Applying Off-the-Shelf Technologies in eVLBI

Ari Mujunen, Ari.Mujunen@hut.fi Metsähovi Radio Observatory Helsinki University of Technology

Outline

- > Overview of available off-the-shelf technologies
- > Evaluation test results
- Current technology limitations
- Impact of technology limitations on system design and system scalability
- Near-future off-the-shelf trends
- A strategy for an uninterrupted
 1Gbps eVLBI system

Overview of Available Off-the-Shelf Technologies

- COTS: means mainstream technology, used by millions of people
- Tremendous R&D investments by industry in general-purpose COTS disk, computer, tape, and networking technologies
- Thus industry does R&D for us faster than we can do on our own
- Only if we can directly use standard technologies without locking to them

COTS Disks and Computers

Both are evolving at exponential "Moore rate" with no signs of slowdown

IDE Disk Sizes

Sizes have tripled since the start of disk recorder projects!

COTS Tapes and Networking

- Faster high-capacity tapes "in the works"
 - Sony S-AIT-1(,2,3,4), Quantum SDLT, HP/IBM/Seagate LTO2
 - > 500GB, 320GB, 200GB / 240Mbps, 128Mbps, 240Mbps...
 - Expensive drives (~\$10k) and tapes; still slow; not at all a mainstream technology
- Networking migrates 100M->1G->10Gbps
 - > ATM and others losing to Ethernet
 - IGbps Ethernet becoming mainstream

Evaluation Test Results

- Dell PE1600SC with ServerWorks GC-SL
 - On paper, multi-Gbps
 - In practice, 400-500Mbps with ~70% CPU load!
 - > Two Promise IDE PCI ctrls
 - Single rd 600, wr 700Mbps
 - rd+wr: rd 400 + wr 550Mbps
 - VSIB rd+wr: the same
 - Sum of I/O always <1Gbps..</p>

Evaluation Test Results

- MSI K7N2G-ILSR with nVidia nForce2
 - > On paper only PCI32/33, <1Gbps
 - In practice 0.7Gbps from and 0.4Gbps to PCI board <-
 on-board IDE with only ~45% CPU load
- Parallel ATA disks not suitable for >45cm cabling; limited COTS solutions to disk swaps
 - Longer cables force reducing speed from UDMA133/100 to UDMA66 or even UDMA33
 - UDMA33 allows only 120Mbps/disk (half of native perf.)
 -> 9 disks needed for 1Gbps

Current Technology Limitations

- Low-cost computers have just gained the capability to reach 0.5Gbps in all directions
 - > PCI(net/VSIB)<->memory<->disk
- The leap to >1Gbps will probably happen only after 1Gbps networking has replaced 100Mbps everywhere (2005?)

Impact of Limitations on System Design

- All subsystems achieve 0.5Gbps but 1Gbps is difficult/flaky
 - > Input/Output (PCI)
 - > Memory, CPU
 - Disks
 - IGbps Ethernet
- > So let's make a scalable 0.5Gbps box!
 - > Affordable enough, can buy as many as needed
 - Standard enough, can replace when needed

MVR Recorder with VSIB Board

0.5Gbit/s for 1200 euros!

VSI-H compatible Chainable for: More speed More on-line storage

Near-Future Off-the-Shelf Trends

- Large Serial ATA (SATA) disks replace PATA
 \$1/GB, drops quickly (600GB for \$300 in 2004?)
 1Gbps Ethernet everywhere
- Backups migrate from tape -> disks
 - SATA native hot/warm swap connectors
- HyperTransport,PCI Express, ...

Motherboard Trends

Multiple high-speed channels to memory
Intel E7501 2x Xeon, 3x HI2.0, 1x HI1.5

- Intel E7505 (1x HI 2.0)
- AMD Opteron with 3x 6.4GB/s HyperTransport
 - nVidia nForce 3 Pro chipset
 - > AMD-8000 chipset

A Strategy for an Uninterrupted 1Gbps eVLBI System

13

An Example

- Or continuously 1Gbps onto 8 disks, swapping the other 8 every 3.5h
- > Only 9477 euros
 - > (plus disks)
 - Incl. 19in rack & 4x Gbps Ethernet /w 8-port switch

Metsähovi VSI Data System Evolution

Jun-2001		First wired prototype
Jul- 2001		Tests of sustained Linux disk performance
Oct- 2001		First prototype VHDL ready and running at 8bit@32MHz
Jan- 2002		VSIB PCB board design ready
Feb-2002		VSIC PCB board design ready
Mar- 2002		Second prototypes assembled and tested at 32bit@18MHz
Apr- 2002		Last PCB changes for mass-production
Jun-2002		256Mbps VSIB&VSIC playback tests at JIVE
12- Jul- 2002	Fr!	256Mbps Mk4/5P Westerbork disk-Jodrell tape at 5GHz (fringes at JIVE)
Aug-2002		Total of 100 VS IB and VS IC boards produced
426- Sep- 2002		256Mbps iGRID e- VLBI demo (JB, WB, JIVE)
26- Sep- 2002		1Gbps ADS-1000 MH- Kashima 22GHz (RX problems)
2- Oct- 2002		1Gbps ADS-1000 MH- Kashima 22GHz (weather problems, Kashima typhoon)
16- Oct- 2002	Fr!	1Gbps ADS-1000 MH- Kashima 22GHz (fringes found on W3OH at CRL)
22- Nov- 2002		1 Gbps Mk4/5A MH- Jodrell 22 GHz (RX problems)
27- Nov- 2002		1Gbps ADS-1000 MH-Kashima 22GHz (weather problems, MH snow)
13,14- Feb- 2003	Fr!	1Gbps ADS-1000 MH- Kashima 22GHz (fringes found on 3C454.3 at CRL)
12- Mar- 2003	Fr!	1Gbps Mk4/5A MH- Jodrell 22GHz (fringes on 3C84 at JIVE)

15

5,7,