On Network Measurement and Monitoring of end-to-end paths used
for e-VLBI.

Julianne Sansa
Makerere University
Faculty of Computing and IT
P.O.Box 7062 Kampala
Uganda
sansa@cit.mak.ac.ug

Arpad Szomoru
Joint Institute for VLBI in Europe
Oude Hoogeveensedijk 4
7991 PD Dwingeloo
The Netherlands
szomoru@jive.nl

J.M. van der Hulst
Kapteyn Astronomical Institute
Postbus 800
9700 AV Groningen
The Netherlands
vdhulst@astro.rug.nl

February 25, 2006

Abstract

We report on the results of data transfer tests that we conducted with the aim of understanding and removing
the bottlenecks currently limiting the transfer speed of astronomical data from radio telescopes across the
world to the central processing centre in the Netherlands.

Keywords: e-VLBI, radio astronomy, network performance, transport protocols

1 Introduction

Very long baseline interferometry (VLBI) is a tech-
nique that enables astronomers to observe cosmic ob-
jects at radio wavelengths with an extremely high an-
gular resolution. This is done by combining the signals
of widely separated radio telescopes using a correlator,
a custom-built supercomputer. In this way a telescope
with the size of a continent, and even of the earth, can
be simulated.

The telescopes used in the Furopean VLBI Network
(EVN) produce data at rates of up to 1Gbps each. Tra-
ditionally, these data streams were recorded on tapes
(nowadays hard disk drives) and shipped to the corre-
lator located at JIVE, the Joint Institute for VLBI
in Europe, in Dwingeloo, the Netherlands. During
the last few years JIVE, in collaboration with the
FEuropean National Research Networks and the pan-
European Research Network GEANT, have worked on
a proof-of-concept project to connect several telescopes
across Europe in real-time to the correlator via the In-
ternet (electronic VLBI or e-VLBI). This project has
led to an EC sponsored project called EXPReS, which
over the next few years will transform the EVN to a
fully functional real-time e-VLBI network.

During the PoC project it became clear that in spite of

the vast capacity of the connecting networks, the ac-
tual transport of large amounts of data poses quite a
challenge especially for real time correlation and in uti-
lizing all the physically available bandwidth. In order
to investigate the throughput and examine what lim-
its the data flow we carried out a number of network
transfer tests under varying conditions. In this paper
we report how tests were set up and evaluate the re-
sults in terms of what limits the network performance.
The Mark5 [1] application that handles e-VLBI data
uses the Transport Control Protocol (TCP). By the
nature of e-VLBI, huge amounts of data have to be
transported over long distances from geographically
dispersed telescopes to one central correlator. We con-
ducted network performance tests to investigate the
behaviour of the network connections. Internet mea-
surement tools are classified into two classes, passive
and active [2]. Active tools inject traffic into the net-
work and use it to gather network statistics, while
passive tools use already existing traffic to compute
the status of the network. We monitored the network
paths used for e-VLBI in the Netherlands with web100
[3, 4] (a mix of active and passive tool) and tcpdump [5]
(a passive tool) to gather statistics on the congestion
window, Round Trip Time (RTT), packet loss and the

resulting throughput. The aim was to clarify the rela-
tion between these variables and the achieved through-
put.

1.1 Background

When a TCP connection is established between sender
and receiver, a congestion window (CWND) is nego-
tiated. This is the amount of data that a sender can
send before receiving any feedback from the receiver.
A TCP receiver maintains a receive window (RWND),
for the purpose of informing the sender how much data
it is willing to accept in one go without needing to gen-
erate acknowledgements. It is thus in the best interest
of the TCP connection that CWND and RWND are
close to one another, otherwise the lesser value will be
the effective value for both. TCP senders update the
CWND in response to acknowledgments of received
packets and the detection of congestion. Standard
TCP interprets packet loss as congestion. This packet
loss is detected through 1) the timeout of an unac-
knowledged packet, 2) the receipt of several duplicate
acknowledgments, which emphasize that a previously
acknowledged packet is being re-acknowledged imply-
ing to the sender that the next packet whose turn it was
to be acknowledged has been lost, or 3) through selec-
tive acknowledgments (SACK), which indicate specific
packets received among a block that was sent implying
that the rest were lost.

A TCP sender can be in two states, the slow-start or
the congestion avoidance state. A sender which has
just established a TCP connection will be in the slow-
start state where the initial value of CWND is very
small (one packet for standard TCP) and increases ex-
ponentially as it senses the network congestion sta-
tus with the aim of using the unused bandwidth as
quickly as possible. As the sender’s CWND continues
to grow it will cross the so-called slow-start thresh-
old and the connection will move into the congestion
avoidance state. In this state, the increased chance of
congestion causes the increase of the CWND to slow
down.

In these two states the sender will adjust the size of
the CWND according to the following equations (1)
- (4) depending on whether the previous packet was
acknowledged or lost:

Slow-Start:
On acknowledgement:

CWNDye, = CWNDgig+c (1)
On packet loss:

CWN Dyewy = CWN Dipitial (2)

Congestion Avoidance:

On acknowledgement:
CWNDypew =CWNDyg+a/CWNDyg (3)
On packet loss:
CWNDypew =CWNDyg—bx CWNDyq (4)
wherea =1,b=0.5,c=1

On high speed links the TCP connection quickly passes
through the slow-start state into the congestion avoid-
ance state and as a result most of the connection’s
lifetime is spent in the congestion avoidance state.
From Floyd [6] the following relationships are taken:

CW N Doptimar = Bandwidth x RTT (5)

CWND
Th hout — average
roughput = ——r—— (6)
1.2
CWNDa'uerage = (7)

N
where RTT is the Round Trip Time, and p is the
packet loss rate.

From equations (6) and (7), we note that the TCP
throughput is directly proportional to the CWND and
inversely proportional to the RT'T and that the CWND
in turn is inversely proportional to the square root of
packet loss rate. Making long distance connections
over high speed links as is the case for e-VLBI, im-
plies that the optimal CWND required to ensure high
throughput has to be large, as suggested by equa-
tion (5). The TCP congestion avoidance algorithm,
in equations (3) and (4), however exhibits a weakness
in maintaining a large CWND in the presence of packet
loss.

1.2 Questions to address

The main question we want to address is what informa-
tion we need to know to predict network performance.
We can specify this further with the following ques-
tions:

i) What is the available bandwidth for a connection
that TCP is about to make.

ii) If the available bandwidth is less than the theo-
retically available bandwidth, what is the limit-
ing bottleneck (sender, network or receiver).

iii) How much packet loss and RTT occurs in the
end-to-end path of the established TCP connec-
tion.

iv) What is the stability of the TCP connection es-
tablished.

v) How can we minimize the impact of the identified
bottleneck(s).

In this paper we will address questions 1) ii) iii) iv)
and part of v).

2 Methodology

In this section we describe the network topology over
which we conducted the network tests as well the hard-
ware configuration and the tools we used to gather
network statistics.

2.1 Setup

Tests were conducted between Mark5 units located
at JIVE interconnected via Amsterdam through
Netherlight [7] as shown in Figure 1.

nll - M160

Figure 1: Network topology for which tests were con-
ducted

Each of the links from the router AR5 to each of
the Markb’s is 1 Gbps. Statistics were gathered for
iperf [8] flows or Mark5 disk2net-net2disk transfers
from one Mark5 through the router AR5 to another
Mark5. Some tests were conducted through Amster-
dam to Manchester, UK, via UKlight [9].

2.2 Hardware configuration

The hardware configuration of the Mark5 units is as
follows:

e Motherboard: Supermicro P3TDLE, FSB 133
MHz

e Processor: Pentium IIT 1.26 GHz, FSB 133 MHz,
512K L2

e Chipset: ServerWorks Serverset III LE
e Memory: 256M PC133 SDRAM

e Operating System: RedHat Release 9.0, linux
kernel 2.4.20-6

2.3 Kernel Tuning

In order to ensure maximum throughput, the following
well known high performance networking options [10]
were tuned. Maximum Transmission Unit (MTU) of
8192 bytes was supported for all tests in the Nether-
lands, while that of 4470 bytes was supported for tests
involving Manchester, compared to the default 1500
bytes. TCP buffers were set to 4 Mbytes compared to
the 64 Kbytes default while txqueuelen was set from a
default of 100 to 20000, which has been proved to of-
fer good performance [11]. The default values are too
small to support high speed data transfers.

2.4 Measurements with Web100 &
TCPdump

We use Web100 [3, 4], a set of tools that together pro-
vide an advanced management interface for TCP. It
is a passive tool in that it uses ordinary TCP traffic
to calculate TCP event statistics per connnection from
the received acknowledgments. However, since statis-
tics are computed for TCP connections from TCP ac-
knowlegments, web100 is also an active tool. The di-
agnostics provided by Web100 are extremely useful to
evaluate the link performance.

During e-VLBI transfers we gather statistics similar
to those reported with Web100 using TCPdump [5].
TCPdump generates no traffic, it merely keeps track
of all the traffic going through a particular network
interface, making it a passive tool.

3 Tests

In this section we present the results of our tests in
four subsections: observed CWND & RWND, packet
loss, RTT and TCP throughput.

3.1 Observed CWND & RWND

As mentioned in Section 1.1, CWND and RWND
should be nearly equal and large enough to allow full
bandwidth utilisation. The links have a bandwidth of
1 Gbps, the RTT for tests in the Netherlands is ~ 4
ms, while the RTT for tests involving Manchester is
~ 16 ms. From equation (5) in Section 1.1 the optimal
CWND and RWND for tests within the Netherlands
is 0.5 MB, while for tests to Manchester is 2 MB.

In Figure 2A we show the result of a single data flow
between JIVE and Manchester. Both CWND and
RWND are in close proximity of each other with an
average of 1.58 x 10° bytes, which is 79% of the optimal
CWND. When producing two parallel competing data
flows as shown in Figure 2B we begin to see unfair al-
location of the CWND for each flow, one with average
1.48 x 106 bytes (which is 74% of the optimal CWND)
and the other with 1.19 x 10° bytes (which is 59.5%
of the optimal CWND). The same situation is seen in

Figure 2C for five parallel flows where we see that all
the five values of the CWND ranging from 5.29 x 10°
bytes to 5.76 x 10° bytes (which is ~ 25% of the optimal
CWND). For multiple flows Figures (2B and 2C), we
do not show the corresponding RWND plots because
RWND values are always higher than the CWND val-

1.586 {
1584 - — CWND

_ RWND 4

A

1.582

Window size (MBytes)

,_.
9]
@
T
|

1.578 =

Clv v b v b b b 1
200 400 800 800 1000
Time (Seconds)

o

15 _H_H_H_H —

-

Window size (MBytes)

<
o

\ \

i J'

0 200 400 600 800 1000
Time (Seconds)

ues, making CWND the effectively used variable. In
both Figures 2B and 2C the effective combined CWND
of the multiple flows is greater than 100% of the op-
timal CWND, thus the implied throughput that could
be achieved is close to the peak value of 1 Gbps.

B
1‘67L‘\“\H‘H\“H“HL
1 NI T
it B
- 5 i
B F N
5‘127 U —
2 ! "
[
N
e i
z
o
g
E
=08 -
o L' | cwnp1]
__| CWND2
Clao v b v b v b b 1T
0 200 400 600 800 1000
Time (Seconds)
D
0.08 e
__ CWND
__ RWND
» 0.06 — [T
3 K/W_‘/—’_/‘
> L
m
2
- L i
N
b |
z
5 0.04 - -
5
g i
0.0R - -
AT N R S AN ST N AT N R
0 20 40 60

Time (Seconds)

Figure 2: Congestion Window and Receive Window for A: a single memory-to-memory data flow (CWND and
RWND are nearly equal), B: two parallel memory-to-memory data flows (RWND is not plotted as it is much
larger than CWND, making CWND the effective limiting value), C: five parallel memory-to-memory data flows
(here too RWND is not plotted as it is much larger than CWND) and D: disk2net-net2disk e-VLBI data transfer

(RWND smaller than CWND).

3.2 Packet loss

From our measured maximum CWND we calculate a
steady state packet loss of 7.49x 1076 [6]. A rate larger
than this steady state rate will cause a decrease of the
CWND, while a smaller rate will cause an increase.
We observed zero packet loss rate for single flows of
both iperf and the Mark5 application and variable av-
erage packet loss of 1.18 x 1079 and 2.81 x 10~8 for
two parallel flows, while for five parallel flows it ranged
from 3.03 x 1078 to 5.02 x 10~ as shown in Figure 3A
and Figure 3B for 2 and 5 flows repectively. As the
observed packet loss rates are much smaller than the

steady state packet loss rate, the CWND should be in-
creasing. This however is not the case. We will return
to this in Section 4.

3.3 RTT

In iperf tests from Dwingeloo to Manchester we ob-
served an alternating RTT between two points 10 ms
and 20 ms for a single flow, alternating RT'Ts between
between three points 10 ms, 20 ms and 30ms for two
parallel flows and five parallel flows. During e-VLBI
data transfers between two hosts both located at JIVE
in the Netherlands, we noted an average RTT of 3.8

A B
LB e o e e e e L e e L s B
[7 1.6x1077 = -
[1 L] _ lossl i
-8 [—
310 L ‘ — loss? 4
B 7 |
L] L . loss3]
|
° S 4 o L “‘ loss4 4
= = ‘
E r 7 S 1077 | _ lossb _
w 2x1078 = - @ L ‘)\ |
2 F , 2 |
- L | - Eodl i
[0} [} KYI
X X il
[3) = - [3) EooAl 4
© @ L\
- r 1 ~ AT J
10-8 |- loss1 , \L\ AN
-8 \ —
L — loss2 4 5x10 \‘\ MW
| l‘] L W\\V\ \\”J\"/\'\r\ a
L ‘\:\ i L ‘NWMM i
\
Omm (‘Hm”m”m”m”m
0 200 400 600 800 1000 0 200 400 600 800 1000
Time(S) Time (S)

Figure 3: Packet loss rate for A: two parallel memory-to-memory data flows (lossl is variable, loss2 tends towards
zero) and B: five parallel memory-to-memory data flows (values for each flow are more variable than in the two

parallel case (3A) and tend towards a unified stable value)

A B
T T T L e S R B L e
L | 50 - B |
25 L RTT i [1
I i r _ RTT2]
[RTT1 7
: i 40 - - o
w0 - g]
= — :
o e 3 ,
$ [7 0 L |
i 5 | w
= L] = 30 — —
E b 4 ER]
g I] = r 1
L 4 20 - —
10 — — [7
L 1 10 |- o J— -
5 L1l | I I T | [T T IR I I
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (Seconds) Time (seconds)
C D
150 r \]
I 1 L | Rm i
b RTTS , 100 1]
L RTT4] L]
RTT3 L 1
T RTT2 * 1 el]
G 100 - RTT1 & g r]
=} =} r T
° L | °
o o I 7
& L,] % 60— -
g] gL]
e [) = 40 - -
& &
& 50 - * x , &~ r 4
L] 20 - =
L ok mbnn pw ek ek wox |
L T T I I R R | O v TR N |
0 200 400 600 800 1000 0 20 40 80

Time (seconds)

Time (Seconds)

Figure 4: Round trip time for A: a single memory-to-memory data flow, B: two parallel memory-to-memory
data flows, C: five parallel memory-to-memory data flows between a Markb in the Netherlands and a machine in
Manchester and D: a disk2net-net2disk e-VLBI data flow between two Mark5’s both in the Netherlands

ms with a few spikes to approximately 100 ms. These
results are shown in Figure 4. The general observation
is that RTT values are quite stable even when multiple
flows are generated, making RTT ideal to use as a sign
of congestion.

3.4 TCP throughput

An average TCP throughput of 810.7 Mbps was
achieved for a single TCP flow as shown in Figure 5A.
For two parallel flows the aggregate TCP throughput
was 973.4 Mbps, which is more than what was achieved
by a single flow. There was however unfair sharing of
this throughput with one flow having average 578.6

Lt e s ey
slol-
L (h“
.
2 808 - |
8 |
e 1]
= L
s [
& \
S 806
;]
o
= -
c
& L
804 ,‘ _ throughput
802 |
Bl v b v v b b b |
0 200 400 600 800 1000
Time (S)
300
Throughputb
_ Throughput4
‘ Throughput3
|
w 250 ,‘ __ Throughput?
[=1
§ L ‘ _ Throughputl
0
A
B
al
5
o
2
£ 200 -
150 Ll L

0 200 400 800 800 1000
Time (S)

Mbps and the other having 394.8 Mbps. This is illus-
trated in Figure 5B.

For five parallel flows the aggregate TCP throughput
is 977.8 Mbps, which is closest to linespeed, with the
various flows having 203.8 Mbps, 174.7 Mbps, 204.2
Mbps, 192.8 Mbps and 202.3 Mbps. The unfair shar-
ing of the available bandwidth is shown in Figure 5C.
For the disk2net-net2disk e-VLBI transfer we observed
an average of 366.9 Mbps, although performance was
affected by the tcpdump running at the same time
by a factor of between 20% and 40%, which implies
this average throughput would have been a value be-
tween 440.3 Mbps and 513.7 Mbps without TCPdump.

B
550 —
w
a,
2 L
=
~ 500 —
o
5 L
[=N
o
)
3
2 L Throughput2 4
ﬁ 450 - — Throughputl -
400 — —
e T s et N i e S Y
0 200 400 600 800 1000
Time (S)
800
600 — —
—~ L
Q
5 L
- \ A il
VA
3,400 /\/\/\' —
£ \
™) 4
3
o
M
: \
&= ~~
\‘\""x
200 — T~
_ Throughput
o L P P P
0 20 40 60

Time (S)

Figure 5: Achieved throughput for: A - a single memory-to-memory data flow (a high stable throughput is
achieved), B - two parallel memory-to-memory data flows (unequal throughput is attained by each flow, which
slightly fluctuates in each case), C - five parallel memory-to-memory data flows (unequal throughput, which
fluctuates significantly and tends towards stable value for each flow) and D - disk2net-net2disk e-VLBI data flow
(throughput fluctuates at the beginning of the flow and stabilises a short while later).

Table 1 shows a summary of the average CWND,
RWND, packet loss rate, RTT and throughput ob-
served for each data flow under the different scenarios.

4 Discussion of Results

In this section we discuss the results obtained from the
tests presented in the Section 3 as well as the bottle

Data Flow cate- | ~wnp | RWND | Packet loss | RTT | Throughput
gf)ry (MBytes)| (MBytes)| rate (ms) | (Mbps)
Single memory-to- |, ¢ 1.58 0 16.24 | 810.73
memory data ﬁo?lz ,
T
et 147 1.58 2.81x 1078 | 2052 | 578.62

Y 1.19 1.02 117 %1079 | 21.65 | 394.81
memory data flows

0.57 1.58 3.04x10° | 23.35 | 203.76
Five parallel | 0.529 1.58 5.02x 1078 | 22.50 | 174.70
memmory-to- 0.576 1.58 3.03x10°% | 23.31 | 204.23
memory data flows | 0.557 1.58 3.79x 10°% | 23.29 | 192.74
- — 0.562 1.58 3.64 x 10~% | 23.15 | 202.27
1sk2net-net2dis

VLRI dota o | 00562 0.0483 0 3.8 366.90

Table 1: Average CWND, RWND, packet loss rate, RT'T and throughput for each data flow under the different

scenarios

necks we found to be present.

4.1 Single Flows

In the case of one TCP flow (both iperf and e-VLBI)
we see the same CWND sustained for a period of time
and yet with both slow-start and congestion avoidance
algorithms we should be seeing CWND either increase
or decrease. This can be explained as idle connection
window validation [17], in which the same constant
CWND is maintained during an application limited pe-
riod, which means the CWND is not increased merely
by reception of ACKs, as long as during the previous
RTT the flow did not fully use the available CWND.
This seems to imply that the single flows experience se-
vere application limitation on these high speed links.
Application limitation happens when the application
does not produce data fast enough [19] for two reasons.
Either the application is transfering small amounts of
data at a relatively constant rate to the TCP layer or
the application is producing data in bursts separated
from each other by idle periods. Based on this expla-
nation we conclude that the iperf flow is application
limited due to the former while the e-VLBI data flow
is application limited due to the latter. The focal in-
terest being the e-VLBI data flow, we therefore need to
eliminate or shorten the idle period between the data
bursts during the lifetime of the e-VLBI data flow.

It seems then that single flow transport of e-VLBI data
is limited by two distinct effects. Firstly, idle periods
between data bursts, and secondly, packet losses now
caused by network congestion (as the observed zero
packet loss rate does not result in an increase of the
CWND). These packet losses must be hardware related
(e.g. PCI bus conflicts, NIC performance) [16, 18].

4.2 Parallel Flows

Our tests for parallel iperf flows are similar to those
done by Hacker [13] but differ in that we list the
CWND values in addition to the packet loss and

throughput. The network which we use in our tests
also differs in terms of RTT and the supported MTU.
Finally, we not only measure memory-to-memory
transfers, but also compare the results with the trans-
fer of real e-VLBI data, involving the performance of
more hardware components in the endpoint systems.
With parallel flows the aggregate throughput is much
higher than what single flows achieve. The parallel
flows are able to transfer data without application lim-
itation surfacing because each flow does not need as
much data to be fully utilized compared to a single
flow, however the TCP congestion avoidance algorithm
limits the further increase of the CWND since packet
loss is experienced. It is under such circumstances that
the use of modified congestion avoidance algorithms
[6, 20, 21, 22, 23] may improve network performance.

4.3 Bottlenecks

For the single memory-to-memory data flow, the hard-
ware in both the sending and receiving hosts limited
the throughput, because both CWND and RWND
were stable throughout the connection’s lifetime.

For the multiple memory-to-memory data flows the
TCP congestion avoidance algorithm was the bottle-
neck because the CWND kept fluctuating implying the
detection of packet loss.

For the disk2net-net2disk e-VLBI data flow the re-
ceiver’s hardware limited the throughput because the
RWND continuously fluctuated and was lower than the
CWND, indicating that the receiving host was over-
whelmed. Apart from the limitations discussed above,
a number of other bottlenecks are possible:

e Undue retransmissions. TCP’s fast recov-
ery mechanism may yield unnecessary packet
retransmissions, thus reducing the effective
throughput.

e Interface stalls. These happen whenever the net-
work interface halts as it waits to receive data
from upper layers. These stalls are interpreted

5

as a sign of congestion, reducing the CWND and
consequently the throughput.

Vendor specific TCP implementations. Some
TCP implementations have incorporated a mech-
anism of validating the CWND in cases where its
value has been constant for a given period of time
and this mechanism also contributes to reducing
or maintaining a constant CWND depending on
the situation.

Conclusions & Further Work

In this paper we show that application limitation can
be a significant factor in single flows on high speed
links. When parallel flows are used, the TCP conges-
tion avoidance algorithm takes over as the limiting fac-

tor.

We also note that packet losses other than those

caused by network congestion can be quite important.
Future work will include eliminating the idle time be-
tween data bursts during the lifetime of an e-VLBI
data flow. We intend to do an analysis of the pro-
posed aggressive congestion avoidance algorithms. We
also intend to model TCP e-VLBI data flows and re-
late flow analysis with correlation to determine how
correlation is impacted by packet loss and delay.

References
[1] The Haystack observatory web-
site, ”Markb VLBI Data System.”

http://web.haystack.mit.edu/mark5/

The Cooperative Association for Internet Data
Analysis website, ”Internet Tools Taxonomy
(2003).” hittp://www.caida.org/tools/tazonomy

Mathis, M., Heffner, J. and Reddy, R. , Web100:
Extended TCP Instrumentation for Research, Ed-
ucation and Diagnosis. ACM Computer Commu-
nications Review, Vol 33. Num 3, July 2003

The Web100 Project,
www.web100.o0rg/docs/

The TCPDUMP
www.tepdump. org

Floyd, S., "HighSpeed TCP for large Congestion
Windows.” RFC 3649, Dec 20083.

"Project Documents.”

public repositiry.

The open optical Internet exchange in Amster-
dam. www.netherlight.net

Iperf: The TCP/UDP Bandwidth Measurement
Tool. www.dast.nlanr.net/Projects/Iperf

Point of Access in London to the Global Lamba
Infrustructure Facility. www.uklight.ac.uk

Mahdavi, J., Matt, M. and Reddy, R.,
"Enabling High Performace Data Trans-
fers (System Specific Notes for System

[11]

[16]

[17]

[20]

Administrators ~ and Privileged = Users).”
www.psc.edu/networking/projects/teptune

Yee-Ting Li "Effect of TxqueueLen on High
Bandwidth Delay Product Network (DataTAG).”
www.hep.ucl.ac.uk/ ytl/tepip /trquevelen/datatag-

tep/

Jacobson, V. Braden, R. and Borman, D., TCP
Extensions for High Performance. RFC 1323, May
1992

Hacker T. et. al., ”The End-to-End Performance
Effects of Parallel TCP Sockets on a Lossy Wide-
Area-Network,” In Proceedings of 16th IEFEE-
CS/ACM International Parallel and Distributed
Processing Symposium(IPDPS), 2002.

Floyd & Fall, Promoting the use of end-to-end
congestion control in the Internet, IEEE/ ACM
Trans. on Networking, August 1999.

Padhya et.al Modeling TCP throughput: A Sim-
ple model and its empirical validation, In Proc
ACM SigCOMM 1998

Antony et.al Exploring Practical Limitations of
TCP over Transatlantic Networks, Submitted to
FElsevier Science(2004)

Handley, M., Padhye, J., & Floyd, S., "TCP
Congestion Window Validation,” RFC 2861, June
2000

Laksham, T.V., & Madhow, U., ”The Per-
formance of TCP/IP for Networks with High
Bandwidth-Delay Products and Random Loss.”
IFIP Transactions C-26, High Performance Net-
working, pages 135-150, 1994

Siekkinen, M. Urvoy-Keller, G. , Biersack, E. W.
& En-Najjary, T., ”Root Cause Analysis for Long-
Lived TCP Connections.” Proceedings of the 2005
ACM Conference on Emerging Networking Exper-
iments and technologies, October 2005

Kelly, T., ”Scalable TCP: Improving Performance
in Highspeed Wide Area Networks.” ACM SIG-
COMM Computer Communications Review, Vol
33, Num 2.

Jin, C., Wei, D. X., & Low, S. H., "FAST
TCP: Motivation, Architecture, Algorithms, Per-
formance.” Proceedings of IEEE Infocom, Hong
Kong, March 2004.

Mascolo,S., Grieco, L. A. Ferorelli, R., Carmada,
P. & Piscitelli, G., Performace evaluation of West-
wood+ TCP Congestion Control Performance
Evaluation 55 (2004) 93-111.

Katabi, D. , Handley, M. , & Rohrs, C., ”"Con-
gestion Control for High Bandwidth-Delay Prod-
uct Networks.” Proceedings ACM Sigcomm, Au-
gust 2002.

