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1 
Introduction
This is an interim report on progress being made in the testing of protocols for high data rate data transfer in eVLBI, and  forms part of deliverable D41 in the EXPReS project (under the FABRIC JRA1). There will be a further report in June 2008 when the term of employment of our protocol engineer comes to an end. The reason for not producing a complete report at the current stage is that delays in appointment and staff availability means that full time EXPReS funded work cannot start until July 1st 2007. The work presented here is therefore entirely produced by contributed effort, mainly resulting from our work for the ESLEA project.

eVLBI data has the feature that the data are continuously streamed at constant bit rate. This has a number of repercussions for protocols. In particular congestion control by reducing the rate at which packets are sent as in TCP causes the data to lag behind that from other telescopes in the array. Furthermore bandwidth is as important as time. VLBI and radio astronomy data are noise like – the signals are from the statistical properties of the noise, in particular the cross-correlation coefficient. Losing 50% in the number of packets received in an experiment has the same effect on signal to noise as losing 50% of the bandwidth. Selective dropping of packets is therefore as effective a method of congestion control as rate reduction.  The adaptation of user datagram protocol (UDP) for eVLBI is probably the optimum solution, provided selective packet dropping can be implemented. However packet switched networks could interpret high data rate UDP data streams as a denial of service attack, and switch off such connections. For such connections TCP or one its variants is more suitable, unless we can get the new congestion protocol (DCCP) to be accepted.

To attack these problems we have run a number of sub-projects: 

· TCP_delay – where we measure the effect of TCP rate reduction on the time of arrival of packets, and see if increasing buffer size can compensate.

· VLBI_UDP – where software for the transfer of eVLBI data by UDP has been developed to fit in with requirements of VLBI systems. The software enabled tests of the effects of packet loss on the JIVE correlator to be undertaken.

· A new protocol, DCCP has been recently implemented in the Linux kernel. The suitability of this protocol for eVLBI is being investigated.

· Tests on a trans-Atlantic link undertaken to determine the characteristics of dedicated lightpaths over long distances.
These are described in the following sections, followed by an outline of future work.
2 Constant Bit-Rate Data Transfer over TCP
2.1 Introduction

Transmission Control Protocol (TCP) is the most widely used transport protocol on the Internet, due in the most part to its reliable transfer of data. However, it is not ideal to use for constant bit-rate applications because TCP throughput can vary wildly in a lossy environment. Many applications using constant bit-rate data transfer desire timely arrival of data but the rate fluctuations of TCP mean that timely arrival of data is not guaranteed. We examine the effect of packet loss on packet arrival times and investigate whether packet loss and the consequent effect on throughput delays the data irrecoverably. The performance of TCP from the perspective of data arrival time will determine the suitability for real-time applications, such as e-VLBI. Electronic Very Long Baseline Interferometry (e-VLBI) is a technique used for high-resolution observations in radio astronomy which involves the transmission of constant bit-rate data streams which are generated in real-time. Timely arrival of data is a fundamental requirement of e-VLBI and data are often transmitted using TCP, hence tests were conducted using constant bit-rate flows at rates of up to 512 Mbit/s to be representative of e-VLBI observations.

2.2 Transmission Control Protocol

2.2.1 Properties of TCP

TCP is connection-oriented and reliable, ensuring that data sent will be perfectly replicated at the receiver, uncorrupted and in the byte-order sent. From the perspective of the application TCP ensures that the byte stream sent is the same as the byte stream received. Data corruption is detected by checksums and the receipt of all data (reliability) is ensured by using automatic repeat-request (ARQ), whereby the receiving system sends messages (ACKs) back to the sending system to acknowledge the arrival of data and hence indicate the missing data to be retransmitted. TCP assumes lost data packets are due to network congestion and attempts to mitigate congestion by varying the transmit rate - a process known as congestion avoidance, of great importance and described in more detail later.

2.2.2 High performance TCP

To make effective use of TCP, especially with high-capacity networks, it is often necessary to tune certain parameters. The end-hosts maintain windows over the data and to use the full capacity of a link the windows must be sized to the bandwidth-delay product (BDP) to allow sufficient “inflight” unacknowledged segments [1]. In this investigation, a desired constant bit rate CBR was considered, where bandwidth delay product, BDP, is expressed as:

BDP =CBR·RTT



Equation 2‑1
where RTT = round-trip time. With windows sized to the BDP, steady line-rate throughput is achievable if we have no packet losses and so this practice is a generally recommended step to tune a TCP connection. In the event of packet loss the size of one window, the congestion window, on the sending host is adjusted to limit the maximum instantaneous throughput.
2.2.3 Reaction to loss

When TCP detects a lost packet it is assumed that the loss was due to network congestion and TCP enters a congestion avoidance phase, altering the achievable transmit rate dramatically by adjusting the congestion window. This feature of TCP was implemented to prevent congestion collapse of the Internet where competing flows reduce the useful throughput to zero. It is the congestion avoidance behaviour of TCP that creates problems for constant bit-rate flows. The standard NewReno response to congestion is a decrease of the congestion window by a factor of 2, followed by an additive increase of 1 packet per round-trip time. This gives the throughput a characteristic sawtooth shape when a packet loss is detected - a sudden dramatic reduction of the congestion window, followed by a gradual linear increase. Considering this sawtooth congestion avoidance response, as shown in Figure 2‑1, the amount of data that is delayed can be calculated.

2.2.4 Delayed data

When a packet is lost, the equations of TCP congestion avoidance determine both the decrease of the congestion window and the rate of increase. If we consider a pre-loss throughput of CBR, it can be calculated that the time taken to regain CBR throughput is given by:
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Equation 2‑2
where MSS is the maximum segment size, the maximum amount of data that TCP can encapsulate in one packet [1].
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2Figure ‑1 Theoretical action of TCP congestion avoidance with CBR data transfer. Comparing (a) and (b) we see the effect of dramatically increased buffer size. The shaded area of delayed data in (a) is compensated for in (b), transmitted faster than the constant bit-rate, having been buffered on the sending host
The shaded triangular area in Figure 2‑1(a), whose presence is due to a packet loss, has area proportional to the amount of data that has been delayed. The area is proportional to the recovery time and can be represented simply as:
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Equation 2‑3
For applications like e-VLBI, where data are transferred over large distances at high rates it is essential to note from 
Equation 2‑3 that the amount of delayed data scales with the square of the throughput and the square of the round-trip time.

2.3 Constant bit-rate data over TCP

It is often said in the literature that TCP is largely unsuitable for real-time applications and constant bit-rate flows because of the variable rate of TCP over a lossy connection due to congestion avoidance [2],[3],[4]. If CBR data is streamed over TCP, as with some multimedia applications or e-VLBI, the reduced throughput due to packet loss leads to a data arrival rate on the receiver of less than the original constant bit-rate. If the processing or playback at the application level is not to stall then sufficient data must be stored in a play-out buffer to compensate for the lower data-rate at the transport level, allowing CBR data arrival at the application level. This is common practice for streaming multimedia applications, requiring an initial buffering period and hence a delay between the start of the transfer and the start of the playback.

The situation of bulk data transfer is quite well researched and understood [5],[6], in contrast to the equivalent situation but where the CBR data is generated and transferred in real-time. When a CBR data stream is generated in real-time and cannot be stalled then we must transfer the data at a steady CBR else we have to either discard or buffer the data at the sending end.

2.3.1  Regaining timely arrival

If we temporarily store the delayed data on the sending host and can subsequently transfer it faster than the constant bit-rate then we should be able to regain timely arrival of data at the receiving host. We require the data to be buffered and the maximum window size must permit transfers at a rate higher than the CBR. In the investigation that follows, both functions are performed using the socket buffers in Linux.

Data from a Linux application, destined for a network, is buffered in a socket buffer, the size of which we can specify through kernel and application parameters. The socket buffer in Linux serves two purposes: to retain data for windowing and also as an application buffer, designed to isolate the network from effects of the host system, such as scheduling latency of the Linux kernel. Therefore, on the sending host, the socket buffers, which are an integral part of TCP/IP in the Linux kernel, can be used to buffer the data that is delayed in the event of a loss.

2.4 Experimental configuration

2.4.1 Network setup

The network links used to test constant bit-rate performance over TCP were dedicated fibre optic lightpaths with connections to UKLight in the UK peering with NetherLight in the Netherlands. The links were tested to have a very low bit-error rate, allowing loss-free data transfers with stable delay and jitter characteristics, making for an ideal protocol testing configuration. The lightpaths were used to connect hosts in Manchester, Jodrell Bank Observatory and JIVE
 with dedicated point-to-point 1 Gbit/s connections. From Manchester the round-trip times (RTT) were 1 ms Jodrell and 15 ms to JIVE. A connection from Manchester to Jodrell, looped back in the Netherlands gave a RTT of 27 ms.
The computers used as end-hosts were server-quality SuperMicro machines, with all configurations tested to give 1 Gbit/s throughput using UDP/IP or TCP/IP over Gigabit Ethernet interfaces. The systems used Intel Xeon CPUs and were running Red Hat or Fedora distributions of Linux. Tests were performed using kernel versions 2.4.20 and 2.6.19 with negligible difference in TCP performance seen between kernel versions. All systems were equipped with onboard Intel e1000 Gigabit Ethernet Interfaces.

2.4.2 Diagnostic software

TCPdelay [7] is an application written by Richard Hughes-Jones, used to conduct tests using memory-to-memory TCP streams, sending data to a socket at regular intervals so as to attain a specified average data rate, emulating a CBR data stream. TCPdelay measures the time a packet or rather message is sent and its subsequent arrival at the application level, allowing measurement of whether the data stream is arriving at the receiver in a timely manner.

In order to gain more insight into the behaviour of TCP the web100 kernel patch was used. Web100 [8] is a kernel patch which provides extended TCP instrumentation, allowing access to number of useful TCP related kernel variables, such as the instantaneous value of the congestion window. Packet loss on the test networks is rare, so we simulated packet loss in the receiving hosts using a Linux kernel patch to discard packets at a configurable, regular rate.

2.5 Results

Using the recommended socket bandwidth-delay product buffer size, the behaviour of a 512 Mbit/s CBR TCP stream over a lossy 15 ms connection was studied with 0.9 Mbyte (BDP) socket buffers. The observed behaviour is shown in Figure 2‑1(a). In the event of a lost packet (deliberately dropped on the receiving host) we see the reliable TCP protocol retransmitting a packet (lowest plot) and we see the expected congestion window evolution, as detailed earlier and illustrated in Figure 2‑1(a). The rapid decrease and additive increase of the congestion window is apparent, with recovery of the constant bit-rate transfer taking around 10 seconds. We see an amount of delayed data of around 160 Mbyte, in agreement with 
Equation 2‑3 when delayed acknowledgements are accounted for. 
[image: image4.wmf]Figure 2‑2  Plots of TCP parameters, logged using web100. Kernel patch used to drop packets.

Top: TCP congestion window (bytes), middle: achieved throughput (Mbit/s), bottom: number of packets retransmitted.
Data is further delayed with every subsequent packet lost, the cumulative effect of multiple losses shown in Figure 2‑3, which demonstrates the effect of loss rate on message arrival time. The lowest curve in Figure 2‑3 shows the observed timely arrival of data, with higher curves showing lossy transfers diverging rapidly away from this ideal. As one may expect, with the throughput dipping below the desired rate many times and never exceeding it, the amount of delayed data increases and the data arrives later as the duration of the transfer increases. Figure 2‑1(b) shows the same network configuration of the test in Figure 2‑1(a) but with the socket buffers increased to 160 Mbytes, which is the calculated amount of delayed data. As explained previously, the intention was that the delayed data was stored in the TCP socket buffer, to eventually be transmitted at a rate in excess of the constant bit-rate. We see in Figure 2‑1(b) that we initially have the same post-loss behaviour as (a) but the buffered data means that we can transmit faster as the transfer from the buffer memory is not limited to the constant bit-rate. Once the buffered data has been exhausted, we transmit new data at the CBR once more, as seen in the Figure 2‑1(b). For the duration of the sawtooth the receiver experiences delayed data arrival, but subsequent data arrives in a timely manner once more, until the next loss. In this situation, with a constant bit-rate of 512 Mbit/s and a 15 ms RTT, we can use a 160 Mbyte buffer on the sending side to allow timely delivery to be resumed at the receiver. However, the  use of these large buffers introduces temporary delays in the arrival times of the data of many seconds.
Instead of never resuming timely arrival and the departure for timely arrival becoming increasingly worse with time, which is the situation with conventionally sized buffers, we can use larger buffers to instead suffer only a temporary period of delayed data arrival. One must consider however the logistics of providing such large buffers and be able to cope with the temporary period of delay.
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Figure 2‑3 The effect of packet loss on message arrival time. Manchester to Jodrell Bank, looped through Amsterdam, 27ms RTT. TCP buffer size 1.8 Mbytes (BDP).
2.6 Conclusions

In a network environment that is subject to packet loss, using TCP/IP to transfer CBR data with normal TCP buffer settings (BDP) leads to delayed data arrival. The delay is to the entire stream of data as all data arriving after the first loss will be delayed, with subsequent losses compounding the problem. For an application such as e-VLBI this not acceptable and can lead to a loss of correlation and lower quality results as multiple streams become unsynchronised. In theory, to regain timely delivery of data following a loss, it is necessary to store the delayed data and subsequently transmit it at a rate exceeding the constant bit-rate to achieve an average CBR throughput. This can be demonstrated in practice in a relatively simple manner by using the socket buffers for this temporary data storage. The practicalities of providing buffers depend strongly on the parameters of the application and network. For a 512 Mbit/s flow over a connection with a round trip time of 15 ms we are required to buffer 160 Mbytes of data. The scaling apparent in Equation 2.3 is an important consideration, with transatlantic distances requiring the buffering of upwards of 5 Gbytes of data and temporary departure from timely delivery of tens of minutes. This will often prove impractical, with alternative protocols or TCP variants being options to consider.

3 VLBI_UDP

3.1 Introduction

e-VLBI requires vast quantities of data to be sent from several remote telescopes over high-speed computer networks and the Academic Internet to a single correlator. Currently, VLBI data rates of 512 Mbit/s are achievable using the Transmission Control Protocol (TCP) [9]. An alternative to TCP is the User Datagram Protocol (UDP), which is used by VLBI_UDP.
3.2 The case for UDP

Whilst e-VLBI in the EVN can run at 512 Mbit/s with TCP, if longer baselines are used, for example across the Atlantic, TCP may struggle to sustain a constant 512Mbit/s should any packet loss occur. TCP guarantees all data sent will arrive and in the right order, but was designed with congestion control algorithms which reduce the transmission rate by half if any packet loss is detected. There are both software and hardware buffers in the Mark5A systems which can compensate for a reduced transmission rate for short periods of time, but extended slow periods would mean that the buffers would  run empty. The higher the round trip time (RTT), proportional to the physical network distance, the longer it takes TCP to recover back to its previous rate after a packet loss event [10]. [image: image6.emf]UDP, on the other hand, does not guarantee delivery of data, and the transmission rate is governed by the user. 

Figure 3‑1 The architecture of the VLBI_UDP programs 

3.3 VLBI_UDP architecture

VLBI_UDP was originally written as a monolithic application by Richard Hughes-Jones for a proof of concept demonstration at iGrid 2002 emulating of the loads e-VLBI places on the networks. It has since undergone several revisions with extra features being added, and these are detailed below. The current architecture is represented graphically in Figure 3‑1. There are 3 components to VLBI_UDP, the sending application, receiving application, and the control application. The send & receive components are run as applications with no user input. The control application drives the send & receive components, and may be accessed via a variety of methods. It can either take user input from the console, commands via a webpage through a miniature http interface, or read commands from a file with no user interaction. A single instance of the control application controls multiple send/receive pairs.

3.3.1 Conversion to pthreads

As a monolithic application, VLBI_UDP was consuming almost all available CPU cycles due to constant polling, checking if there is data to be moved around. Clearly this is not an optimal situation, and so the send and receive programs were both split into 3 threads: control, data input and data output. Splitting the application into threads allows each thread to act with a reasonable amount of independence from the other threads, whilst still allowing communication between them.
3.3.2 Ringbuffer

A ring buffer was present in the original iGrid2002 application, but was incomplete so far as it didn’t handle out of order packets correctly in all circumstances – not a problem for the demo but needed correcting for use with real data. As each UDP packet is received, it is written directly to the next usable location in the ring buffer. Each packet has a sequence number which allows missing and out of order packets to be detected. If there were one or more packets missing immediately previous to the next received packet, then this packet would be in an incorrect position in the ring buffer. In this case, a function RingMove() is called, which moves the last packet forward the required number of positions within the ring buffer such that it is then correctly placed. The next available location is now set to after the new location of the last packet.

Should the ‘missing’ packet(s) subsequently arrive, out of order, then they are first written to the next available location as before. The sequence number is checked, and RingMove() is called with a negative offset to place the packet back where it should have been. In this case, the next available location doesn’t change and so the next packet will be written to where the last packet originally arrived. This process is illustrated in Figure 3‑2.
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Figure 3‑2 The processing performed when packets are placed into ring buffer.
3.3.3 File access

To allow for testing with real data, and as a precursor to interfacing with actual VLBI hardware, file access was implemented. Linux large file support is used, which was a necessity when dealing with VLBI data sets which are almost exclusively >2GB.

3.3.4 Packet dropping 

A packet dropping function has been added [11], which, when combined with the file access mode, facilitates the creation of data sets with missing packets under controlled conditions. This function is implemented only in the sender module. The send thread receives a pointer to a packet of data from the ring buffer, passes this to the dropping function as a parameter, along with a choice of dropping algorithm. The return value is a pointer, which will be the same as that passed to the function if the packet was not dropped, else will be a pointer to a randomly initialised portion of memory. Currently there are two algorithms available. The first drops single packets at a steady rate with no randomisation, the second can drop a bunch of between 1 and 10 consecutive packets, the value chosen randomly. To maintain a fractional loss rate f in the 2nd case, after a bunch of n packets are dropped, the subsequent n(1/f - 1) packets are not dropped.

3.4 Results from tests with VLBI_UDP

VLBI_UDP has been used both as a demonstration tool at events such as iGrid2002, and more recently at the GÉANT2 network launch, as well as a tool to probe network conditions over extended periods of time. Figure 3‑3 demonstrates a 24 hour flow, transmitting data from a PC based in Jodrell Bank over a dedicated 1 Gigabit fibre connection into a PC based in Manchester University. Each point represents the average received bandwidth in a 30 second period, and it can be seen that rate stability is mostly maintained to 1 part in 1000
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Figure 3‑3 The measured UDP achievable throughput for a 24 Hour flow from Jodrell Bank Observatory to Manchester University.
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Figure 3‑4 Multiple UDP streams into JIVE using VLBI_UDP
Figure 3‑4 shows 3 simultaneous transfers into JIVE, one from Manchester travelling over a UKLight dedicated 1 Gigabit lightpath, another from Manchester but crossing the conventional packet switched Academic Internet, and the third from Bologna again over the conventional packet switched Academic Internet. The lightpath performed as expected, with the transmit rate purposely capped at 800 Mbit/s and showing no packet loss. The second flow was capped at 600 Mbit/s, since this was travelling via the Manchester University campus access link and so would have swamped regular campus Internet traffic. Packet loss is present here due to contention, most likely over the campus access links, and can be seen to decrease through the test period, as the campus traffic decreased. The third plot was limited at 400 Mbit/s and gives stable throughput with little packet loss.

4 Testing of DCCP at the Application Level

4.1 Introduction

Datagram Congestion Control Protocol (DCCP) [12] is a recently developed transport protocol, similar in parts to both TCP and UDP with the intention that certain applications and the transport of certain types of data may benefit. Where congestion control is required but reliability is not, DCCP provides a transport level option attractive to many applications such as VoIP and e-VLBI. The congestion control algorithm, CCID, used by DCCP is selectable, allowing DCCP to be tuned more closely to the requirements of a particular application. CCID2 [13] is TCP-like Congestion Control, closely emulating Reno TCP while CCID3 [14] is TCP-friendly rate control, minimising rate fluctuations whilst maintaining long-term TCP friendly behaviour.

DCCP has been in the Linux kernel since 2.6.14, with recent kernel releases such as 2.6.19 and 2.6.20 having an improved implementation, incorporating code developed by ESLEA, that is often considered as fairly stable and high-performance. We report on the porting of a network testing application to DCCP, experiences with creating a stable DCCP testbed and results from initial performance tests.

4.2 Porting of test software

In order to test the performance of DCCP, software tools were required hence DCCPmon [15] is a port of UDPmon [17] by the original author, Richard Hughes-Jones. Guidance was given by Andrea Bittau to help with the port to DCCP and the resulting application is being used and proving to work well. However, the process was not entirely trouble-free – some problems were encountered that were perhaps indicative of a DCCP implementation that was in development, rather than complete and polished. For example, DCCP related #defines were not to be found in the userland include files, an issue mitigated by creating specific include files. Some system calls were missing and the API was in a state of flux with functions changing between kernel releases 2.6.19 and 2.6.20. For this reason, and due to limited testing, DCCPmon is currently still considered by the author as experimental.

During the development of DCCPmon and for corroboration of results, a patched version of iperf [16] was used. In addition to the information from the main test application it is desirable to gather data from as many other sources as possible. One useful window into the kernel networking stack is though the kernel SNMP statistics, however there are currently (as of kernel 2.6.21) no SNMP counters for DCCP variables. These statistics would also have been invaluable when problems became apparent with certain kernel versions and it would certainly be a worthy addition to the implementation at the earliest opportunity.

4.3 End-host setup

The computers used as end-hosts were server-quality SuperMicro machines, with all configurations tested to give 1 Gbit/s throughput using UDP/IP or TCP/IP over Gigabit Ethernet interfaces. The systems used Intel Xeon CPUs and were running Scientific Linux or Fedora distributions of Linux. We had systems using two Dual Core Intel Xeon Woodcrest 5130 CPUs clocked at 2 GHz, dual-booting 32-bit and 64-bit distributions of Fedora Core 5. We also had systems with two Intel Xeon 2.4 GHz Hyper-Threaded CPUs using a 32-bit distribution of Scientific Linux 4.1. All systems were equipped with and DCCP tested with on-board Intel e1000 Gigabit Ethernet ports. Tests with UDP and TCP gave stable line-rate performance over all tested networks, including 1 Gbit/s over a transatlantic lightpath.

4.4 Experiences with the Linux DCCP implementations

While developing the DCCPmon program and preparing for performance tests, several different Linux kernels have been used, often displaying undesirable effects. With such a new implementation of a new protocol it has often been unclear whether we are seeing problems with the DCCP implementation or something specific to our systems, however we report on our findings and some of the steps taken to achieve a stable DCCP test bed.

4.4.1 Kernel version 2.6.19-rc1 and 2.6.19-rc5
This kernel version is a release candidate for stable kernel version 2.6.19, which was tested before the stable kernel version was released. Using both DCCPmon and iperf it was found that we were not getting a working DCCP connection - tcpdump showed that the connection was successfully made, with packets exchanged both ways but no ACKs were sent in response to data packets received. In the absence of feedback the sender-side DCCP transmit timer progressively fell back until a threshold upon which DCCP terminated the connection.

We conducted many diagnostic tests to establish the cause of the problem. Advanced features of the network interface card were disabled and DCCP data was sent though a tunneled connection to prevent possible discrimination of the new protocol. Eventually, inserting debugging code into the kernel showed that data were incorrectly being discarded due to header checksum errors, a problem that was later fixed in the network development tree and merged into the stable 2.6.19 kernel release.
With a suitably patched 2.6.19-rc5 kernel DCCPmon was able to measure the throughput as a function of the spacing between the packets as shown in Figure 4‑1 where a rate of 990 Mbit/s was achieved. However, the system was unstable and there were frequent system crashes.
Figure 4‑1[image: image10.emf]CCID2 iperf

0

100

200

300

400

500

600

700

800

900

1000

02000400060008000

Time s

Throughput Mbit/s

 Achieved DCCP throughput with CCID2 as a function of the packet spacing.

4.4.2 Kernel versions 2.6.19 and 2.6.20

As previously noted, the API calls changed slightly, necessitating further development of the test software code, after which, with the checksum problems resolved it was hoped that interesting tests could be run.

The initial results were promising, with CCID2 showing short-term line-rate throughput - a useful data rate of around 940 Mbit/s after header overheads. CCID3 had an average rate of around 300 Kbit/s but unfortunately DCCP proved to be unstable using either CCID on our 64-bit systems. Transfers would often only last for a few seconds before the receiving system hung with a kernel panic. Some tests would continue for longer, a few minutes with the same throughput performance, but all would trigger a kernel panic within four minutes and repeating tests with larger packet sizes would lead to a quicker crash. The crash dumps associated with the panic generally indicated that the crashes were occurring most regularly in the region of the packet reception code of the network interface card (NIC), where memory is allocated to store incoming packets.

Repeating the tests using a 32-bit distribution and kernel on the same computers yielded the same behaviour, however the older systems running Scientific Linux on Hyper-Threaded Xeon processors proved to be more stable, with extended runs possible, with the majority of transfers persisting until deliberately terminated after many tens of minutes. The system logs, however, showed that everything was not perfect, with many zero order page allocation failures logged, in a similar context to the panics - close to the receive interrupt of the NIC.

4.5 Towards a stable test bed

Analysis of crash dumps and kernel messages showed that most error messages were generated when memory was being allocated in NIC RX IRQ handler. To attempt to fix the problem the operation of the NIC driver was analysed together with aspects of the kernel memory management code. In general, when a request is made for memory allocation, the request will either be serviced immediately (if memory is available) or it will be blocked while sufficient memory is reclaimed. However, when memory allocation is requested in an interrupt context, for example memory allocation to store received packets, blocking is forbidden. In order for the memory allocation to have a higher chance of succeeding, the kernel reserves some memory specifically for this situation where the allocation is classed as atomic. The amount of memory reserved for atomic allocations is determined by the value of the min_free_kbytes sysctl variable.

Increasing the min_free_kbytes parameter in the receiving host from the default value of 5741 to 65535 proved to prevent all the previously seen error messages, though it is not entirely clear to us why the memory allocation problems originally occur. It is possible that the default value of min_free_kbytes is not sufficient relative to the time between scheduled runs of the memory management daemon (e.g. kswapd), which are scheduled to keep that minimum amount of memory free. A larger value of min_free_kbytes may mean that the reserved memory is never filled before the memory management routines can be run. As we do not encounter similar problems with UDP and TCP, it is possible that the higher CPU utilisation of DCCP could cause such a situation by using more CPU time. It is strange that on one system the allocation failures prompted error messages while on another the result was a fatal system crash.

The problem is not entirely mitigated though as even with the increased value of min_free_kbytes crashes persist if the packet size is increased sufficiently. More investigation is needed to gain a full understanding of this unwanted feature of our DCCP test.

4.6 Results of recent tests

With an increased value of min_free_kbytes on the receiving hosts, the systems proved to be stable with 1500 Byte packets, with no tests generating error messages of any kind. Every test, with flow durations of up to 2 hours, remained stable and was terminated gracefully at the predetermined time, using all kernel versions of 2.6.19 or later. Having a stable test bed has allowed preliminary tests of DCCP throughput performance, as outlined below.

[image: image11.emf]CCID3 iperf

0

100

200

300

400

500

600

700

800

900

1000

02000400060008000

Time s

Throughput Mbit/s

Figure 4‑2 Comparison of the throughput achieved for CCID 2 and 3 using iperf with 5 s sampling.
4.6.1 Back-to-back tests

With any two systems CCID2 can attain the maximum possible data rate of 940 Mbit/s, which is line-rate over Gigabit Ethernet and stable for the duration of the test. This result is illustrated in Figure 4‑2(a), with Figure 4‑2(b) showing the different behaviour of CCID3. With CCID3 there is an initial period with an average rate of only 300 Kbit/s, with the regular rate variation detailed in Figure 4‑3. After a number of packets (around 65,500) the rate jumped to line-rate and remained steady, as seen in Figure 4‑2(b). This is strange behaviour, with the number of packets being indicative with a 16-bit overflow perhaps, but there have been a lot of patches produced for CCID3 recently which have not yet made it into the stable Linux tree. Using a development tree and patches from numerous authors changes the CCID3 behaviour completely. The most appropriate comment to make is that CCID3 is developing and the performance of current stable kernels is not indicative of what is be achieved by developers.
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Figure 4‑3 Expanded views showing the variation in the CCID3 iperf throughput during the initial part of the test.

4.6.2 Tests over extended networks

Over a transatlantic connection, with end-hosts in Manchester and Chicago, using UDP and TCP we can achieve line-rate throughput. Although the back-to-back performance of DCCP between identical systems gave line-rate, over the 94 ms transatlantic lightpath only a steady 130 Mbit/s was attained. The performance of DCCP seemed to be CPU limited at the sender, with one CPU showing an average of 98% load, compared to the load at line-rate back-to-back of 82%. Increased CPU load with increasing round-trip time can sometimes be observed with TCP flows but it is not immediately obvious that this should be the case with DCCP and it is curious that the effect seems so dramatic. The performance of DCCP needs to be investigated further over different distances and with different systems. CPU load profiles can hopefully yield further useful information about the performance of DCCP.

4.7 Developing a new CCID

VLBI has a clear requirement to move constant bit-rate data and can tolerate high-levels of packet loss, making UDP seem like the ideal transport protocol. Other applications have similar requirements, with streaming media and VoIP being examples of applications where constant bit-rate can be advantageous and packet loss is often tolerable. However, there is concern from network providers that UDP traffic could overwhelm other traffic and overload the network. Concerns and opinions have been voiced and mitigating options have been discussed at recent meetings such as the EXPReS & EVN-NREN meeting in Zaandan, NL and PFLDnet 2007 / IRTF workshop in Marina Del Rey, US, with input from Kees Neggers, SURFnet; Glen Turner, AARNET; and Aaron Falk, the IRTF Chair. One option that the authors support is to use DCCP in combination with a new CCID, initially given the name SafeUDP. The proposed CCID aims to address the concerns expressed about using plain UDP by implementing something “UDP like” but with network protection. SafeUDP would use the DCCP ACK mechanism to detect congestion, following which the congestion would be evaluated: to ensure that congestion is not in the end-host and to determine whether the congestion is transient. This evaluation step is useful to remove the assumption that all losses are congestion events, which is a conservative assumption but in some circumstances often unnecessarily detrimental to performance. The application would be notified of the congestion through modified API calls, with sendto() and recvfrom(), etc. having new return codes. The application can then take action. If the application were to take no action within a reasonable time, this CCID would drop input from the application and inform the application that it had done so. This idea is being worked on with the long-term aim of a draft RFC.

4.8 Conclusions

The Linux implementation of DCCP is almost certainly the most mature implementation available. Once we had established a stable test bed we investigated the performance of DCCP using CCID2 and CCID3 with tests conducted primarily using the test program DCCPmon, a port of existing application UDPmon. Apart from minor troubles due to omissions or changes to the API, the port was relatively straight-forward.

We have seen that the back-to-back performance of DCCP using CCID2 is good, achieving line-rate for extended (multiple hour) back-to-back, memory-to-memory transfers. The throughput of CCID3 was generally lower though there is much current development with performance changing with every patch. Given the amount of patches being created by developers it is uncertain at what speed the CCID3 implementation in the stable kernel will develop. Tests of CCID2 over extended networks have been quite limited to date, with early results showing that DCCP uses much more CPU time and achieves a lower rate over a transatlantic lightpath. A rate of 130 Mbit/s to compare with 940 Mbit/s back-to-back has been seen, with further work needed to fully assess DCCP performance over long-distances. Achieving a stable test setup has not been trivial and there are some issues still to be resolved. We hope that our investigations of the issues with DCCP on our systems can help improve the implementation and make DCCP work “out-of-the” box on more systems. Working round the issues we encountered revealed a protocol implementation that we look forward to investigating more fully in the near future. Many applications can benefit from DCCP and we hope to extend the utility by considering the concerns of and working with network managers to build a new CCID.

5 Trans-Atlantic UDP and TCP network tests
5.1 Testing the trans-Atlantic link

Very long baseline interferometry (VLBI) generates large rates of data from many telescopes simultaneously observing a source in the sky. This can require the information to traverse intercontinental distances from each telescope to a correlator in order to synthesise high resolution images. With the dramatic development of the Internet and high bandwidth networks, it is becoming possible to transmit the data over large area networks. This allows the correlation of radio astronomical data to be done in real-time, whereas this process would take weeks using conventional disk based recording.

Jodrell Bank Observatory has a dark fibre from the MERLIN telescope array to the main campus at the University of Manchester, currently this carries two 1 Gigabit network paths. This local network connects to UKLight at Manchester Computing [18] via a Cisco 7600 switch. UKLight is a network of dedicated optical light paths, operated by UKERNA [19], and provides a guaranteed 1 Gigabit network path between Manchester and StarLight [20] in Chicago. Server quality PCs located at Jodrell Bank, Manchester and Chicago are connected to this infrastructure and enable network tests to be made.
5.1.1 TCP Bandwidth Tests with iperf

The achievable TCP throughput rates were measured between the PCs at Manchester and Chicago with the software package, iperf [16]. The results of a test lasting 3.3 hours are plotted in Figure 5‑1 and show a user data rate of 940 Mbit/s but multiple drops in throughput were observed during the test. Despite the network utilising a dedicated lightpath, packet losses were observed and as a result TCP goes into the congestion avoidance phase and reduces the transmitted bandwidth.
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Figure 5‑1 A TCP achievable bandwidth test between servers located at Manchester and Chicago. The network application tool, iperf was used to measure the maximum throughput for a period of over 3 hours.

[image: image14.emf]Figure 5‑2  (a) (left) The number of UDP packets lost in a throughput test at 940 Mbit/s from Chicago to Manchester as a function of the receive buffer size. (b) (right) The same UDPmon data with the packet loss axis limited to 1000 counts. 

5.1.2 UDP Network Tests

In order to better understand the network behaviour, the UDP protocol was used. Unlike TCP, if a UDP packet is lost in the network, the transmission rate is not reduced, nor is the packet resent. This makes UDP an excellent diagnostic tool for troubleshooting network paths. The network analysis software package, UDPmon [17], was used to investigate the link between Manchester and Chicago by transmitting packets at a constant rate, and reporting packet loss. In order to emulate the transmission of e-VLBI science data, 50 million packets were transferred, which took about 10 minutes for every test. The number of UDP packets lost as a function of the receive buffer size are plotted in Figure 5‑2 for a 940 Mbit/s flow from Chicago to Manchester. It shows two effects: large intermittent packet losses of >1 % and a much lower loss rate for small receive buffer sizes.
To understand this result, we tested the UDP performance by linking similar servers directly back-to-back in the lab. (i.e. without the transatlantic network). The application transmitted UDP at line rate (940 Mbit/s) and the buffer size of the receive host was varied from 65 KByte to 300 KByte. Figure 5‑3 shows that packet loss was observed when the receive buffer was less than ~ 230 KByte and at low receive buffer sizes there is a linear relationship between packets lost per test and buffer size. These losses occurred in the end host when the queue between the UDP stack and the application became full. It seems probable that this may be due to effects of the scheduler in the Linux 2.6.20 kernel de-selecting the UDPmon application. Further work is in progress to verify this. Increasing the receive buffer size at the application layer did not stop nor reduce the large > 1 %. intermittent packet losses shown in Figure 5‑2.
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Figure 5‑3 The number of packets lost between two computers directly connected between network interface cards (i.e. no transatlantic network). 
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Figure 5‑4 (left) The number of packets lost in a UDPmon test at 940 Mbit/s from Manchester to Chicago as a function of time. Once again large intermittent packet losses of >1 % were observed. (right) The same UDPmon data with the packet loss axis limited to 5000 counts. A constant loss of at least 3000 packets per test is observed.

5.1.3 Constant packet loss when running at line rate

The network tests at 940 Mbit/s with UDPmon were repeated in the opposite direction (from Manchester to Chicago). The receive buffer was set to 300 KB and the test was performed for a longer period of time (~ 30 hours). The number of packets lost as a function of time is shown in Figure 5‑4. Once again the application reported that occasionally large fractions of the packets (>1%) were lost in the network. However this time, as seen in the right plot of Figure 5‑4, a constant loss of at least 3000 packets per 50,000,000 sent (0.001%) occurred in every test.

5.2 Network isolation

In order to have characterised this network link, it was important to examine where the data packets were dropped at the lowest point of the OSI model, i.e. layer 2. To do this we examined the SNMP (simple network management protocol) counters of the network interface cards and the Cisco 7600 switch connecting to UKLight. The results showed the constant packet loss discussed in section 5.1.3 were within the Cisco 7600. All 50,000,000 packets were received by the switch throughout each test. However if the transmission rate was reduced to 800 Mbit/s, the switch could transmit all 50,000,000 packets without loss.

We tested the switch’s interface from Jodrell Bank to the Cisco 7600 using a different connection to the computer in the University of Manchester campus. Both the switch’s SNMP counts and UDPmon’s reports showed the switch transmitted every packet at line rate without packet loss in this configuration. The ports used on the 7600 for these tests and those showing packet loss were on different types of switch line cards, and this could have an effect.
5.2.1 UKERNA’s maintenance

We concluded through a process of elimination that the large intermittent packet loss of > 1% was therefore within UKLight. After private communication with UKERNA it is believed the network issues were due to a broken fibre on the Manchester Computing to StarLight connection. After multiple maintenance tickets were issued by UKLight, we repeated the UDPmon tests.

The configuration of the local network from Jodrell Bank into UKLight did not give the constant packet loss seen in section 5.1.3 even at line rate. The results in Figure 5‑5 show that when running at line rate ( 940 Mbit/s) from Jodrell Bank to Chicago after the network maintenance, very few packets were lost over a period of 2.5 days. Over 20 Billion packets were transmitted (~ 200 TB) with the loss of only four packets in the network.

[image: image17.emf]Figure 5‑5 UDPmon tests from Jodrell Bank to Chicago sending UDP packets at 940 Mbit/s. Packet loss is shown against time. Over 200 TB of data was transferred over a period of over 60 hours. Only 4 packets were lost throughout the experiment.

5.3 Conclusion

This work demonstrates some of the challenges encountered when using high bandwidth networks. Software application tools have simulated the date rates required by eVLBI science by continually sending large numbers of packets for many hours. This has shown the need for the receive buffers of the applications to be capable enough to collect data at these rates for long periods of time. Issues have arisen with the Cisco 7600 switch showing, that under certain circumstances the instrument does not perform as expected. This highlights the requirement to identify and test equipment to maximum abilities. Problems with the link were isolated by eliminating the client, end-host servers and local network by inspecting level 2 SNMP packet counts.

This led us to confidently conclude that large packet losses initially observed were within UKERNA’s UKLight network. After maintenance on UKLight, our tests were repeated for a large time period (~ 3 days). This successfully showed it was possible to transmit packets between Manchester and Chicago at 940 Mbit/s without losing a significant number of packets.
6 Conclusions and Future Work

Our studies over the last two years have shown the following:

The concern in VLBI with the timeliness of data arrival means that TCP is not ideal for the transfer of eVLBI data. However increasing the buffer size by perhaps and order of magnitude allows TCP rates to catch up, and produces timely arrival of data with only temporary but significant delays of the order of seconds.

VLBI_UDP has been shown to be able to transport eVLBI data effectively. The software is capable of being modified to drop packets selectively. Tests on the JIVE correlator have shown that the correlation system can stand high packet loss before losing synchronisation. 

DCCP is potentially of great use in eVLBI, however further work is required, both on the implementation, due to stability problems, and in the application. The correct form of congestion control for e-VLBI has yet to be implemented.

Tests on the trans-Atlantic links show that high (>500 Mbit/s) data rate transmission is easily obtainable once the link has been set up correctly. The tests point out the necessity for full testing prior to operations, as the links may not work to full capacity when initially provided. The tests have also shown that all the other network components such as Ethernet switches, routers and Network Interface Cards also need to be tested at the desired data rates.
Our further work will concentrate directly on aspects of protocols relevant to EXPReS:

The appropriate protocol for the transfer of eVLBI data when using distributed processing needs to be decided.  Individual blocks of data may need to be sent to multiple destinations for processing, depending on the mode of operation of the distributed correlator. Discussions with colleagues working in JRA1 WP2,  in particular the Posnan group, will take place over the following months to be followed by tests using available protocols.

A new format for data transfer in eVLBI, VSI-E, has been developed by MIT Haystack observatory. Code for this has recently (May 2007) been released to us, and has been found to compile and load. We plan to make back to back laboratory tests and throughput tests over long links on production and dedicated lightpaths in the near future. TCP or UDP can be used as the transport protocol for the RTP stream. We intend to use UDP, but some attention to congestion control needs to be made. VSI-E is being implemented by us on the iBOB digital interface boards being used in FABRIC. The porting of VSI-E to FPGAs will take place over the next 12 months. Testing on PCS will occur this summer.

VLBI_UDP currently runs on server class PCs. For it to become useable in EVN operations at JIVE we need to port the software to the Mk5 recorder and playback systems. This requires spare Mk5 units for us to install and test the software. Such units are being sought, and work can start as soon as they become available in the next few weeks. VLBI_UDP has the potential for us to be able to use rates of 800 Mbit/s or more, thereby significantly increasing the sensitivity of current Mk5 operations. In addition we may be able to repeat our packet dropping tests on the Mk5B systems about to be installed in JIVE and at the observatories at a later date.

A collaboration with our EXPReS partner, DANTE, to investigate of the behaviour of 4 Gigabit light paths provisioned over the GÉANT2 core network has just (May 2007) started with the installation of high performance PCs with 10 Gigabit Ethernet interfaces in their London Point of Presence. This work will continue over the next few months.

Finally, we have not yet exhausted all the possibilities of new stacks in TCP. Some work on this has been done in SA1 by JIVE staff, however we need to test TCP_delay and other applications using the new stacks. We may find that the late arrival problem is less severe, and give us a protocol which is suitable for VLBI and remain friendly to other users on a shared network. These tests will be initiated after our investigations of VSI-E, which have the highest priority.
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