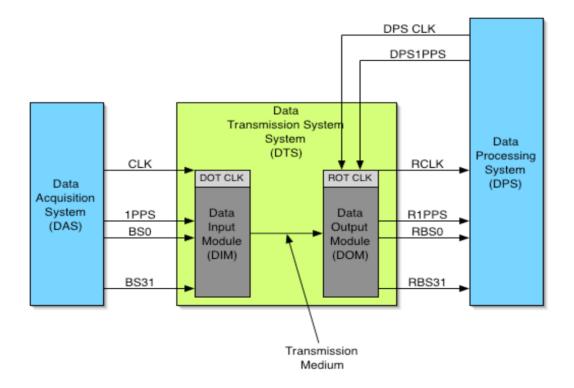
Development of new IP Protocols for e-VLBI An RTP Profile for e-VLBI

Alan Whitney awhitney@haystack.mit.edu David Lapsley dlapsley@haystack.mit.edu

John Wroclawski jtw@lcs.mit.edu

Agenda

- RTP Capabilities
- VSI-E Model and Requirements
- RTP
- An RTP Profile for e-VLBI
- e-VLBI Development at Haystack

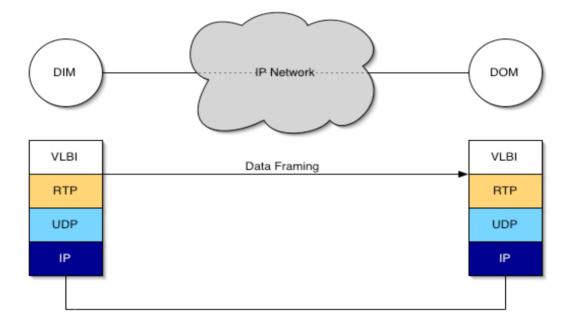

RTP Capabilities

- RTP provides an Internet-standard format for:
 - Transmission of sampled analog data
 - Dissemination of session information
 - Monitoring of network and end system performance (by participants and third parties)
 - Adaptation to varying network capability / performance
 - Appropriate reliability / repair model
 - Message Sequencing / un-reordering
 - Multi-cast distribution of statistics, control and data

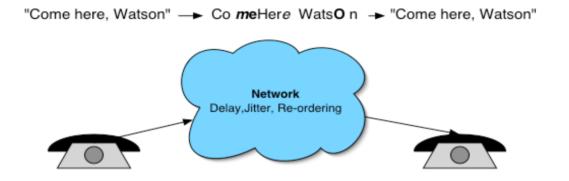
RTP Capabilities

- RTP allows the reuse of many standard monitoring / analysis tools
- RTP seen as internet-friendly by the network community:
 - attention to efficiency
 - protocol designed to have minimum overhead for in-band data
 - attention to resource constraints
 - won't use up all your bandwidth with control information
 - attention to scaling issues

VSI-E Model


VSI-E Requirements

- Standard e-VLBI data format that is transmitted from DIM to DOM
- data stream must contain embedded time and synchronization information
- data stream can be defined and managed as an array of 32-bit wide words
- Embedded time and synchronization information must not replace any data


VSI-E Requirements

- The data format must support all features defined by the VSI-H specification
 - following information must be transmitted as part of the data stream:
 - Active bit-stream mask
 - Bit-stream information rate (BSIR)
 - Valid-data indicator
 - TVG-data indicator
 - PDATA

e-VLBI Transport over RTP

Real-Time Transport Protocol

- Framework for transporting temporally structured data
 - Timing and synchronization
 - Merging, bridging, and translation support
 - Application-specific control data
 - e.g. PDATA, time, data collection parameters, antenna pointing, system temperature

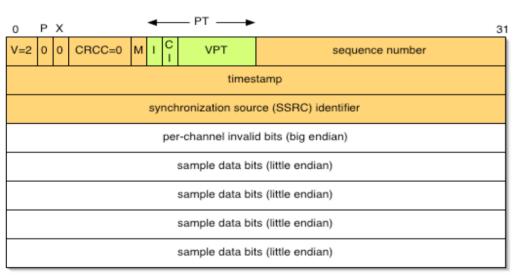
Real Time Control Protocol

- Monitors network's real-time data delivery performance
- Statistics collected from receivers
- Information delivered to
 - -Senders (adapt to prevailing conditions)
 - -Network management (identifies faults, provisioning problems)
- Adaptive, bandwidth-limited design

RTP Components

- RTP is extensible
 - Core specification
 - Application profiles
 - Usage rules for a particular application class
 - » IP Telephony
 - » Broadcast video distribution
 - Payload formats
 - Transport rules for specific real-time data formats
 - Video
 - » H.261, H.263, JPEG, MPEG/MPEG 2, others...
 - Audio
 - » PCM, G.72x, GSM, CELP, others...
- Create Profile for e-VLBI data

An RTP Profile for e-VLBI

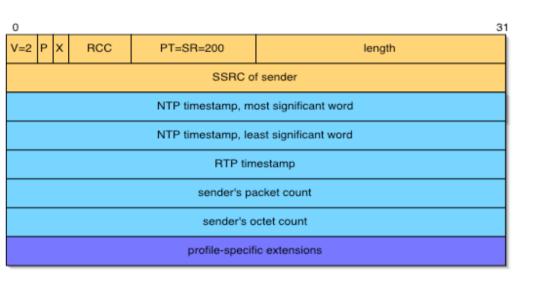

- Requirements
 - support required capabilities of data transport system described in the VSI-H document
 - Performance is critical
 - Profile should follow the RTP standards in all possible respects
 - Profile should not limit future use of RTP aspects

RTP Data Packet

0				31			
V=2 P X	сс	м	PT	sequence number			
timestamp							
synchronization source (SSRC) identifier							
contributing source (CSRC) identifiers							
······							
defined by profile				length			
header extension							
Payload							

- PT for identifying payload encoding
- Sequence Number for unre-ordering
- Timestamp for syhronization
- SSRC and CSRC to identify sources of information
- Header extension feature
- Payload for carrying realtime data samples

e-VLBI RTP Data Packet

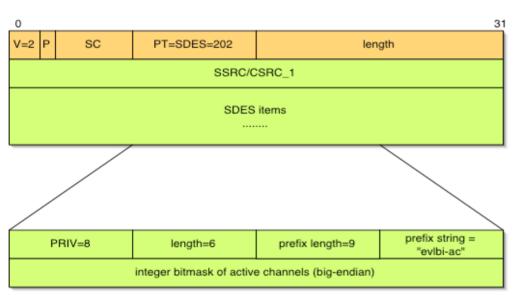


- Used to transport data
- Padding and Xtension bits set to 0
- M bit used to indicate TOST sample
- PT divided into three:
 - Invalid bit for packet
 - Channel Invalid bit
 - e-VLBI Payload Type
- First 32-bit word of payload contains "per-channel invalid bits"
- Remainder of packet is payload

e-VLBI RTCP Data Profile

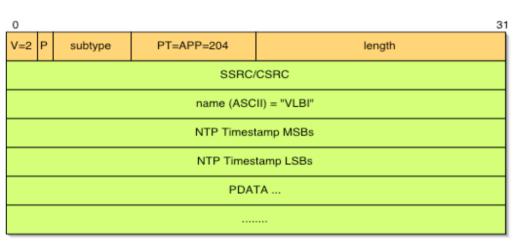
- Used by e-VLBI for:
 - statistical information about network quality and performance
 - carry information correlating SSRC tags with humanunderstandable source ids
 - to carry "session information" needed by e-VLBI sender, receivers, and monitors
- RTCP has a host of features that are directly applicable to current e-VLBI applications
 - RTCP also has some features that may be useful in the future for supporting "advanced" e-VLBI applications

RTCP Sender Report Packet


 Used to allow sources (antennas) to distribute transmission statistics and relationship between sender RTP timestamp and absolute time reference (e.g. from NTP)

RTCP Receiver Report Packet

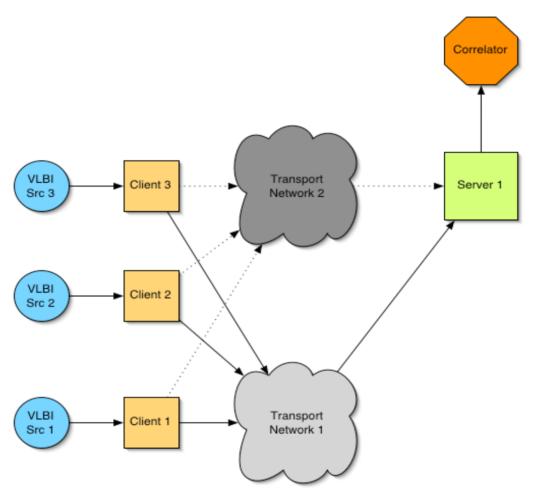
0		31				
V=2 P X RCC	PT=RR=201	length				
SSRC of sender						
SSRC_1 (SSRC of first source)						
fraction lost	cumulative number of packets lost					
extended highest sequence number received						
interarrival jitter						
last SR (LSR)						
delay since last SR (DLSR)						
SSRC_2 (SSRC of second source)						
profile-specific extensions						


- Used by receivers (e.g. correlator) to distribute quality of reception statistics:
 - E.g. fractional packet losses, cumulative number of packets lost, interarrival jitter etc.
 - Also provides a mechanism for sources to calculate round trip times

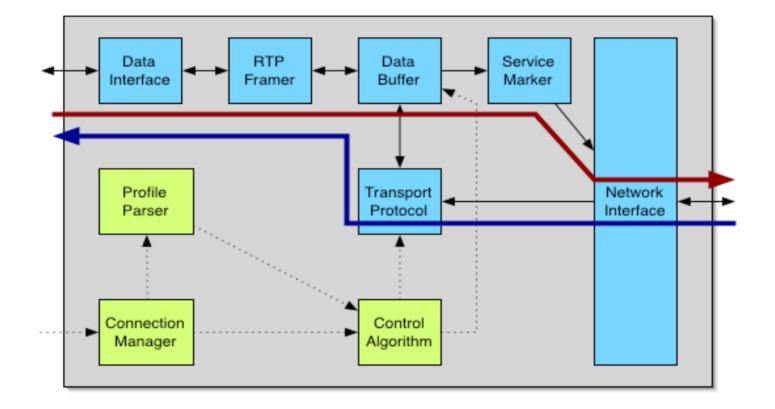
RTCP Source Description message

- Source DEScription message used to distribute information about a source to other session participants
- Defined information elements include:
 - CNAME, UNAME, EMAIL, PHONE, LOC, TOOL, NOTE
- Private extension to SDES used to transport active channel bitmask

Application-defined RTCP message



- RTCP allows applications to define their own messages
- e-VLBI profile uses this feature to carry PDATA information
- Data carried as an ASCII string and associated with an absolute time value in the format used by RTP


e-VLBI Development at Haystack

- Experiment Guided Adaptive Endpoint:
 - Interfaces VLBI hardware to IP networks and transmits VLBI data
 - Uses low priority "scavenged bandwidth"
 - Internet2
 - Commercial Protection and Backup links
 - Statistical multiplexing on Commerical networks
 - Adapts transmission rates to suit network congestion
 - Allows characteristics of adaptive behaviour to be determined by high level experimental profile

Architecture

Experimental Guided Adaptive Endpoint Architecture

References

- <u>http://www.ietf.org/html.charters/avt-</u> <u>charter.html</u>
 - RFC1889 RTP: A Transport Protocol for Real-Time Applications
 - RFC1990 RTP Profile for Audio and Video Conferences with Minimal Control
- An RTP Profile for e-VLBI data
- <u>http://www.haystack.mit.edu</u>

Thank you!

Alan Whitney awhitney@haystack.mit.ed u

David Lapsley dlapsley@haystack.mit.edu

John Wroclawski jtw@lcs.mit.edu

