
WORKSHOP 2020

2-6 November 2020

L3. The CASA calibration model
(and how it differs from AIPS)

Mark Kettenis (JIVE)

CASA
VLBI

Measurement Equation
(RIME)

• Formulated by: Hamaker, Bregman & Sault, 1996, A&AS, 117, 137

• Reformulated in: Smirnov, 2011, A&AS, 527, A106

• Mathematical basis for calibration of a radio interferometer

• Fully incorporates polarization

Electric field at the source:

Recorded voltages of feeds at telescope: with (2x2) Jones matrix

Visibility matrix produced by the correlator:

Measurement equation: with brightness matrix

Goal is to determine for all antennas .

e = (er

el)
v = Je J

Vpq = 2⟨vpvH
q ⟩

Vpq = 2⟨Jp(epeH
q)JH

q ⟩ = JpB𝖩H
q 𝖡 = (I + Q U + iV

U − iV I − Q)
Jp p

Measurement Equation
continued

• Polarization-independent multiplicative effects introduced by the troposphere, such as opacity and path-length variation.

• Delay (this is VLBI!)

• Parallactic angle, which describes the orientation of the polarization coordinates on the plane of the sky. This term varies according
to the type of the antenna mount.

• Effects introduced by properties of the optical components of the telescopes, such as the collecting area's dependence on
elevation.

• Instrumental polarization response. "D-terms" describe the polarization leakage between feeds.

• Electronic gain response due to components in the signal path between the feed and the correlator.

• Bandpass (frequency-dependent) response, such as that introduced by spectral filters in the electronic transmission system.

CASA always applies these in the same (physically correct) order!

Jp = BpGpDpEpPpKpTp

Tp

Kp

Pp

Ep

Dp

Gp

Bp

CASA calibration

• CASA calibration tables represent Jones matrices

• Have an identity

• Contain real or complex parameters that are used to calculate elements 
Complex gain: is described by tow complex paramaters.

• Can be given arbitrary (meaningful) names

• Always explicitly specify calibration tables to be applied!

• There is no equivalent of an AIPS CL table

G = (gr 0
0 gl)

SN table

CASA calibration
continued

• Calibration tables are specified with task parameters:

• gaintable = [caltable1, caltable2]

• gainfield = [field1, field2] e.g. ’3C84’, ’J1023+43’
(field1 applies to caltable1, field2 to caltable2)

• interp = [interp1, interp2] e.g. ’linear’, ‘nearest’
(interp1 applies to caltable1, interp2 to caltable2)

• parangle = True or False (default)

• Data without calibration solutions is automatically flagged!

• Can be bypassed when applying the final calibration

• Data is aggressively flagged if it is partly flagged:

• corrdepflags = True or False (default); True prevents flagging both pols if one is flagged

New in 5.7/6.1

Data Formats

• MeasurementSet (v2) 
Native data format of CASA

• UV-FITS 
What AIPS writes

• FITS-IDI 
Produced by the SFXC (EVN) and DiFX (VLBA, LBA, …) correlators

All thee formats can contain metadata such as gain curves and T_sys

Preparing your data

• Extract gain curves

• Use gc.py script to import gaincurves from ANTAB files (EVN & Co)  
 
casa -c gc.py antabfile gcfile

• Use gc2.py script to import gain curves from FITS-IDI files (VLBA)  
 
casa -c gc2.py fitsfile gcfile

• Attach T_sys measurements (EVN & Co) 
 
casa -c append_tsys.py antabfile fitsfiles…

ANTAB
scripts at

https://github.com/jive-vlbi/
casa-vlbi

Gain curves

• Different ways to express gain curves

• voltage vs. power

• parametrization (function of zenith angle vs. elevation)

• CASA 5.7/6.1 only supports voltage as function of zenith angle

• gc.py and gc2.py scripts convert by sample and refit

• gain curves are not always well-behaved 
use —min-elevation and —max-elevation options

Gain curves
Fitted gain curves

Third order polynomial fit of f ’(ϕ) = √f(90-ϕ)

Ef Jb On

f’(ϕ)
polynomial fit

Preparing your data
The future

• Attach gain curves (EVN & Co) 
 
append_gc.py antabfile fitsfiles..

• Attach T_sys measurements (EVN & Co) 
 
append_tsys.py antabfile fitsfiles…

No preparation needed for VLBA data!

Expected in
CASA 5.8/6.2

Importing your data

• FITS-IDI data can be imported using the importfitsidi

• A single FITS-IDI file: 
 
importfitsidi(vis=ms, fitsidifiles=[fitsfile],
 scanreindexgap_s=seconds)

• Multiple FITS-IDI files for a single observation: 
 
importfitsidi(vis=ms, fitsidifiles=[fitsfile1, fitsfile2],
 constobsid=True, scanreindexgap_s=seconds)

• Applies digital corrections for DiFX correlator (VLBA & Co)

• UVFITS data can be imported using importuvfits 
 
importuvfits(vis=ms, fitsfile=[fitsfile])

This does not import most of the VLBI metadata correctly!

FITLD

15 seconds is good
(matches FITLD)

Use Python glob
module for EVN data

import glob

fitsfiles = sorted(glob.glob(”N20C2_1_1.IDI*”)

Normalizing your data

• Fix correlation amplitudes based on autocorrelations (VLBA & Co) 
 
accor(vis=ms, caltable=caltable)

• Generates G-type calibration table

• CASA data selection provides AIPS ACSCL functionality 

ACCOR

Flagging your data

• Apply a-priori flagging (EVN & Co) 
 
$ flag.py uvflgfile fitsfile > flagfile

flagcmd(vis=ms, inpmode=’list’,inpfile=flagfile)

• Apply a-priori flagging (VLBA) 
 
flagcmd(vis=ms, inpmode=’table’)

• Additional (interactive) flagging can be done using plotms

UVFLG

Amplitude calibration

• Generate caltables for gain curves: 
 
gencal(vis=ms, type=’gc’, infile=gcfile, caltable=gctable)

• Generate caltables for T_sys: 
 
gencal(vis=ms, type=’tsys’, caltable=tsystable)

• Generates G-type calibration tables

• To apply use: 
 
gaintable=[gctable, tsystable]

In subsequent calibration tables. 

ANTAB

Bandpass calibration

• Generate caltables for gain curves: 
 
bandpass(vis=ms, field=field, refant=refant,
 gaintable=[…], solnorm=True, caltable=bptable)

• Generates B-type calibration tables 

BPASS

Fringe Fitting

• See lecture by Des Small on tuesday

FRING

Apply calibration

• Applying calibration to the whole MeasurementSet: 
 
applycal(vis=ms, gaintable=[…], interp=[…], …)

• Adds a CORRECTED_DATA colum; full copy of the data

• Split the MeasurementSet: 
 
split(vis=ms, outputvis=splitms, field=field, …)

• Supports averaging (time & frequency)

• Needs to be run for each field you want to image

• The mstransform task can also be used.

• Ends up running the same code.

SPLIT

CASA5 vs CASA6
Python 2 or Python 3

• CASA 5.x uses Python 2.7

• Python 2 is no longer supported

• Python scripts need to be invoked using casa -c

• Still includes plotcal

• Will go away in the future

• CASA 6.x uses Python 3.6

• The world is moving to Python 3

• No longer includes plotcal

• Proper Python modules, can be easily included in Python

THANKS TO OUR SPONSORS:

THIS EVENT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH AND INNOVATION
PROGRAMME under grant agreements 730562 (RadioNet) and 7308844 (JUMPING JIVE)

CASA
VLBI

