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1  Introduction

The  requirements  for  VLBI  data  acquisition  systems  are  constantly  increasing.  A  higher 
observation density, real-time access for more dynamic schedules, highly automated observations 
and remote control of complete sites for example will offer new possibilities but will also require 
new add-ons for the controlling software. To improve the situation (semi-) autonomous, remotely 
accessible  control  systems  must  be  introduced.  Such  complex  systems  require  reliable, 
transparent  and modular  structures from the upper controlling layers down to  the basic  single 
components in combination with sophisticated safety mechanisms for automation.

This report will sketch the path for extending the current NASA VLBI field system in order to serve 
the  requirements mentioned above. The ideas presented here are based on experience gathered 
with a working prototype system operated at the German Geodetic Observatory in Wettzell, one of 
the geodetic Fundamentalstations (see eg. [NEID06] and [NEID09])

2  VLBI data acquisition – the current state

At present the VLBI data acquisition is controlled by the NASA VLBI Field System (hereafter FS). 
The FS consists  of  a  collection  of  memory  resident  programs (see  [FSLink]).  Communication 
between the individual processes is handled via a common shared memory segment and the use 
of semaphores. A sketch of the FS architecture can be seen in Fig. 1. The FS is a very stable, well 
known and well-supported system. However, in its current state it is unable to cope with some of 
the new data-acquisition requirements.  The most crucial limitation at present is the lack of remote-
control  capability  and  the  inability  to  export  system status  information  to  non-local  users  and 
services.  Also,  the  restricted  standardization  of  native  TCP/UDP support  and  the  fairly  high 
complexity  of  the  “historically  grown”  FS  architecture  make  the  task  of  integrating  new data 
acquisition hardware a challenging process.

Native TCP/IP and UDP support

The data acquisition equipment at a typical radio observatory consists of numerous, independent 
hardware components each for a single specific task. The connection of these components was in 
the  past  typically  realized  via  serial  or  parallel  buses  (eg.  MAT,  GPIB).  Only  recently  has 
communication over local ethernet networks  been utilized (at present mainly by the Mk5 unit). 
While the FS provides support for all  serial/parallel line communication specifications, currently 
there is  only limited native FS support for ethernet-based communication. However, many new 
hardware components (e.g. dBBC, DBE etc.) will  use TCP/IP or UDP over ethernet for hardware 
control.  At present,  for every new Ethernet device the corresponding FS control module would 
have  to  fully  implement  TCP/IP  or  UDP socket  communication  functionality.  This  is  a  crucial 
limitation of the existing FS for several reasons:

Apart from the significant and redundant work imposed on the developer this is not an optimal 
procedure  in  terms  of  system  stability.  Especially  the  TCP/IP  protocol  –  when  not  cleanly 
implemented on both sides of the interface – can cause socket hangs and would require restarting 
the relevant FS components. In fact, because of problems in the Mk5 unit's TCP/IP support, this 
sometimes  happens  at  the  stations,  causing  data  loss  until  noticed  and  fixed  by  the  station 
operators.  A solution for generating modular, robust and reusable ethernet based communication 
interfaces  is provided by the  idl2rpc.pl middleware generator developed by the geodetic VLBI 
group at Wettzell  (see section 3.2 for details).
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Native Remote Control 

The FS presently has only very limited built-in remote control capabilities. Input commands can be 
issued to the FS locally, either interactively by the operator through the oprin console (see fig. 1) or 
by supplying batch command files. The FS response is displayed locally via terminal windows. The 
“inject_snap” command allows simple commands to be given remotely. While local operation is a 
feasible scenario for most situations, there are cases where remote control is desirable. For very 
remote stations (e.g. the German Antarctic Receiving Station (GARS) O’Higgins which is operated 
by the Deutsche Zentrum für Luft und Raumfahrt (DLR) and the BKG) the logistic effort for manned 
operations is   high.  X-window forwarding or VNC is often not  feasible due to the very limited 
bandwidth available (e.g.  about  256Kbit to  o'Higgings in the current setup). On the other hand 
eVLBI with real-time correlation would require at least some  control  of the correlator over the 
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Figure 1: Sketch of the FS architecture. Each VLBI station hosts a local 
installation of the FS software with a localized set of configuration files 
(describing for example connected hardware etc.). The FS accepts console 
input from a local user or alternatively can process batch files containing SNAP 
commands.



observing station in order to obtain calibration and other status information. Grid-based correlation 
might also stand in need of a mechanism to dynamically direct the output datastreams from the 
station to the various grid nodes.

Extendibility / Complexity

The complexity of the FS architecture is fairly high and public documentation is out of date. While 
the FS architecture is (to some extent) modular, integrating new  hardware into the system still 
requires code and configuration changes in several places. Enabling  new commands for existing 
hardware  would for example require changes in at least three different locations. One of the goals 
for a FS extension would be to reduce complexity and make the code more modular.

3  Extending the field system

 3.1 Design requirements

As  outlined  in  the  previous  section  an  extended  FS  should  natively  support  ethernet-based 
communication, allow for remote control and increase the general maintainability and extensibility. 
With respect to the architecture  there are a few more crucial requirements:

Simplicity

Due to limited financial resources and IT support at some stations we regard simplicity as a crucial 
design requirement. The proposed solution should not greatly increase the system's complexity or 
demand for powerful hardware. We also regard the utilization of modern middleware solutions ( e.g. 
Webservices)  to  be unfeasible.  Despite  their  usefulness for  creating distributed systems,  these 
technologies require special infrastructure (e.g. application servers) to be set up and maintained 
which might be an impassable barrier for some stations. Also, the demands on the station's firewall 
configuration should be low. Ideally, the system should require only one (configurable) open port.

Long term maintainability 

Software solutions for VLBI typically have a long lifetime. The FS has been in use for ~30 years. 
The choice of technology for the FS extensions must consider such high lifetime demands. We 
advocate  using well-established,  well-supported and generally  available  technologies e.g.  ONC-
RPC for the communication layer (see Section  3.2 ).

Integration of the FS

We suggest an extension of the FS, not a rewrite. In fact the FS should become fully integrated into 
the new architecture without  any changes to the FS code. Instead of altering the FS code, we 
suggest to place all new functionality in an extension layer above the FS (see section  3.3 ).

 3.2 The communication layer

The interaction between the data acquisition system and the individual devices will be realized in a 
client-server  model  on  the  basis  of  the  TCP/IP  or  UDP protocols.  The  communication  will  be 
implemented using  standard remote procedure calls (RPC). From a programmer's point of view 
calling  an   RPC is  identical  to  calling  a  local  procedure.  The  client  has  no knowledge  of  the 
processing end-point of the procedure call, handling of the control and data flow is realized by the 
RPC layer (Fig. 2).
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To reduce the effort of implementing the communication layer an RPC middleware generator has 
been developed by the Wettzell  group (see  [NEID08],  for basic middleware structures also see 
[NEID06]). The generator (named idl2rpc.pl) automatically creates the entire communication layer 
starting from an interface definition  file  (.idl).  The interface file  contains an abstract  (but  easily 
understandable,  C-like)  description  of  the  communication  interface  between  the  client  and  the 
server (an example for a simple .idl file is displayed in Fig. 3).  

The generator script creates a number of C++ code modules, an additional output option for pure C 
code  (for  direct  integration  into  the  FS)  is  planned.  The application  developer  will  make  code 
changes only in two places: in the client source (to be written by the developer) and in the server file 
skeleton provided by the  idl2rpc.pl  generator. These two files will  contain the actual applications 
logic and device specific implementations.

The communication between client  and server  is  realized  via  a  single  (configurable)  port.  The 
default protocol can be configured to be either TCP/IP or UDP (the utilized protocol can however be 
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Figure 2: Sketch of the RPC client/server model.
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1. RPC-Call
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interface fsmc

{

void vReset();

unsigned int uiGetSystemStatusMonitorText (out string strStatusTags <>);

unsigned int uiGetSystemOverallStateText (out string strStatusTags <>, 

                                              out string strTempTags <>, 

                                              out string strMark5Tags <> , 

                                              in unsigned long ulLogDescriptor,

                                              out string strLogText, 

                                              out string strAdditionalLogText);

}

Figure 3: Example for a simple interface definition file that serves as input for the idl2rpc.pl  
generator script. The syntax is very much C-like. Input and output parameters are marked by the 
"in" and "out" keyword respectively. For a full description of the interface definition language used 
by the idl2rpc.pl generator see [NEID08] .



switched at runtime if desired). The server is automatically controlled by a watchdog process which 
restarts the server and allows the client to immediately reestablish communication to the server 
after  unexpected crashes  or  communication  failures.  In  addition  the code created  by  idl2rpc.pl 
allows executing server functionality in a parallel periodic loop.

The  generator  uses  the  ONC-RPC  (Open  Network  Computing  Remote  Procedure  Call) 
implementation and the  rpcgen program to create the RPC communication layer. Both are well-
tested and supported for several decades and are available on nearly every Linux system.

In summary the  idl2rpc.pl generator provides a very easy, yet powerful mechanism to design a 
distributed system consisting of several independent servers which act completely autonomously 
and communicate with each other via a standardized communication layer. This allows splitting  a 
complex, monolithic architecture like the FS into several manageable units.  Each individual unit can 
be developed, tested and operated also outside the FS. Different  clients  (console  based, GUI-
based, browser-based etc.) can be developed which all interact with the same server component.

 3.3 The extension layer – a first approach

As outlined in section 3.1 a FS extension should leave the existing FS intact and rather integrate it 
into the new architecture. In a first approach it is therefore necessary to add an extension layer that 
is located above the FS core and which will permit remote control of the FS. The architecture of 
such a basic system is sketched in Fig. 4.

The interface server serves as the central (single port) service to which remote clients can connect 
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Figure 4: Sketch of the basic FS extension architecture. Remote clients can control the FS via a 
RPC interface server. The server periodically queries the FS's log and it's shared memory contents 
and exposes these via RPC. Also, the clients can issue SNAP commands to the interface server, 
which  passes these on to the FS via SNAP injection.



for remote FS control. In a first step the interface server will  simply consist of the “field system 
access  module”.  This  component  reads  the  FS's  logging  information  and  the  shared  memory 
contents  and  exposes  these  via  RPC to  remote clients.  In  addition the  server  accepts  SNAP 
commands and simply  passes them on into  the FS via  SNAP injection.  Semaphore protected 
variables are used to serialize concurrent client or server-loop requests.

 3.4 The extension layer – adding device control

In the basic state of the FS extension as outlined in the previous section the device control would 
be handled by the FS in the traditional way. For new devices (e.g. the DBBC) it would be possible 
to implement the device specific communication layer using the  idl2rpc.pl generator described in 
section   3.2  and  then  compile  the  client  code  into  the  FS  (compare  Fig.  1).  In  addition  the 
commands to be accepted by the hardware would  need to  be added to the command queue 
modules (e.g. quikv) and registered in the configuration file (fscmd.ctl).

To make integrating new hardware an easier task and to open the path for  a more modular FS 
architecture  in  the  future  we  strongly  advocate  to  add  device  control  capabilities  also  to  the 
extension layer (see Fig. 5). This will however, require to replace some of the control elements in 
the current FS control loop to the extension layer control  loop (e.g.  interpretation of  command 
batch files etc). For a smooth data exchange between both a bidirectional control communication is 
desirable.

In order to be able to control the devices, some form of command interpretation needs to be added 
to the extension layer. Since the functions accepted by the various  devices  have  already been 
defined in their interface idl files,  the idl2rpc.pl generator could be extended to automatically create 
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Figure 5: The extended FS with device control added to the extension layer.



command parsing code for each client using the same definitions. In a first approach the accepted 
commands  could  be  identical  to  the  defined  RPC  procedure  names.  Mapping  these  RPC 
procedures to more meaningful command names would however be desirable. Also, very likely 
only a subset of all RPC procedures known by the server need to be exposed as user commands. 
This solution is attractive because all information describing the specific device will be kept in one 
central file (the interface .idl file) and all device control and communication code will be created by 
the idl2rpc.pl script.

When the frontend interface server receives a command, the command interpreter module would 
pass the command to  the connected device clients.  Each client  then parses the command to 
determine if it is  part of its own command set. If so, the command will be passed to the dedicated 
device server where it will be executed. Commands not accepted by any of the connected device 
clients  will  be passed on to the FS. Batch processing of  schedule and  proc directives will  be 
handled in a similar way. Every command encountered in the batch queue will be passed to the 
command interpreter. If not matched the command will be passed to the FS.

 3.5 Authorization and Authentication

The FS extension layer exposes FS functionality via RPC to remote locations.  The RPC layer 
provides no intrinsic access control mechanism. Therefore every person or process that is able to 
reach the  RPC server would be able to remote control the FS, which is obviously unacceptable for 
the stations. The ability to limit remote control to authorized persons or services and possibly also 
certain time periods (e.g. transient and/or eVLBI observations) is a crucial requirement for the FS 
extension. 

In a first approach SSH tunneling can be used for authorization. The only requirements would be 
for  the  remote  user/service  to  have  a  local  user  account  and  a  valid  public/private  key  pair. 
Because the client/server communication generated by idl2rpc.pl uses TCP/IP and UDP protocols 
over  a  single,  configurable  port,  setup  of  such  a  tunnel  is  rather  easy  without  the  need  to 
reconfigure firewall settings.

SSH tunneling has 2 major drawbacks:

� SSH provides no authorization mechanisms. Once authenticated a user or service has full 
control over the remote FS. Optimally the FS extension should provide a more fine grained 
authorization  scheme.  For  example,  multiple  users  and  services  could  be  allowed  to 
monitor the FS, while remote control should be limited to one single user.  Possibly, role-
based authorization would also be desirable, to limit parts of the RPC interface to certain 
groups of users.

� The ssh tunnel is not controlled by the communication layer, and has to be established by 
the user prior to issuing any RPC client/server interaction. This can be problematic if the 
tunnel breaks down due to temporary failures in the communication line. In that the user 
would  have  to  first  reestablish  the  tunnel  before  the  RPC  communication  could  be 
resumed.  A possible workaround would be a parallel process or script  that monitors the 
state  of  the tunnel  and automatically  restarts  it  in  case it  has collapsed (however  the 
problem of ssh not allowing password inputs from the standard input device needs to be 
overcome. Solutions exist in the literature.)

Thus, some form of authentication has to be build into the FS extension layer. Prior to executing a 
command received by the interface server the authentication module would check against a rule 
set whether the person or service has the appropriate rights to issue the particular command. The 
rule set should be configurable on the fly (e.g. via editing a simple configuration file) – without 
recompiling the FS extension layer. The rule syntax would allow to grant or deny access to RPC 
interface methods for certain users (and possibly also user roles) in particular time intervals.
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Figure 6: Sketch of the FS extension containing an authentication layer. Every RPC command will be passed 
to the authentication component prior to execution. The authentication layer consults its rule set to check if  
the user or service has the appropriate rights.
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