
The CASA calibration model
(and how it differs from AIPS)

Mark	Kettenis,	JIVE

Measurement Equation
(RIME)

• Formulated by: Hamaker, Bregman & Sault, 1996, A&AS, 117, 137

• Reformulated in: Smirnov, 2011, A&AS, 527, A106

• Mathematical basis for calibration of a radio interferometer

• Fully incorporates polarization

Electric field at the source:

Recorded voltages of feeds at telescope: with (2x2) Jones matrix

Visibility matrix produced by the correlator:

Measurement equation: with brightness matrix

Goal is to determine for all antennas .

e = (er

el)
v = Je J

Vpq = 2⟨vpvH
q ⟩

Vpq = 2⟨Jp(epeH
q)JH

q ⟩ = JpB𝖩H
q 𝖡 = (I + Q U + iV

U − iV I − Q)
Jp p

Measurement Equation
continued

• Polarization-independent multiplicative effects introduced by the troposphere, such as opacity and path-length variation.

• Delay (this is VLBI!)

• Parallactic angle, which describes the orientation of the polarization coordinates on the plane of the sky. This term varies according
to the type of the antenna mount.

• Effects introduced by properties of the optical components of the telescopes, such as the collecting area's dependence on
elevation.

• Instrumental polarization response. "D-terms" describe the polarization leakage between feeds.

• Electronic gain response due to components in the signal path between the feed and the correlator.

• Bandpass (frequency-dependent) response, such as that introduced by spectral filters in the electronic transmission system.

CASA always applies these in the same (physically correct) order!

Jp = BpGpDpEpPpKpTp

Tp

Kp

Pp

Ep

Dp

Gp

Bp

CASA calibration

• CASA calibration tables represent Jones matrices

• Have an identity

• Contain real or complex parameters that are used to calculate elements 
Complex gain: is described by tow complex paramaters.

• Can be given arbitrary (meaningful) names

• Always explicitly specify calibration tables to be applied!

• There is no equivalent of an AIPS CL table

G = (gr 0
0 gl)

SN table

CASA calibration
continued

• Calibration tables are specified with task parameters:

• gaintable = [caltable1, caltable2]

• gainfield = [field1, field2] e.g. ’3C84’, ’J1023+43’
(field1 applies to caltable1, field2 to caltable2)

• interp = [interp1, interp2] e.g. ’linear’, ‘nearest’
(interp1 applies to caltable1, interp2 to caltable2)

• parangle = True or False (default)

• Data without calibration solutions is automatically flagged!

• Can be bypassed when applying the final calibration

• Data is aggressively flagged if it is partly flagged:

• corrdepflags = True or False (default); True prevents flagging both pols if one is flagged

New in 5.7/6.1

Data Formats

• MeasurementSet (v2) 
Native data format of CASA

• UV-FITS 
What AIPS writes

• FITS-IDI 
Produced by the SFXC (EVN) and DiFX (VLBA, LBA, …) correlators

All thee formats can contain metadata such as gain curves and T_sys

Preparing your data

• Extract gain curves

• Use gc.py script to import gaincurves from ANTAB files (EVN & Co)  
 
casa -c gc.py antabfile gcfile

• Use gc2.py script to import gain curves from FITS-IDI files (VLBA)  
 
casa -c gc2.py fitsfile gcfile

• Attach T_sys measurements (EVN & Co) 
 
casa -c append_tsys.py antabfile fitsfiles…

ANTAB
scripts at

https://github.com/jive-vlbi/
casa-vlbi

Gain curves

• Different ways to express gain curves

• voltage vs. power

• parametrization (function of zenith angle vs. elevation)

• CASA 5.7/6.1 only supports voltage as function of zenith angle

• gc.py and gc2.py scripts convert by sample and refit

• gain curves are not always well-behaved 
use —min-elevation and —max-elevation options

Gain curves
Fitted gain curves

Third order polynomial fit of f ’(ϕ) = √f(90-ϕ)

Ef Jb On

f’(ϕ)
polynomial fit

Preparing your data
The future

• Attach gain curves (EVN & Co) 
 
append_gc.py antabfile fitsfiles..

• Attach T_sys measurements (EVN & Co) 
 
append_tsys.py antabfile fitsfiles…

No preparation needed for VLBA data!

Expected in
CASA 5.8/6.2

Importing your data

• FITS-IDI data can be imported using the importfitsidi

• A single FITS-IDI file: 
 
importfitsidi(vis=ms, fitsidifiles=[fitsfile],
 scanreindexgap_s=seconds)

• Multiple FITS-IDI files for a single observation: 
 
importfitsidi(vis=ms, fitsidifiles=[fitsfile1, fitsfile2],
 constobsid=True, scanreindexgap_s=seconds)

• Applies digital corrections for DiFX correlator (VLBA & Co)

• UVFITS data can be imported using importuvfits 
 
importuvfits(vis=ms, fitsfile=[fitsfile])

This does not import most of the VLBI metadata correctly!

FITLD

15 seconds is good
(matches FITLD)

Use Python glob
module for EVN data

import glob

fitsfiles = sorted(glob.glob(”N20C2_1_1.IDI*”)

Normalizing your data

• Fix correlation amplitudes based on autocorrelations (VLBA & Co) 
 
accor(vis=ms, caltable=caltable)

• Generates G-type calibration table

• CASA data selection provides AIPS ACSCL functionality 

ACCOR

Flagging your data

• Apply a-priori flagging (EVN & Co) 
 
$ flag.py uvflgfile fitsfile > flagfile

flagcmd(vis=ms, inpmode=‘list',inpfile=flagfile)

• Additional flagging is don using plotms

UVFLG

Amplitude calibration

• Generate caltables for gain curves: 
 
gencal(vis=ms, type=’gc’, infile=gcfile, caltable=gctable)

• Generate caltables for T_sys: 
 
gencal(vis=ms, type=’tsys’, caltable=tsystable)

• Generates G-type calibration tables

• To apply use: 
 
gaintable=[gctable, tsystable]

In subsequent calibration tables. 

ANTAB

Bandpass calibration

• Generate caltables for gain curves: 
 
bandpass(vis=ms, field=field, refatnd=refant,
 gaintable=[…], solnorm=True, caltable=bptable)

• Generates B-type calibration tables 

BPASS

Fringe Fitting

• See lecture by Des Small on tuesday

FRING

Apply calibration

• Applying calibration to the whole MeasurementSet: 
 
applycal(vis=ms, gaintable=[…], interp=[…], …)

• Adds a CORRECTED_DATA colum; full copy of the data

• Split the MeasurementSet: 
 
split(vis=ms, outputvis=splitms, field=field, …)

• Supports averaging (time & frequency)

• Needs to be run for each field you want to image

• The mstransform task can also be used.

• Ends up running the same code.

SPLIT

CASA5 vs CASA6
Python 2 or Python 3

• CASA 5.x uses Python 2.7

• Python 2 is no longer supported

• Python scripts need to be invoked using casa -c

• Still includes plotcal

• Will go away in the future

• CASA 6.x uses Python 3.6

• The world is moving to Python 3

• No longer includes plotcal

• Proper Python modules, can be easily included in Python

Thanks to our sponsors

This	event	has	received	funding	from	the	European	Union’s	Horizon	2020	research	and	innovation	programme			
under	grant	agreements	730562	(RadioNet)	and	7308844	(JUMPING	JIVE)

