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Preamble

§ AIM: This lecture aims to give a general introduction to radio astronomy and 
interferometry, focusing on the issues that you should consider and the differences with 
observations with other telescopes.

§ OUTLINE:
1. The radio sky and historical developments.
2. The response of a dipole antenna.
3. The response of a dish antenna.
4. The response of an interferometer.
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1.1 The radio window

• Radio Astronomy is the study of radiation from celestial sources at frequencies between 
ν ~ 10 MHz to 1 THz (107 Hz to 1012 Hz). 
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1. The radio sky and historical developments



• The observing window is constrained by atmospheric absorption / emission and 
refraction. 

1) Charged particles in the ionosphere reflects radio waves back into space at < 10 
MHz. 
2) Vibrational transitions of molecules have similar energy to infra-red photons and 
absorb the radiation at > 1 GHz (completely by ~300 GHz).
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1.2 The low-frequency cut-off (LOFAR)

• The ionosphere consists of a plasma of charged 
particles (conducting layers). 

• The observing conditions are dependent on the electron 
density, i.e. the solar conditions (space weather), since the 
ionisation is due to the ultra-violet radiation field from the 
Sun, 

O2 + h⌫ ! O
+⇤
2 + e�

O2 + h⌫ ! O
+
+O+ e�
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1.3 Propagation of radio waves through a (cold) conducting medium (LOFAR, e-
MERLIN, EVN) 

• A plasma consists of an ionised gas of ions and free electrons that has no net charge. 
A cold plasma is one where the thermal motions of the electrons is negligible. 

• Important for understanding 
1. the reflection and transmission through our atmosphere; and 
2. the dispersion of radio waves at low frequencies. 

• As we are dealing with the propagation of radio waves through a conducting medium, 
we must start with Maxwell’s equations. 

r⇥ ~B = µ0
~J + µ0✏0

@ ~E

@t

r⇥ ~E = �@ ~B

@t

Current density

where, 

c =
1

p
µ0✏0

Electric field intensity

Conductivity

~J = � ~E

Magnetic induction permittivitypermeability

• First, consider the curl of the B-field in terms of the E-field, and take the conductivity 
into account, 

r⇥ ~B = µ0� ~E + µ0✏0 ~̇E
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• Next we have to take the curl of the E-field and differentiate with respect to time, 

r⇥ (r⇥ ~E) =
d

dt
(r⇥ ~B) = µ0� ~̇E + µ0✏0 ~̈E

r2 ~E = µ0� ~̇E + µ0✏0 ~̈E

r2 ~E � µ0� ~̇E � µ0✏0 ~̈E = 0

• This gives the wave equation for the electric field in a conducting material, which we 
can evaluate by considering a solution given by a harmonic wave of the form,

E(r, t) = E0e
�i(wt�kr)

Ė(r, t) = E0e
�i(wt�kr) ·�i! = �i!E(r, t)

Ë(r, t) = �i!E0e
�i(wt�kr) ·�i! = i2!2E(r, t)

r2E(r, t) = i2k2E(r, t)

giving

i2k2 ~E(r, t)� µ0� ·�i! ~E(r, t)� µ0✏0 · i2!2 ~E(r, t) = 0

�k2 + iµ0�! + µ0✏0!
2 = 0

k2 =
!2

c2
+ i

� !

c2 ✏0
c =

1
p
µ0✏0
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• Free electrons in the plasma are accelerated by the E-field, with an equation of motion,

mev̇ = �e ~E(r, t)

with solution,

v = �i
e

me!
~E(r, t)

• These motions of the charge will result in a current with a density of,

~J(r, t) = �neev = i
nee2

me!
~E(r, t) = � ~E(r, t)

where the conductivity is purely imaginary 

� = i
nee2

me!

• Recall our equation of the wave vector

k2 =
!2

c2
+ i

� !

c2 ✏0
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k2 =
!2

c2
+ i

!

c2✏0
· inee2

me!

=
!2

c2
� nee2

c2✏0me

=
!2

c2

✓
1� nee2

!2✏0me

◆

k2 =
!2

c2

 
1�

!2
p

!2

!

where !p =

s
nee2

✏0me

• The plasma frequency defines the natural resonant frequency of a plasma oscillation 
and is dependent purely on the number density of the free electrons (in free-space).

• Group velocity: the rate that the wave envelop travels through a medium.

vg ⌘ d!

dk

• Phase velocity: the rate that any one frequency component travels through a medium.

vp ⌘ !

k
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• Substituting our equation for the wave vector into the equation for the phase velocity 
gives,

v2p ⌘ !2

k2
=

!2

!2

c2

⇣
1� !2

p

!2

⌘

vp =
cr⇣

1� !2
p

!2

⌘

• Similarly, we can calculate the group velocity as,

vg ⌘ d!

dk
=

1

dk/d! vg = c

r
1�

!2
p

!2
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• Both the group and phase velocities are dependent on frequency, but when ω < ωp, 
then the group velocity is < 0 and waves cannot propagate through the plasma.

• From the definition of the refractive index and taking the phase velocity,

n =
c

v
n =

r
1�

!2
p

!2

Worked example: What is the cut-off frequency for LOFAR observations carried out 
when the electron density is Ne = 2.5 x 105 cm-3 (night time) and Ne = 1.5 x 106 cm-3 (day 
time)?

⌫p[Hz] = 8.97⇥ 10
3

s
2.5⇥ 105

[cm�3]
= 4.5 MHz (night time)

⌫p[Hz] = 8.97⇥ 10
3

s
1.5⇥ 106

[cm�3]
= 11 MHz (day time)

• At frequencies, 
1. ω < ωp: n2 is negative, reflection (ν < 10 MHz), 
2. ω > ωp: n2 is positive, refraction (10 MHz < ν < 10 GHz), 
3. ω ≫ ωp: n2 is unity (ν > 10 GHz).
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• Bad observing conditions • Good observing conditions
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1.3 The high-frequency cut-off: Absorption (e-MERLIN, EVN, NOEMA, ALMA)

• Molecules in the atmosphere can absorb the incoming radiation, but also emit 
radiation (via thermal emission). 

• Mass absorption co-efficient (k): From atomic and molecular physics, define for 
various species, i,

• Optical depth (τ): A measure of the absorption / scattering (attenuation) of 
electromagnetic radiation in a medium (probability of an interaction),

Mass attenuation co-
efficient (cm2 g-1)

Cross-section (cm2) Number density of 
particles (cm-3)

Mixing ratio (= ρi/ρ0)

ki =
� ni

ri ⇢0

Mass density of air (g cm-3)

or, in terms of the linear absorption co-efficient (κ),

where

Mass density of species i (g 
cm-3)

Mass attenuation co-
efficient (cm2 g-1)

linear absorption co-
efficient (cm-1)

⌧i(�, z0) =

Z 1

z0

(�, z) dz

⌧i(�, z0) =

Z 1

z0

ni(z)� dz =

Z 1

z0

ri(z) ⇢0(z) ki(�) dz

(�, z) = ki(�) ⇢i(z)
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• The attenuation of an incident ray of intensity I0, received at altitude z0, summed over all 
absorbing species is,    

Where, for convenience, we consider all species together and define the optical depth 
as a function of zenith angle, τ(z).

• Note that the opacity changes with the path length, and so depends on the airmass 
X(z), which assuming a plane parallel atmosphere,

I(z0) = I0 exp

"
�
X

i

⌧(�, z0)

#
= I0 exp [�⌧(z)]

⌧(z) = ⌧0 ·X(z) X(z) = sec(z)where

Optical depth at Zenith Zenith angle

Worked example: What is the optical depth for sky transparencies of 0.5, 0.1 and 0.01?

Airmass

⌧ = � ln

✓
I(z0)

I0

◆

⌧0.5 = � ln(0.5) = 0.69

⌧0.1 = � ln(0.1) = 2.3

⌧0.01 = � ln(0.01) = 4.6

Rearrange, in terms of τ, and evaluate,
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• The atmosphere is not completely transparent at radio wavelengths, but τ(z) varies with 
frequency ν.

• Zenith opacity is the sum of several 
component opacities at cm λ. 
• Broadband (continuum) opacity: 

dry air. τz ≈ 0.01 and almost 
independent of ν. 

• Molecular absorption: O2 has 
rotational transitions that absorb 
radio waves and are opaque (τz ≫ 
1) at 52 to 60 GHz. 

• Hydrosols: Water droplets (radius ≤ 
0.1 mm) suspended in clouds 
absorb radiation (proportional to 
λ-2). 

• Water vapour: Emission line at ν 
≈ 22.235 GHz is pressure 
broadened to ∆ν ~ 4 GHz width + 
“continuum” absorption from the 
“line-wings” of very strong H2O 
emission at infrared wavelengths 
(proportional to λ-2).
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• The zenith optical depth is dependent on the path length through the material. 
• Higher altitude: Move above the water vapour layer (> 4 km). 
• Drier locations: Move to regions with low water vapour.

at 250 m 

at 4000 m 

(note τ = 2.3 x Attenuation)

total (O2 + H2O)

O2

H2O

Introduction to Radio Astronomy and Interferometry
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1.4 The high-frequency cut-off: Emission (e-MERLIN, EVN, NOEMA, ALMA)

• A partially absorbing atmosphere also emits radio noise that can de-grade ground 
based observations. We can define the total system noise power as an equivalent 
noise temperature,

P =
E

�t
= k T �⌫

in terms of spectral power,

Boltzmann constant = 
1.38 x 10-23  m2 kg s-2 K-1

System temperature 
(Receivers; Sky, Ground; etc)

Spectral power (W Hz-1)

P⌫ = k Tsys

where,

Tsys = Tbg + Tsky + Tspill + Tloss + Tcal + Trx

Noise from Radio 
background (Galaxy, 

CMB, etc)

Noise from atmospheric 
emission

Noise from ground 
emission

Noise from losses at 
receiver

Noise from injected 
noise Noise from the 

receiver 
(Dominates)
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• The contribution from the sky opacity to the sky temperature is,

Optical depth

Atmospheric kinetic 
temperature (≣ 300 K)

Emitted sky 
temperature (K)

Tsky = Tatm [1� exp(�⌧⌫)]

• Don’t want Tsky to dominate our noise budget, need to minimise Tatm and τν  by observing 
in cold and dry locations (winter; high alt), especially at high frequencies. 

Worked example: Using the total opacity data for the Green Bank Telescope (West 
Virginia; USA; 2800 m) and Tatm = 288 K, what is Tsky at ν = 5 GHz, 22 GHz and 115 GHz?  

How does this compare with the typical receiver temperature, Trx ~ 20 K?

Key concept: The partially transparent atmosphere allows radio waves to be detected 
from ground-based telescopes, but also attenuates the signal due to absorption / 
scattering, and also adds noise to the measured signal.

Tsky = 288 [1� exp(�0.007)] ⇠ 2 K
Tsky = 288 [1� exp(�0.15)] ⇠ 40 K
Tsky = 288 [1� exp(�0.8)] ⇠ 160 K

• At ν = 5 GHz,     τz ~ 0.007,                                                                          (Good) 
• At ν = 22 GHz,   τz ~ 0.15,                                                                            (Bad) 
• At ν = 115 GHz, τz ~ 0.8,                                                                              (Bad)

Introduction to Radio Astronomy and Interferometry
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1.5 Early Radio Astronomy

• The first detection of radiation at radio wavelengths was not made until 1932 due to, 
i) limitations of technology (our eyes), but then the communication era started, 
ii) the expectation that celestial objects would be too faint.

B⌫(T ) =
2h⌫3

c2
1

exp h⌫
kT � 1

Spectral brightness 
(W m-2 Hz-1 sr-1)

Planck constant = 6.626 x 10-34 m2 kg s-1

Speed of light constant 
= 3 x 108 m s-1 Absolute 

temperature (K)

• The spectral brightness Bν  at frequency 
ν of a blackbody object (stars) is given 
by Planck’s law.

• In the low frequency radio limit, hν / kT 
≪ 1.

B⌫(T ) ⇡
2h⌫3

c2
kT

h⌫
=

2kT⌫2

c2
=

2kT

�2
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• Long distance communication developed by Marconi 
& Ferdinand Braun - Nobel Prize 1909 

Evolution of frequency over the years 

• pre-1920: <100 kHz. 
• ca. 1920: shift to 1.5 MHz. 
• post-1920: 10s of MHz (more voice channels, less 

effected by the ionosphere and thunderstorms). 

• Research labs sprung up in early-1900s

19Introduction to Radio Astronomy and Interferometry



• Karl Jansky (1933, published) discovered a radio signal at 20.5 MHz that varied steady 
every 23 hours and 56 minutes (Sidereal day). 

“The data give for the co-ordinates of the region from which the disturbance comes, a right 
ascension of 18 hours and declination -10 degrees.” He had detected the Galactic Centre.
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• Grote Reber (1937-39), using his own 10 m 
telescope, made no detection at 3300 and 910 MHz, 
ruling out a Planck spectrum (Bv propto ν2). 

• Detection made at 150 MHz, confirming Jansky’s 
result and finding the spectrum must be non-thermal.
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2.1 Dipole antenna fundamentals

• Antenna: A device for converting electromagnetic radiation in space into electrical 
currents (transmitting and receiving).

• Consider a simple thin-wire transition line 
antenna of length λ. The current along 
both wires is out of phase.

• By bending the edges of the 
transmission line (l < λ / 10), the current 
is now is phase, but there is a build up of 
charge at the ends (dipole). 

• When the length is λ / 2 (or multiple), the 
current is a maximum at the antenna 
feed.

Introduction to Radio Astronomy and Interferometry

2. The response of a dipole antenna (LOFAR)



Consider a Hertzian small (l ≪ λ) dipole transmitter 
(same as for a receiving dipole, but easier to 
understand). 

Two co-linear conductors (e.g. wires, conducting 
rods), driven by a current source at the gap. The 
driving current I is a time varying sinusoidally with 
angular frequency,

! = 2⇡⌫

I = I0 cos(!t) = I0e
�i!t

(Only consider the real part of                                             )e�i!t = cos(!t) + i sin(!t)

The time varying current density is defined as, J =
I

q
=

I0
q
e�i!t

J = 0

inside the dipole,

outside the dipole.and
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• We want to measure the power radiated from such an antenna, so we calculate, 
1. The electromagnetic vector potential A,
2. The magnetic field induction B, and hence the magnetic field intensity H, 
3. The electric field intensity E, 
4. The Poynting flux S

i.e., the integral of the current density over the volume of the dipole (dV = q dz).

The current runs from z = −Δl / 2 and z = +Δl / 2 along the z-axis, thus
~Jx = 0 ~Ax = 0

~Ay = 0~Jy = 0

and

and
~Jz =

I

q
e�i!tonly is non-zero.

34

~B = r⇥ ~A

where,

~A(x) =
µ0

4⇡

Z Z Z
~J(x)

eik|x�x0|

|x� x0| d
3x0

• We want to measure the power radiated from such an antenna, so we calculate, 
1. The electromagnetic vector potential A,
2. The magnetic field induction B, and hence the magnetic field intensity H, 
3. The electric field intensity E, 
4. The Poynting flux S 

1. The electromagnetic vector potential 

The induced magnetic field B is related to the vector potential by,
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Therefore, our vector potential becomes,

=
µ0

4⇡

e�i(!t�kr)

r

Z +�l/2

��l/2
I(z) dz

~Az =
µ0

4⇡

Z +�l/2

��l/2

I(z)

q
e�i!t e

ikr

r
q dz

If the current is constant,
Z +�l/2

��l/2
I(z) dz = I [z]+�l/2

��l/2 = I�l

2. The magnetic induction is related to the magnetic vector potential via,

~B = r⇥ ~A

35

Therefore, our vector potential for a constant current is,

~Az =
µ0

4⇡

e�i(!t�kr)

r
I�l
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We can de-compose the curl of A into three orthogonal cylindrical co-ordinates (ρ, ψ, 
z), using standard definitions,

(r⇥ ~A)⇢ =
1

⇢

@Az

@ 
� @A 

@z

(r⇥ ~A) =
@A⇢
@z

� @Az

@⇢

(r⇥ ~A)z =
1

⇢

✓
@(⇢A )

@⇢
� @A⇢

@ 

◆

As Aρ = Aψ = 0, the B-field must be perpendicular to the 
vector potential (Az).

For simplicity lets evaluate, 

B = (r⇥ ~A) =
@A⇢
@z

� @Az

@⇢
= �@Az

@⇢
= �@Az

@r

@r

@⇢

In the cylindrical system,

r2 = ⇢2 + z2 r = (⇢2 + z2)1/2

@r

@⇢
=

1

2
(⇢2 + z2)�1/2 2⇢ =

⇢

r
= sin ✓
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Next,
@Az

@r
=

µ0

4⇡
I�l e�i!t @

@r


eikr

r

�

We solve this using the quotient rule,

u(r)

v(r)

�
=

u0(r)v(r)� v0(r)u(r)

v(r)2
u(r) = eikr

u0(r) = ik eikr

v(r) = r

v0(r) = 1

@

@r


eikr

r

�
=

ik eikr · r � 1 · eikr

r2
=

(ikr � 1)eikr

r2

Therefore our B-field in the ψ direction becomes,

Since,
k =

2⇡

�

B = �i µ0
I�l

2�

sin ✓

r

✓
1� 1

ikr

◆
e�i(!t�kr)

B = �@Az

@r

@r

@⇢
= �i k

µ0

4⇡
I�l

sin ✓

r

✓
1� 1

ikr

◆
e�i(!t�kr)
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Again, the magnetic field intensity is perpendicular to the vector potential, that is, 
perpendicular to the element. 

3. Now, let’s consider the electric field intensity. From Maxwell’s equations,

r⇥ ~H = ~J + ✏0
@ ~E

@t

which, because we are away from the current element (J = 0), simplifies to,

r⇥ ~H = ✏0
@ ~E

@t

We are dealing with harmonic waves of the form,

E(r, t) = E0e
�i(wt�kr)

Ė(r, t) = E0e
�i(wt�kr) ·�i! = �i!E(r, t)

Therefore, 
E = � 1

i!✏0
r⇥ ~H

38

which, from the materials equations, gives for the magnetic field intensity,

H = �i
I�l

2�

sin ✓

r

✓
1� 1

ikr

◆
e
�i(!t�kr)

B = µ0H
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To evaluate E, we must determine the curl of H, but as in the case of the B-field, only 
the Hψ  terms have non-zero entries. 

From spherical co-ordinates, the only relevant term of the curl of H is, 

(r⇥H)✓ = �1

r

@(rH )

@r

Note also, that the resulting E-field is in terms of θ and is perpendicular to the H-field, 
as expected for electromagnetic plane waves.

rH = �i
I�l

2�
sin ✓

✓
1� 1

ikr

◆
e
�i(!t�kr)

= �i
I�l

2�
sin ✓ e�i!t

✓
eikr � eikr

ikr

◆

@(rH )

@r
= �i

I�l

2�
sin ✓ e�i!t @

@r

✓
e
ikr � e

ikr

ikr

◆

We solve this using the quotient rule,

u(r)

v(r)

�
=

u0(r)v(r)� v0(r)u(r)

v(r)2
u(r) = eikr

u0(r) = ik eikr
v(r) = ikr

v0(r) = ik
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@

@r

✓
eikr � eikr

ikr

◆
= ik eikr �

✓
ik eikr · ikr � ik · eikr

(ikr)2

◆

= ik eikr
✓
1� 1

ikr
+

1

(ikr)2

◆

so,

@(rH )

@r
= �i

I�l

2�
sin ✓ e�i!t

ik e
ikr

✓
1� 1

ikr
+

1

(ikr)2

◆

�1

r

@(rH )

@r
= i

2
k
I�l

2�

sin ✓

r

✓
1� 1

ikr
+

1

(ikr)2

◆
e
�i(!t�kr)

E✓ = �i
1

c ✏0

I�l

2�

sin ✓

r

✓
1� 1

ikr
+

1

(ikr)2

◆
e�i(!t�kr)

we find,

and,

k =
!

c

40

So the E-field can also be expressed as, c =
1

p
µ0✏0

E✓ = �i

r
µ0

✏0

I�l

2�

sin ✓

r

✓
1� 1

ikr
+

1

(ikr)2

◆
e�i(!t�kr)
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So, our electric and magnetic fields are,

H = �i
I�l

2�

sin ✓

r

✓
1� 1

ikr

◆
e
�i(!t�kr)

E✓ = �i

r
µ0

✏0

I�l

2�

sin ✓

r

✓
1� 1

ikr
+

1

(ikr)2

◆
e�i(!t�kr)

There are several factors that depend on the power of the distance r from the 
antenna,
1. 1/r : The radiation field (dominates at large r ≫ Δl). 
2. 1/r2: The induction field 
3. 1/r3: The static field (of the E-field).

To calculate the near-field properties, all factors must be evaluated, but in the far-
field, where we measure the radiation from the antennas, the 1/r term dominates.

E✓ = �i

r
µ0

✏0

I�l

2�

sin ✓

r
e�i(!t�kr)

H = �i
I�l

2�

sin ✓

r
e
�i(!t�kr)
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4. We can now determine the directional power per unit area in the far-field by 
calculating the time-averaged Poynting vector.

h~Si = 1

µ0
|Re ~E ⇥ ~B

⇤| = |Re ~E ⇥ ~H
⇤|

=

r
µ0

✏0

✓
I�l

2�

◆2 sin2 ✓

r2

✓
1

2

◆ ⌦
cos2(!t)

↵
=

1

2
where

The radiation has doughnut shaped 
power pattern (angular distribution 
of radiated power) due to 
dependence on sin2 θ.
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2.2 Response of the LOFAR antenna 
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2.3 Power gain 

G(θ, φ) is the power transmitted per unit solid angle in direction (θ, φ) divided by the 
power transmitted per unit solid angle from an isotropic antenna with the same total 
power. 

• The power or gain are often expressed in logarithmic units of decibels (dB):
G(dB) ⌘ 10⇥ log10(G)

Worked example: What is the maximum and half power of a normalised power pattern in 
decibels?

Maximum power of a normalised power pattern is Pn = 1
Pn(1) = 10⇥ log10(1) = 0 dB

Half power of a normalised power pattern is Pn = 0.5
Pn(0.5) = 10⇥ log10(0.5) = �3 dB
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Therefore, for an isotropic lossless antenna,
Z

sphere
Gd⌦ =

Z

sphere
d⌦ = 4⇡ G = 1and

• Lossless antennas may radiate with different directional patterns, but they cannot alter 
the total amount of power radiated —> the gain of a lossless antenna depends only on 
the angular distribution of radiation from that antenna.

�⌦ ⇡ 4⇡

Gmax

Key Concept: Higher the gain, the narrower the 
radiation pattern (directivity).

For a lossless isotropic antenna, conservation of energy requires the directive gain 
averaged over all directions be,

hGi ⌘
R
sphere Gd⌦
R
sphere d⌦

= 1
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2.4 Effective collecting area (what is the collecting area of a dipole?)

• The receiving counterpart of the transmitting gain is the effective collecting area, 
defined as the product of the geometric area and the incident spectral power per unit 
area (Sν, the flux-density),

Ae ⌘
P⌫

S(matched)

Any antenna with a single output measures only one polarisation. Electric fields 
perpendicular to the antenna wires does not produce currents in the antenna. A pair of 
crossed dipoles are need to collect the power from both polarisations.

• For an unpolarised source (e.g. like a black body),

S(matched) =
S

2

Spectral power 
(W Hz-1)

Flux-density (W 
m-2 Hz-1)

Effective area 
(m2)
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• The average collecting area is defined as

hAei =
R
4⇡ Ae(✓,�)d⌦R

4⇡ d⌦

The effective collecting area is independent of the antenna environment, so this relation 
is valid for any type of radiation (not just black body radiation).

Key concept: Any antenna has the same average collecting area 
⟨Ae⟩ that depends only on the wavelength of the radiation. hAei =

�2

4⇡

P⌫ = AeS(matched) = Ae
S

2
=

Z

4⇡
Ae(✓,�)

B⌫

2
d⌦ = kT

(must equal the Nyqvist spectral power). From the R-J equation,

B⌫ =
2kT

�2
P⌫ =

2kT

2�2

Z

4⇡
Ae(✓,�)d⌦ = kT

Z

4⇡
Ae(✓,�)d⌦ = �2

• The total spectral power from all directions collected by the antenna is,
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The Low Frequency Array (LOFAR)
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The Low Frequency Array (LOFAR)



51

3. The response of a dish antenna  (e-MERLIN, EVN, NOEMA, 
ALMA)

3.1 Reflector antennas basics

• Paraboloidal reflectors: To be useful at short wavelengths an antenna must have a 
collecting area > λ2 / (4π) of an isotropic antenna and provide a much larger angular 
resolution (more directive) than a short dipole. 

• As arrays of dipole are impractical at λ < 1 m (small effective collecting area), most 
radio telescopes use large reflectors to collect and focus power onto simple feed 
antennas (waveguide horns, dipoles) connected to receivers.

Worked example: What is the geometric area of the 
Dwingeloo telescope at 10 GHz?

Ag = ⇡

✓
D

2

◆2

= ⇡

✓
25

2

◆2

= 491 m2

This is about 5 x 106 times larger than the effective area of a 
short dipole.
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3.2 The aperture illumination pattern

• Aperture pattern: An aperture is the opening which all rays pass. For a paraboloidal 
reflector of diameter D, the aperture is a plane circle with diameter D.

• Determining the power gain as a function of position for 
a circular aperture is complex, so we will make a few 
simplifying assumptions. 

1. Consider a 1-D aperture of width D and calculate the 
electric field pattern at a distant point (R ≫ Rff).

The radiation between two points separated by x on 
the aperture, will travel an extra distance

�r = x sin ✓

Consider a transmitting system with a time varying 
current density J, that also depends on position,

�D/2  x  D/2for

otherwise

J(x, t) = J(x)e�i!t

J(x, t) = 0
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As with the short dipole, we can determine the exact electric-field, via the vector 
potential and Maxwell’s equations, 

At large distances compared with the aperture size (r ≫ D) we can make the Fraunhofer 
approximation,

r ⇡ R+ x sin ✓
1

r
⇡ 1

R
and (almost constant over the aperture)

~A(x) =
µ0

4⇡

Z Z Z
~J(x)

eik|x�x0|

|x� x0| d
3x0 ~E = � 1

i!✏0
r⇥ (r⇥ ~A)

The integral over the current density is extremely difficult, except for the simplest cases,  

So for simplicity, we use Huygen’s principle, that the power measured from our distance 
source is the sum of each element, such that we can define the current grading as,

g(x0) =

Z N

0
J(x0)eik x0 sin ✓ dx0 (over N elements).

Therefore, we can express our electric-field in the far-field as,

(where, K0 is a constant).dEz(✓) = K0
g(x)

r
e�i!t dx = K0

g(x)

r
e�i2⇡r/� dx
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Expressed in a general form (normalised and in units of wavelength) for a receiving 
antenna, where the electric field pattern is f(l) and the electric field illuminating the 
aperture is g(u),

f(l) =

Z

aperture
g(u)e�i2⇡ludu

Key concept: In the far-field, the electric field pattern is the Fourier transform of the 
electric field illuminating the aperture.

Therefore,

K1 = K0
exp(�i2⇡R/�)

R
wheredEz(✓) = K1 g(x) e

�i2⇡ x sin ✓/� dx

The electric field over the full aperture is,

Ez(✓) = K1

Z +D/2

�D/2
g(x) e�i2⇡ x sin ✓/� dx

Lets introduce a change of variable l = sin θ and normalised length u = x / λ. 

Ez(l) = K1�

Z +D/2

�D/2
g(u) e�i2⇡lu du
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• The radiated power as a function 
of position

• For a one-dimensional uniformly 
illuminated aperture, ✓HPBW ⇡ 0.89

�

D

• The central peak of the power pattern between the first minima is called the main beam 
(typically defined by the half-power angular size).  

• The smaller secondary peaks are called sidelobes.

Pn(l) = sinc2
✓
✓D

�

◆
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Worked example: What is the spatial resolution (in arcseconds) of the D = 500 m FAST 
radio telescope, operating at ν = 5 GHz?

� =
c

⌫
=

3⇥ 10
8
m

5⇥ 109 Hz
= 0.06 m

500-metre Aperture Spherical Telescope Effelsberg Radio telescope: 100 m

✓resolution ⇠ 0.06 m

500 m
⇥ 180

⇡
⇥ 3600 = 25 arcsec



• We can overcome the resolution problem by correlating the signals from different 
telescopes to effectively increase D to an arbitrarily large value by increasing the 
distance between the telescopes, called the baseline length B. Now, θ ~ λ / B. 

1. High angular resolution (down to < 1 mas; best in astronomy), e.g. EVN, EHT 

2. Better sensitivity (Area = NπD2 / 4, N is number of telescopes), e.g. LOFAR, e-
MERLIN, NOEMA, ALMA.

4.1 Interferometers

58Introduction to Radio Astronomy and Interferometry

4. The response of an interferometer

Individual telescope ✓res ⇠
�

D

Combined telescopes ✓res ⇠
�

B



Two element interferometer: Two identical 
telescopes observe the electric field of some 
distant source (c.f. Young’s double slit). 

The radiation to antenna 1 travels an extra 
distance ƀ ⋅ ŝ = b cos θ, where ƀ is the vector 
baseline length and ŝ a unit vector in the 
direction of the source. 

This can be expressed as a geometric delay 
due to the projected position of the source, 
relative to the baseline of the antennas.

⌧g = ~b · ŝ/c

4.2 A simple two-element interferometer

V1 = V cos[!(t� ⌧g)]

For a quasi-monochromatic interferometer (responds to a narrow frequency range ν = 2π / 
λ), the output voltages over time t from the two antennas are,  

and

The correlator multiples the voltages from the two antennas together to give,

V2 = V cos(!t)

59Introduction to Radio Astronomy and Interferometry



and then a time average [Δt ≫ (2ω)-1] to remove the high frequency component to give,

R = hV1V2i =
✓
V 2

2

◆
cos(!⌧g)

V1V2 = V 2 cos[!(t� ⌧g)] cos(!t) =

✓
V 2

2

◆
[cos[2!t� !⌧g] + cos(!⌧g)]

60

Po
w

er

Angle

a. The power pattern of a filled aperture of 
diameter D with a constant illumination 
pattern. The FWHM of the main beam is ~ 
λ / D. 

b. The power pattern of a two-element 
interferometer with 2 antennas of diameter 
d and separation D. The side-lobe level is 
constant and the power is centred on 0. 
The FWHM of the fringes is ~ λ / D. 

c. The power pattern of a two-element 
interferometer with 2 antennas of diameter 
d and separation 2D. The FWHM of the 
fringes is now ~ λ / 2D.
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For sources much larger than adjacent positive and negative fringes, the source cancels 
itself out and the interferometer response does not vary.

Each set of antennas correspond to a finite set of angular frequencies centred on (b sin 
θ / λ), small b is needed for extended objects and large b is needed for compact objects.
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4.3 Extended sources

A spatially incoherent extended source with sky brightness Iv(ŝ) near frequency v = ω / 2π 
can be considered as the sum of independent point sources. The response of an 
interferometer is then,

Rc =

Z
I⌫(ŝ) cos(2⇡⌫~b · ŝ/c)d⌦ =

Z
I⌫(ŝ) cos(2⇡~b · ŝ/�)d⌦

Note that, the output from the correlator is a complex quantity and so far we have only 
considered the (real) cosine part of the signal. The (imaginary) sine component is found 
by inserting a 900  phase delay (t - τg - π/2).

Rs =

Z
I⌫(ŝ) sin(2⇡~b · ŝ/�)d⌦

A = (R2
c +R2

s)
1/2

It is convenient to express this in terms of complex exponentials,

ei� = cos�+ i sin�

Allowing us to define the complex visibility V = Rc - iRs as,

V = Ae�i�

where the amplitude is,                                and the phase is, � = tan�1(Rs/Rc)
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So, we can write the response of a two element interferometer to an extended source with 
brightness distribution Iv(ŝ) as,

V⌫ =

Z
I⌫(ŝ) exp(�i2⇡~b · ŝ/�)d⌦

4.4 General response of an interferometer

First, we define our co-ordinate systems.
~b

�
= (u, v, w)

East-West

North-South

Up-Down

• baseline

• source ŝ = (l,m,
p
1� l2 �m2)

East-West

North-South

Up-Down

• the dot product
~b

�
· ŝ = ul + vm+ w

p
1� l2 �m2

n = cos ✓ =
p

1� l2 �m2

d⌦ =
dldm

(1� l2 �m2)1/2

63Introduction to Radio Astronomy and Interferometry



We can then describe the response of an interferometer to any position in the sky as,

V⌫(u, v, w) =

Z Z
I⌫(l,m)

(1� l2 �m2)1/2
exp[�i2⇡(ul + vm+ wn)]dldm

Key Concept: The response of an interferometer is the (inverse) Fourier transform of 
the (apparent) sky brightness distribution.

• Worked example: Here is the surface 
brightness distribution of Mars, as 
seen at 3.6 cm.  

• An interferometer will see the Fourier 
transform of this surface brightness 
distribution.
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• Incomplete measurement of the Fourier plane results in significant structure in the point 
spread function response of the interferometer.

• Two antennas

• Three antennas

• Four antennas

Introduction to Radio Astronomy and Interferometry

4.5 The synthesised beam (aka. point spread function, dirty beam)
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Worked example: The combined 24 tiles of a 
LOFAR High Band Antenna station (120-250 MHz) 
arranged in a regular grid.
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4.6 Visibility Function

Visibility: The data point that each baseline measures is called a visibility (V). Recall, that,

V = Ae�i� where the amplitude and phase are, A = (R2
c +R2

s)
1/2 � = tan�1(Rs/Rc)

Each visibility samples a discrete point in the Fourier plane, giving information about the 
amount of power on some projected angular size on the sky.

Fourier PlaneFourier Transform

u

v

True uv-plane

0,0

u

v

uv sampling

◉
◉

◉ ◉

◉

◉

u

v

◉
◉

◉ ◉

◉

◉

Sampled uv-plane

☆
☆
☆

☆
☆
☆☆

Sky Plane
Apparent Sky

l

m

A

B
C

Antenna positions

☆
☆
☆

☆
☆
☆
☆

Apparent Sky

l

m☆
☆
☆

☆
☆
☆☆

Deconvolved Sky

l

m

Key concept: To make images of the sky that are closest to the true surface brightness 
distribution we need a completely (well) sampled uv-plane.
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4.7 The delay beam

Recall that the simple form of the response of an interferometer to a quasi-monochromatic 
wave is,

V⌫ =

Z
I⌫(ŝ) exp(�i2⇡~b · ŝ/�)d⌦

Lets now consider what happens when we increase the integration time and the 
bandwidth of our observation (which we need to increase the signal to noise ratio and 
sampling of the uv-plane — soon see that σ proportional to (Δν * τ)-1/2).

For a constant source brightness (doesn’t change) over a small bandwidth Δν centred on 
frequency νc, we can write the response as,

V =

Z "
(�⌫)�1

Z vc+�⌫/2

vc��⌫/2
I⌫(ŝ) exp(�i2⇡⌫⌧g)d⌫

#
d⌦ ⌧g = ~b · ŝ/c

The integral inside the square brackets is just the Fourier transform of a rectangle 
function,

V =

Z
I⌫(ŝ)sinc(�⌫⌧g) exp(�i2⇡⌫c⌧g)d⌦

That is, for a finite bandwidth and delay the fringe amplitude is attenuated by a factor 
sinc(Δντ) - this is called the delay beam.
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We now have three different beams to consider: 
1. Primary beam: Due to the power pattern of the individual antennas of the baseline. 
2. Synthesised beam: Due to the sinusoidal response of the two elements of the 

baseline. 
3. Delay beam: Due to the attenuation produced by the finite bandwidth of the 

observation.

Synthesised
beam
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5. Summary


