ALMA	several 2019	Bands 5,6,7		CB / Published		
24	G358	VLA	2019	C, Ku bands	-	OB		
25 26	G358	VLA VLA	2019	K band	-	OB		
26	G358	VLA	2019	HNCO	-	XC,AS		
27	G24	LBA	8 Sep 2019	6.7	vx026d	RB,MO / Correlated		
28	G24	LBA	13 Sep 2019	6.7	s002a	RB,MO / Correlated		
29	G24	LBA	28 Sep 2019	6.7	v581a	RB,MO / Correlated		
30 21	G24	EVN EVN - Morlin	22 Sep 2019	$\begin{array}{c} 22 \\ 6.7 \end{array}$	RB006A	RB,MO / QuickLook		
$31 \\ 32$	G24 G24	EVN+Merlin	7 Oct 2019	0.7 1.667	RB006B	RB,MO / QuickLook		
32 33	G24 G24	$_{ m VLBA}^{ m EVN+Merlin}$	17 Nov 2019 27 Sep 2019	6.7, 12.2, 22	RB007 BB416A	RB,MO / correlated RB,MO / QuickLook		
$\frac{33}{34}$	G24 G24	VLBA	27 Sep 2019 27 Oct 2019	6.7, 12.2, 22 6.7, 12.2, 22	BB416A BB416B	RB,MO / Correlated		
$34 \\ 35$	G24 G24	VLBA	02 Dec 2019	6.7, 12.2, 22 6.7, 12.2, 22	BB416B BB416C	RB,MO / correlated		
$\frac{35}{36}$	G24 G24	ALMA	26 Sep 2019	Band6	DD4100	THirota / Reduced		
$\frac{30}{37}$	G24 G24	SOFIA	25 Oct 2019	FIR	-	BS,JE		
38	G24 G24	ATCA	26 Nov 2019	K-band	C3321	GO,SB		
39	G24 G24	ATCA	27 Nov 2019	C-band	C3321 C3321	GO,SB		
						,		
$\begin{array}{c} 40\\ 41 \end{array}$	NGC2071, Ori-S6 NGC2071, Ori-S6	KaVA KaVA	13 Mar 2020 16 Apr 2020	22/44/95/130 22/44/95/130	a20d3a a20d3b	RB / QuickLook RB / QuickLook		
41 42	NGC2071, OII-50 NGC2071, Ori-S6	KaVA KaVA	10 Apr 2020 11 May 2020	22/44/95/130 22/44/95/130	a20d3b a20d3c	RB / Quick Look		
43		VLBA	24/Apr/2020	L/C/Ku/K		1 - 2		
	$G85.411 {+} 0.002$			L/C/Ku/K L/C/Ku/K	BB421B BB421A	RB / QuickLook		
$\frac{44}{45}$	${f G85.411}{+0.002}\ {f G85.411}{+0.002}$	VLBA VLBA	$\frac{22/\mathrm{May}/2020}{22/\mathrm{June}/2020}$	L/C/Ku/K L/C/Ku/K	BB421A BB421C	RB / QuickLook RB / Quick Look		
			1 1	1 1 1				
46	G359.617-0.251	LBA	18/Aug/2020	6.7	V581B	RB / Quick Look		
47	G359.617-0.251	VLBA ATCA	21/Aug/2020	6.7 / 12.2 / 22 6 10 CHz	BB418A	RB / Quick Look		
48	G359.617-0.251	ATCA	25-26/July/2020	6-10 GHz	C3321	GO / Submitted		
49	G034.196-0.592	VLA VLA	19/NOV/2020	С	VLA/20B-441	DL / Calibrated		
50	G034.196-0.592	VLA	29/NOV/2020	K (OUUD)	VLA/20B-441	DL / Calibrated		
51	G034.196-0.592	KaVA	12/DEC/2020	K(QWD)	a20d4a	RB / Quick Look		
52	G034.196-0.592	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Quick Look		
53	G034.196-0.592	KaVA	18/FEB/2021	K(QWD)	a21d1b	RB / Quick Look		
54	G35.200.74	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Quick Look		
55	G35.200.74	KaVA	18/FEB/2021	K(QWD)	a21d1b	RB / Quick Look		

Reminders:

All G25.65+0.15 papers should include a member from the <u>Volvach et al.</u> in the author list and an acknowledgement of their funding.

All G358 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G24.33 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All Orion-S6 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All NGC2071 papers should include a member from the $\underline{\text{VERA} / \text{Sunada}}$ team in the author list and an acknowledgement of their funding.

All G53.22-0.08 papers should include a member from the <u>VERA / Sunada</u> team in the author list and an acknowledgement of their funding.

All G85 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G359 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G034.196-0.592 papers should include a member from the Ladeyschikov et al. in the author list and an acknowledgement of their funding.

All G35.200.74 papers should include a member from the <u>Volvach et al.</u> in the author list and an acknowledgement of their funding.