

2-6 NOVEMBER 2020

L3. THE CASA CALIBRATION MODEL (AND HOW IT DIFFERS FROM AIPS) IVE

Mark Kettenis (JIVE)

ERIC

JUMPING JIVE Joint Institute for VLBI ERIC

Measurement Equation (RIME)

- Formulated by: Hamaker, Bregman & Sault, 1996, A&AS, **117**, 137
- Reformulated in: Smirnov, 2011, A&AS, **527**, A106
- Mathematical basis for calibration of a radio interferometer
- Fully incorporates polarization

Electric field at the source: $\mathbf{e} = \begin{pmatrix} e_r \\ e_l \end{pmatrix}$

Recorded voltages of feeds at telescope: $\mathbf{v} = \mathbf{J}\mathbf{e}$ with (2x2) Jones matrix \mathbf{J} Visibility matrix produced by the correlator: $V_{pq} = 2\langle \mathbf{v}_p \mathbf{v}_q^H \rangle$

Measurement equation: $V_{pq} = 2\langle \mathbf{J}_p(\mathbf{e}_p\mathbf{e}_q^H)\mathbf{J}_q^H\rangle = \mathbf{J}_p\mathbf{B}\mathbf{J}_q^H$ with

Goal is to determine \mathbf{J}_p for all antennas p.

h brightness matrix
$$B = \begin{pmatrix} I+Q & U+iV \\ U-iV & I-Q \end{pmatrix}$$

Measurement Equation continued

$\mathbf{J}_p = \mathbf{B}_p \mathbf{G}_p \mathbf{D}_p \mathbf{E}_p \mathbf{P}_p \mathbf{K}_p \mathbf{T}_p$

- T_p Polarization-independent multiplicative effects introduced by the troposphere, such as opacity and path-length variation.
- \mathbf{K}_p Delay (this is VLBI!)
- \mathbf{P}_p Parallactic angle, which describes the orientation of the polarization coordinates on the plane of the sky. This term varies according to the type of the antenna mount.
- \mathbf{E}_p Effects introduced by properties of the optical components of the telescopes, such as the collecting area's dependence on elevation.
- \mathbf{D}_p Instrumental polarization response. "D-terms" describe the polarization leakage between feeds.
- \mathbf{G}_p Electronic gain response due to components in the signal path between the feed and the correlator.
- \mathbf{B}_{p} Bandpass (frequency-dependent) response, such as that introduced by spectral filters in the electronic transmission system.

CASA always applies these in the same (physically correct) order!

CASA calibration

- CASA calibration tables represent Jones matrices
 - Have an identity
 - Contain real or complex parameters that are used to calculate elements Complex gain: $\mathbf{G} = \begin{pmatrix} g_r & 0 \\ 0 & g_l \end{pmatrix}$ is described by tow complex paramaters.
 - Can be given arbitrary (meaningful) names
- Always explicitly specify calibration tables to be applied!
 - There is no equivalent of an AIPS CL table

CASA calibration continued

- Calibration tables are specified with task parameters:
 - gaintable = [caltable1, caltable2]
 - gainfield = [field1, field2] e.g. '3C84', 'J1023+43' (field1 applies to caltable1, field2 to caltable2)
 - interp = [interp1, interp2] e.g. 'linear', 'nearest' (*interp1* applies to *caltable1*, *interp2* to *caltable2*)
 - parangle = True **or** False (default)
- Data without calibration solutions is automatically flagged!
 - Can be bypassed when applying the final calibration
- Data is aggressively flagged if it is partly flagged:
 - corrdepflags = True

or False (default); True prevents flagging both pols if one is flagged

Data Formats

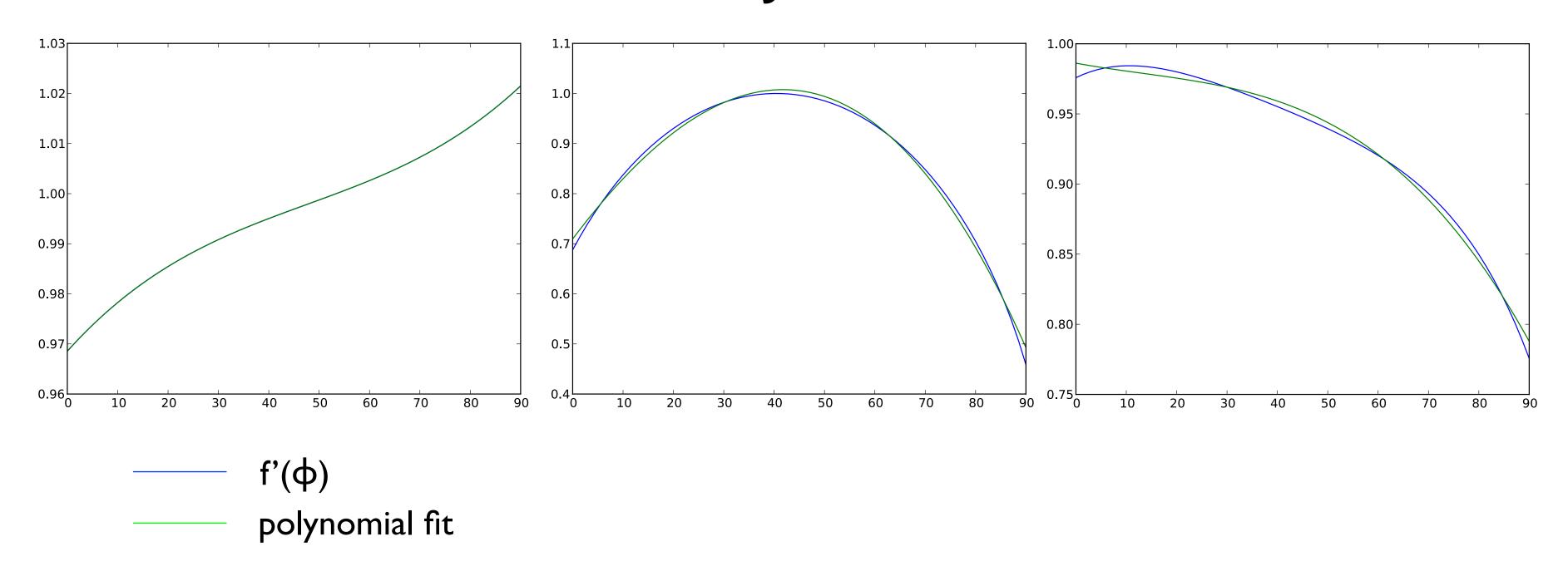
- MeasurementSet (v2) Native data format of CASA
- UV-FITS What AIPS writes
- FITS-IDI Produced by the SFXC (EVN) and DiFX (VLBA, LBA, ...) correlators

All thee formats can contain metadata such as gain curves and T_sys

Preparing your data

- Extract gain curves
 - Use gc.py script to import gaincurves from ANTAB files (EVN & Co)
 - casa -c gc.py antabfile gcfile
 - Use gc2.py script to import gain curves from FITS-IDI files (VLBA)
 - casa -c gc2.py fitsfile gcfile
- Attach T_sys measurements (EVN & Co)
 - casa -c append tsys.py antabfile fitsfiles ...

scripts at https://github.com/jive-vlbi/ casa-vlbi


Gain curves

- Different ways to express gain curves
 - voltage vs. power
 - parametrization (function of zenith angle vs. elevation)
- CASA 5.7/6.1 only supports voltage as function of zenith angle
 - gc.py and gc2.py scripts convert by sample and refit
 - gain curves are not always well-behaved **use** -min-elevation and -max-elevation options

Gain curves Fitted gain curves

Third order polynomial fit of f'(ϕ) = $\sqrt{f(90-\phi)}$

Ef

Jb

On

Preparing your data The future

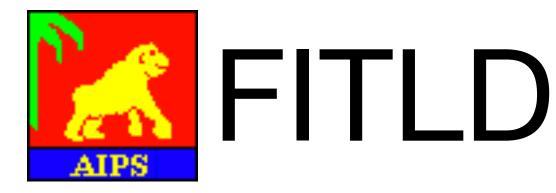
- Attach gain curves (EVN & Co) append gc.py antabfile fitsfiles.
- Attach T_sys measurements (EVN & Co) append tsys.py antabfile fitsfiles ...

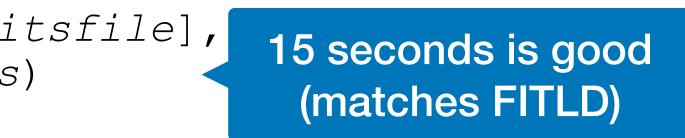
No preparation needed for VLBA data!

Expected in CASA 5.8/6.2

Importing your data

- FITS-IDI data can be imported using the importfitsidi
 - A single FITS-IDI file:


importfitsidi(vis=ms, fitsidifiles=[fitsfile], scanreindexgap s=seconds)


• Multiple FITS-IDI files for a single observation:

```
importfitsidi(vis=ms, fitsidifiles=[fitsfile1, fitsfile2],
  constobsid=True, scanreindexgap s=seconds)
```

- Applies digital corrections for DiFX correlator (VLBA & Co)
- UVFITS data can be imported using importuvfits importuvfits(vis=ms, fitsfile=[fitsfile])

This does not import most of the VLBI metadata correctly!

Use Python glob module for EVN data

import glob fitsfiles = sorted(glob.glob("N20C2_1_1.IDI*")

Normalizing your data

- Fix correlation amplitudes based on autocorrelations (VLBA & Co) accor(vis=ms, caltable=caltable)
- Generates G-type calibration table

CASA data selection provides AIPS ACSCL functionality

Flagging your data

- Apply a-priori flagging (EVN & Co) \$ flag.py uvflgfile fitsfile > flagfile flagcmd(vis=ms, inpmode='list', inpfile=flagfile)
- Apply a-priori flagging (VLBA) flagcmd(vis=ms, inpmode='table')

Additional (interactive) flagging can be done using plotms

Amplitude calibration

• Generate caltables for gain curves:

gencal(vis=ms, type='gc', infile=gcfile, caltable=gctable)

Generate caltables for T_sys:

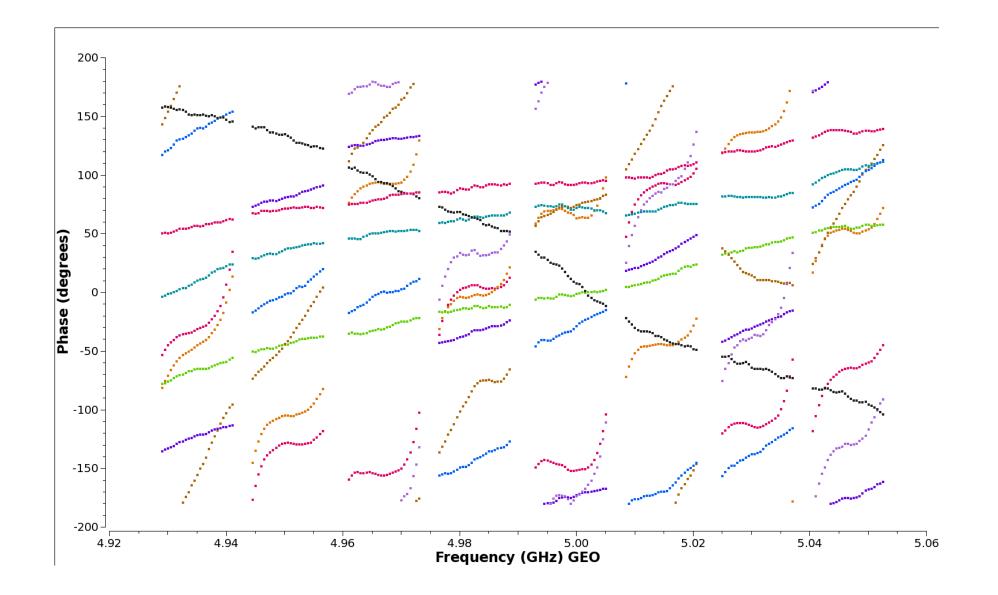
gencal(vis=ms, type='tsys', caltable=tsystable)

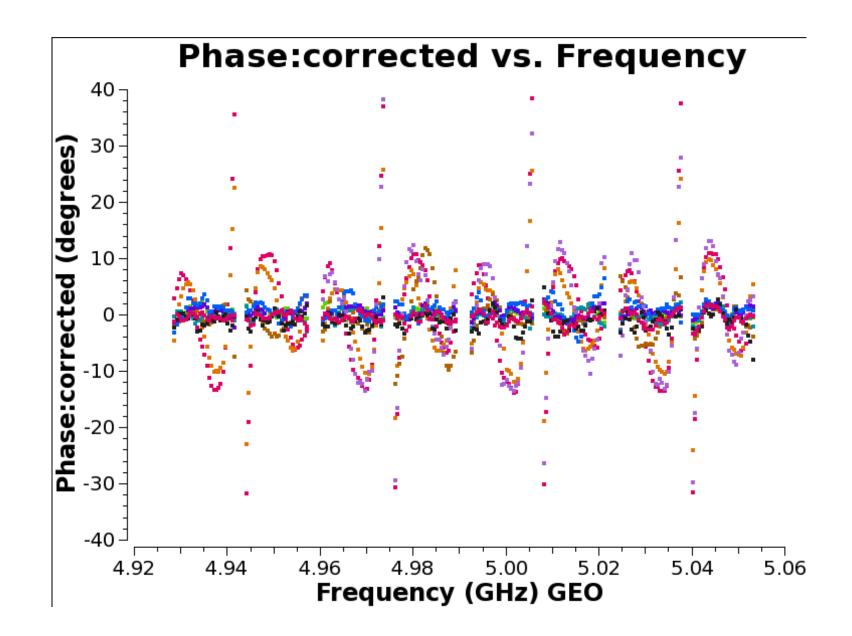
- Generates G-type calibration tables
- To apply use:

gaintable=[gctable, tsystable]

In subsequent calibration tables.

Bandpass calibration


- Generate caltables for gain curves:
 - bandpass(vis=ms, field=field, refant=refant,
- Generates B-type calibration tables


qaintable=[...], solnorm=True, caltable=bptable)

Fringe Fitting

• See lecture by Des Small on tuesday

Apply calibration

- Applying calibration to the whole MeasurementSet: applycal(vis=ms, gaintable=[...], interp=[...], ...)
 - Adds a CORRECTED_DATA colum; full copy of the data
- Split the MeasurementSet:

split(vis=ms, outputvis=splitms, field=field, ...)

- Supports averaging (time & frequency)
- Needs to be run for each field you want to image
- The mstransform task can also be used.
 - Ends up running the same code.

SPLIT

CASA5 vs CASA6 Python 2 or Python 3

- CASA 5.x uses Python 2.7
 - Python 2 is no longer supported
 - Python scripts need to be invoked using casa -c
 - Still includes plotcal
 - Will go away in the future
- CASA 6.x uses Python 3.6
 - The world is moving to Python 3
 - No longer includes plotcal
 - Proper Python modules, can be easily included in Python

THANKS TO OUR SPONSORS:

PROGRAMME UNDER GRANT AGREEMENTS 730562 (RADIONET) AND 7308844 (JUMPING JIVE)

THIS EVENT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION

