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Measurement Equation
(RIME)

• Formulated by: Hamaker, Bregman & Sault, 1996, A&AS, 117, 137


• Reformulated in: Smirnov, 2011, A&AS, 527, A106


• Mathematical basis for calibration of a radio interferometer


• Fully incorporates polarization


Electric field at the source:    


Recorded voltages of feeds at telescope:      with (2x2) Jones matrix  


Visibility matrix produced by the correlator:    


Measurement equation:       with brightness matrix  


Goal is to determine  for all antennas .
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Measurement Equation
continued




•   Polarization-independent multiplicative effects introduced by the troposphere, such as opacity and path-length variation.


•   Delay (this is VLBI!)


•   Parallactic angle, which describes the orientation of the polarization coordinates on the plane of the sky. This term varies according 
to the type of the antenna mount.


•   Effects introduced by properties of the optical components of the telescopes, such as the collecting area's dependence on 
elevation.


•   Instrumental polarization response. "D-terms" describe the polarization leakage between feeds.


•   Electronic gain response due to components in the signal path between the feed and the correlator.


•   Bandpass (frequency-dependent) response, such as that introduced by spectral filters in the electronic transmission system.


CASA always applies these in the same (physically correct) order!
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CASA calibration

• CASA calibration tables represent Jones matrices


• Have an identity


• Contain real or complex parameters that are used to calculate elements 
Complex gain:  is described by tow complex paramaters.


• Can be given arbitrary (meaningful) names


• Always explicitly specify calibration tables to be applied! 

• There is no equivalent of an AIPS CL table
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CASA calibration
continued

• Calibration tables are specified with task parameters:


• gaintable = [caltable1, caltable2] 

• gainfield = [field1, field2]  e.g. ’3C84’, ’J1023+43’ 
(field1 applies to caltable1, field2 to caltable2)


• interp = [interp1, interp2]  e.g. ’linear’, ‘nearest’ 
(interp1 applies to caltable1, interp2 to caltable2)


• parangle = True                  or False (default)


• Data without calibration solutions is automatically flagged!


• Can be bypassed when applying the final calibration


• Data is aggressively flagged if it is partly flagged:


• corrdepflags = True          or False (default); True prevents flagging both pols if one is flagged

New in 5.7/6.1



Data Formats

• MeasurementSet (v2) 
Native data format of CASA


• UV-FITS 
What AIPS writes


• FITS-IDI 
Produced by the SFXC (EVN) and DiFX (VLBA, LBA, …) correlators


All thee formats can contain metadata such as gain curves and T_sys 



Preparing your data

• Extract gain curves


• Use gc.py script to import gaincurves from ANTAB files (EVN & Co)  
 
casa -c gc.py antabfile gcfile


• Use gc2.py script to import gain curves from FITS-IDI files (VLBA)  
 
casa -c gc2.py fitsfile gcfile


• Attach T_sys measurements (EVN & Co) 
 
casa -c append_tsys.py antabfile fitsfiles…

ANTAB
scripts at 

https://github.com/jive-vlbi/
casa-vlbi



Gain curves

• Different ways to express gain curves


• voltage vs. power


• parametrization (function of zenith angle vs. elevation)


• CASA 5.7/6.1 only supports voltage as function of zenith angle


• gc.py and gc2.py scripts convert by sample and refit


• gain curves are not always well-behaved 
use —min-elevation and —max-elevation options



Gain curves
Fitted gain curves

Third order polynomial fit of f ’(ϕ) = √f(90-ϕ)

Ef Jb On

f’(ϕ)
polynomial fit



Preparing your data
The future

• Attach gain curves (EVN & Co) 
 
append_gc.py antabfile fitsfiles..


• Attach T_sys measurements (EVN & Co) 
 
append_tsys.py antabfile fitsfiles… 

No preparation needed for VLBA data!

Expected in 
CASA 5.8/6.2



Importing your data

• FITS-IDI data can be imported using the importfitsidi


• A single FITS-IDI file: 
 
importfitsidi(vis=ms, fitsidifiles=[fitsfile], 
              scanreindexgap_s=seconds)


• Multiple FITS-IDI files for a single observation: 
 
importfitsidi(vis=ms, fitsidifiles=[fitsfile1, fitsfile2], 
              constobsid=True, scanreindexgap_s=seconds) 

• Applies digital corrections for DiFX correlator (VLBA & Co)


• UVFITS data can be imported using importuvfits 
 
importuvfits(vis=ms, fitsfile=[fitsfile]) 
 
This does not import most of the VLBI metadata correctly!

FITLD

15 seconds is good 
(matches FITLD)

Use Python glob 
module for EVN data

import glob

fitsfiles =  sorted(glob.glob(”N20C2_1_1.IDI*”)



Normalizing your data

• Fix correlation amplitudes based on autocorrelations (VLBA & Co) 
 
accor(vis=ms, caltable=caltable)


• Generates G-type calibration table


• CASA data selection provides AIPS ACSCL functionality 

ACCOR



Flagging your data

• Apply a-priori flagging (EVN & Co) 
 
$ flag.py uvflgfile fitsfile > flagfile 
 
flagcmd(vis=ms, inpmode=‘list',inpfile=flagfile)


• Additional flagging is don using plotms

UVFLG



Amplitude calibration

• Generate caltables for gain curves: 
 
gencal(vis=ms, type=’gc’, infile=gcfile, caltable=gctable) 

• Generate caltables for T_sys: 
 
gencal(vis=ms, type=’tsys’, caltable=tsystable)


• Generates G-type calibration tables


• To apply use: 
 
gaintable=[gctable, tsystable] 
 
In subsequent calibration tables. 

ANTAB



Bandpass calibration

• Generate caltables for gain curves: 
 
bandpass(vis=ms, field=field, refatnd=refant, 
    gaintable=[…], solnorm=True, caltable=bptable) 

• Generates B-type calibration tables 

BPASS



Fringe Fitting

• See lecture by Des Small on tuesday

FRING



Apply calibration

• Applying calibration to the whole MeasurementSet: 
 
applycal(vis=ms, gaintable=[…], interp=[…], …) 

• Adds a CORRECTED_DATA colum; full copy of the data


• Split the MeasurementSet: 
 
split(vis=ms, outputvis=splitms, field=field, …) 

• Supports averaging (time & frequency)


• Needs to be run for each field you want to image


• The mstransform task can also be used.


• Ends up running the same code.

SPLIT



CASA5 vs CASA6
Python 2 or Python 3

• CASA 5.x uses Python 2.7


• Python 2 is no longer supported


• Python scripts need to be invoked using casa -c


• Still includes plotcal


• Will go away in the future


• CASA 6.x uses Python 3.6


• The world is moving to Python 3


• No longer includes plotcal 

• Proper Python modules, can be easily included in Python
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