TransLight A Global LambdaGrid for e-Science

Maxine Brown Electronic Visualization Laboratory University of Illinois at Chicago

The Keukenhof, Leiden, The Netherlands

STAR TAP International Connectivity

STAR TAP was created in 1997 to provide a persistent infrastructure for the long-term interconnection and interoperability of advanced international networking in support of applications, performance measuring, and technology evaluations. By 2000, STAR TAP successfully became a model for Next-Generation Internet eXchanges (NGIXs).

StarLight: Global Optical Internet Exchange

StarLight is an experimental optical infrastructure and proving ground for network services optimized for highperformance applications.

Operational since summer 2001, StarLight is perhaps the world's largest 1GigE and 10GigE switch/router exchange for high-performance access to participating networks and is becoming a true optical switching facility for wavelengths.

Abbott Hall, Northwestern University's Chicago downtown campus

US NRN International Peering Locations

NSF Network Types

- NSF describes three classes of Research & Education networks beyond the commodity Internet:
 - **–**Production Networks
 - -Research Networks
 - -Experimental Networks

Production Networks

- High-performance networks, which are always available and dependable.
- These networks reach all researchers.

Research Networks

- Smaller-scale networks for basic scientific and engineering network research.
- Research Networks are not expected to be reliable, nor are they expected to support applications.

Experimental Networks

- High-performance trials of new technologies that support application-dictated development of software toolkits, middleware, computing and networking.
- Provide known and knowable characteristics with deterministic and repeatable behavior on a persistent basis, while encouraging experimentation with innovative concepts.
- Experimental Networks are seen as the *missing link* between Research and Production Networks.

http://www.evl.uic.edu/activity/NSF/index.html http://www.calit2.net/events/2002/nsf/index.html

The Next S-Curves of Exponential Technology Growth

ST¥RLIGHT[™]

StarLight is Home for all Types of Networks

- A Production Network 1GigE and 10GigE exchange
- An Experimental Network optical (lambda) exchange and proving ground for network services optimized for high-performance computing applications
- A Research Network 1GigE and 10GigE MEMSswitched exchange
- A co-location space with 66 racks for networking and computing and data-management equipment
- An OIX with fiber and/or circuits from SBC/Ameritech, Qwest, AT&T, Global Crossing, Looking Glass Networks, Level 3, RCN, T-Systems, *I-WIRE*
- A lambda-switching facility, with links coming from USA, NetherLight, DataTAG, CA*net4, and proposed from UK-Light and APAN forming *TransLight*

Who Needs Experimental Networks? iGrid 2002, September 2002, Amsterdam

- 28 demonstrations from 16 countries: Australia, Canada, CERN, France, Finland, Germany, Greece, Italy, Japan, The Netherlands, Singapore, Spain, Sweden, Taiwan, United Kingdom, United States
- Applications demonstrated: art, bioinformatics, chemistry, cosmology, cultural heritage, education, high-definition media streaming, manufacturing, medicine, neuroscience, physics, tele-science

- Grid technologies demonstrated: Major emphasis on grid middleware, data management grids, data replication grids, visualization grids, data/visualization grids, computational grids, access grids, grid portals
- 25Gb transatlantic bandwidth (100Mb/attendee, 250x iGrid2000!)

Who Needs Experimental Networks? iGrid 2002, September 2002, Amsterdam

A worldwide community of e-scientists, application programmers, networking engineers, electrical/computer engineers, artists and computer scientists working together

Who Needs Experimental Networks?

NSF Major Research Equipment (MRE) and Information Technology Research (ITR) projects

ALMA: Atacama Large Millimeter Array www.alma.nrao.edu

GriPhyN: Grid Physics Network www.griphyn.org

TeraGrid www.teragrid.org

www.neesgrid.org

Network for Earthquake

International Virtual Data Grid Laboratory www.ivdgl.org

GEON: Geosciences Network www.geongrid.org

Particle Physics Data Grid www.ppdg.net

The OptlPuter www.calit2.net/news/ 2002/9-25-optiputer.html

OptIPuter

EarthScope www.earthscope.org

Large Hadron **Collider (LHC)** http://lhc-newomepage. web.cern.ch

NEON: National Ecological Observatory Network www.sdsc.edu/NEON

What is a Lambda?

- A *lambda*, in networking, is a fully dedicated wavelength of light in an optical network, typically used today for 1-10Gbps.
- Lambdas are circuit-based technology, but can carry packet-based information.
- We are now mostly working with 1Gb dedicated layer2 circuits that act like lambdas
- For this discussion, *lambda* means large and desirable units of networking, which is how the applications see them, conceptually offering the promise of end-to-end custom connectivity or allowing sufficiently massive overprovisioning of bandwidth so that the connection is effectively uncongested.

What is a LambdaGrid?

- A grid is a set of networked, middlewareenabled computing resources.
- A LambdaGrid is a grid in which the lambda networks themselves are resources that can be scheduled, like all other computing resources. The ability to schedule and provision lambdas provides deterministic end-to-end network performance for real-time or time-critical applications, which cannot be achieved on today's grids.

TransLight is a Global-Scale Experimental Network (Coming Summer 2003)

- Supports prototypes of the most aggressive e-science applications coming this decade
- Consists of many GigE lambdas among North America, Europe and Asia via StarLight available for scheduling
- Enables researchers to experiment with deterministic provisioning of dedicated circuits, and then compare results with standard production networks
- Experiments include moving large amounts of data, real-time collaboration and visualization, and distributed computing

TransLight Activities

- A TransLight Governance Board to create policy for scheduling circuits; initial members are SURFnet, CANARIE, DataTAG/CERN, StarLight/Euro-Link, with others to be invited soon
- Provide global lambdas for scheduling
- Build more hubs with switches, co-location space and fiber access like StarLight and NetherLight

TransLight Fabric

Red Lines: TransLight Lambda 10Gb Links, Funded

Blue Lines: TransLight Lambda 10Gb Links, Donated

The TransLight Project ~54 Int'l GigE Lambdas in 2003/2004

- 16 Canadian Lambdas from StarLight
 - 8 GigEs Chicago to Eastern Canada and NYC
 - 8 GigEs Chicago to Western Canada and Seattle
- 22 European Lambdas to StarLight
 - 10 GigEs Amsterdam to Chicago
 - 4 GigEs CERN to Chicago
 - 8 GigEs London to Chicago
- 12 European Lambdas to NetherLight
 - 4 GigEs CERN to Amsterdam
 - 2 GigEs Prague to Amsterdam
 - 2 GigEs Stockholm to Amsterdam
 - 8 GigEs London to Amsterdam

And many Metro/Regional/ National Lambdas

TransLight Persistent Experiments

- New network protocols TCP is not usable for long fat applications
- Optical point-to-point connects for instruments
- Circuits are not scalable, but neither are router\$
- Application-centric intelligent signaling and management plane middleware putting intelligence on the edges (not the core)
- Tuning compute, data, visualization, networking using clusters to get orders of magnitude improvement
- Security at 10Gb line speed

Extremely High-Resolution Digital Montage Visualization

- Large digital montage viewer for tiled LCD displays view high-resolution montages from NCMIR, Scripps, USGS.
- Example: In a Homeland Security / Emergency Response Application, USGS has aerial photos of 133 urban areas:
 - 5643 tiles each 5000x5000 pixel
 - resolution ~
 - 375,600x375,600 pixels
 - for each urban area
 - (394GB per area)
 - Total data ~ 51 TB

StarLight as a Research Network Using Optical Switching

- No need to look at every packet when transferring a terabyte of information
 - 1% the cost of routing
 - 10% the cost of switching
 - 64x64 10Gb:
 - \$100,000 O-O-O switched
 - \$1,000,000 O-E-O switched
 - \$10,000,000 O-E-O Routed
- Spend the savings on computing and collaboration systems instead!
- Replaces patch panels; allows rapid reconfiguration of 1 and 10Gb experiments

StarLight as a Research Network Optical Micro-Mirror Switching

StarLight as a Research Network Optical Switches at StarLight and NetherLight

A "groomer" is a box that accepts multiple circuits of varying types (e.g., 1GigE, 10GigE) and aggregates and/or disseminates over the 10Gbps transoceanic link. As the amount of transoceanic connectivity increases, we aim to "bandwidth match" the amount of data being sent and/or received by clusters across continents.

Thanks to...

- StarLight planning, research, collaborations, and outreach efforts are made possible, in major part, by funding from:
 - National Science Foundation (NSF) awards ANI-9980480, ANI-9730202, EIA-9802090, EIA-9871058, ANI-0225642, and EIA-0115809
 - NSF Partnerships for Advanced Computational Infrastructure (PACI) cooperative agreement ACI-9619019 to NCSA
 - State of Illinois I-WIRE Program, and major UIC cost sharing
 - Northwestern University for providing space, \$\$, engineering and management
- NSF/CISE/ANIR and DoE/Argonne National Laboratory for StarLight and I-WIRE network engineering and planning leadership
- NSF/CISE/ACIR and NCSA/SDSC for DTF/TeraGrid/ETF opportunities
- UCAID/Abilene for Internet2 and ITN transit; IU for the GlobalNOC
- Bill St. Arnaud of CANARIE, Kees Neggers of SURFnet, Olivier Martin of CERN Michael McRobbie of IU, and Harvey Newman of CalTech for networking leadership

For More Information

Maxine Brown maxine@uic.edu

www.startap.net/starlight www.startap.net/translight

