

WORKSHOP 2020

2-6 November 2020

Future of VLBI

Cristina García Miró

CASA-VLBI Workshop 2-6 November 2020

Future of VLBI

Cristina García Miró SKA-VLBI scientist - JIVE

Future of VLBI

- > What we get from VLBI right now
- > Where we are heading to...
- > The future of VLBI in the SKA era
- ➢ Key Science Projects with SKA-VLBI

2020 November

7

What we get from VLBI right now?

Credit: A. Lobanov

- **Angular resolution:** ~10-30 μas (RadioAstron @22GHz, EHT @230GHz)
- > **Dynamic range:** ~100:1
- Spatial dynamic range: ~1000:1 (EVN+e-MERLIN), limited by uvcoverage
- > **Positional accuracy:** ~100 μ as (absolute), ~50 μ as (relative)
- > **Field of View:** from arcsec to 10's arcmin

What we get from VLBI right now?

Credit: A. Lobanov

- **Angular resolution:** ~10-30 μas (RadioAstron @22GHz, EHT @230GHz)
- > **Dynamic range:** ~100:1
- Spatial dynamic range: ~1000:1 (EVN+e-MERLIN), limited by uvcoverage
- **Positional accuracy:** ~100 μ as (absolute), ~50 μ as (relative)
- Field of View: from arcsec to 10's arcmin

PLENTY OF SCIENCE BEING ADDRESSED!!!

9

BUT do we need more?

2020 November

BUT do we need more?

VLBI20-30: a scientific roadmap for the next decade

The future of the European VLBI Network

Editors: Tiziana Venturi, Zsolt Paragi & Michael Lindqvist

https://arxiv.org/ftp/arxiv/papers/2007/2007.02347.pdf

Image by Paul Boven (boven@jive.eu). Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov)

- EU JUMPING JIVE project deliverable
- Role of EVN/VLBI in future astronomy landscape
- ~200 pages in 7 chapters, 80 authors, and 8 key science goals for VLBI in the next decade

11

Endorsed by the EVN Consortium Board of Directors

BUT do we need more?

EVN/VLBI 8 key science goals:

1IVE

- What is the nature of dark matter and dark energy?
- When and how did the first black holes formed?
- How do relativistic jets form? What is their impact on the host galaxy?
- What is the physics of explosions following gravitational wave events?
- What are the elusive fast radio bursts?
- Are we alone?
- How was the Milky Way born?
- How do stars form? How do they impact the environment at their death?

AND...

- Technical priorities for the next decade
- > Synergies

CASA-VLBI Worksh__

ERIC

2020 November

12

How do we get more?

- > Ultra-precise relative astrometry
- > Extreme angular resolutions: Space-VLBI
- > Wide-field imaging
- > Imaging at very low frequencies
- Imaging with higher fidelity and sensitivity

Credit: Rioja & Dodson 2020

High-mass star forming regions parallaxes with VLBI observations of methanol masers

Apparent proper motion of extragalactic objects due to secular aberration drift $\sim 5\mu$ as/yr

- Precise positions, distances and motions -> VLBI provides highest accuracy and precision
- Goal: ultra-precise astrometry (~µas = x10 better) for large and complete surveys with next generation instruments – SKA, ngVLA
- Astrometry calibration: Special observational and analytical techniques that preserve the astrometric information (S selfcal): remove delay contributions from instrumental and atmospheric propagation effects → reach the interferometer thermal noise limit:

 $\Delta_{\text{pos}} \alpha \text{ FWHM}_{\text{beam}}/\text{SNR}_{\text{ph}}$

Standard phase calibration techniques for **imaging** faint or extended targets

JIVE

2020 November

2.2 deg

Credit: Rioja & Dodson 2020 Images credit: Y. K. Choi

> Standard phase calibration techniques:

Dual-beam phase referencing (@VERA)

 $t_{sw} = 0$

In-beam phase referencing: lower freq

Advanced astrometric calibration methods: troposphere (Geoblocks & differential phase delay) and ionosphere (group delay correction, phase fitting & ICE-blocks)

Credit: Rioja & Dodson 2020 Images credit: Y. K. Choi

> Next generation astrometric calibration techniques:

Source Frequency Phase referencing (SFPR): Frequency phase transfer

requency phase transfer mm-VLBI astrometry: coherence times ~h @130GHz Simultaneous freqs @KVN

Multi-Frequency Phase referencing (MFPR) Frequency agility @VLBA + ICE-blocks between 1.3-22GHz

MultiView and in-beam MultiView: For low and high frequencies Multi-beam (minimum 3 cal)

 \rightarrow 10 µas for high and low frequencies (DR ~100:1)

Credit: Rioja & Dodson 2020 Images credit: Y. K. Choi

> Next generation astrometric calibration techniques:

Source Frequency Phase referencing (SFPR): Frequency phase transfer mm-VLBI astrometry: coherence times ~h @130GHz Simultaneous freqs @KVN

vmany deg

MultiView and in-beam MultiView: For low and high frequencies Multi-beam (minimum 3 cal)

\rightarrow 10 µas for high and low frequencies (DR ~100:1)

Next generation instruments (DR 1000:1, wide bandwidths, large FoV – PAF in single dish & multiple tied-array beams in antenna arrays)

 \rightarrow Reach thermal limit: ultra-precise astrometry > 6GHz (1 µas) and enable precise astrometry for much lower frequencies

Extreme angular resolutions: space mm-VLBI

THEZA space-mm VLBI concept (Gurvits+ 2019).

Figure credits: BH simulations – Monika Mościbrodzka+ 2014 & Freek Roelofs. Beabudai Design.

- > Space-borne radio interferometer freq \geq 300GHz
- Ultra-sharp angular resolution down to µas and sub-µas
- ~orders of magnitude improvement in resolution and dynamic range
- Breakthrough in high-resolution studies with high quality imaging: to directly image the event horizon in supermassive black holes, physics of jets at launching sites, binary AGNs, time and X-ray domain synergies, megamasers, protoplanetary disks, exoplanets and SETI.

2020 November

Wide-field VLBI imaging

Sensitivity map of VLBA-COSMOS project @1.4GHz 2 deg², Herrera Ruiz+ 2017

GOODS-N field, EVN @1.6GHz 160 arcmin² 699 phase centres, Radcliffe+ 2018

2020 November

> VLBI as a survey instrument

- **FoV:** up to ten's arcmin (~30k x 30k images)
- Software correlators not limited by spectral and temporal resolution (reduce time and bandwidth smearing) & allow for correlation with multiple phase centres
- ➤ Wide-field advanced calibration techniques: a combination of in-beam phase referencing and Multi-Source Self-Calibration (MSSC) and primary beam corrections → µJy regime
- Application to multi-beam telescopes with multiple phase-centres (tied-array beams on targeted sources) and single dish antennas with PAFs.
- Application to direction-dependent calibration (atmospheric inhomogeneities and primary beam variations across FoV) defining isoplanatic facets.

Wide-field VLBI imaging

- Multi-scale cleaning (Cornwell 2008, Rich+ 2008): complex and extended structure (delta + gaussian functions with scale determined every minor iteration) vs. compressed sensing (for accurate models, e.g. EHT)
- w-projection (Cornwell+ 2008): spherical geometry of large arrays and FoV, PSF changes over the image (Cotton-Schwab algorithm)
- > Automatic scale-dependent masking: diffuse structures
- > Multi-frequency deconvolution: takes spectral variation into account during deconvolution
- Image Domain Gridding (IDG) + correction of DD effects (a-term), 30k x 30k images
- > Parallel cleaning larger images subdivided and cleaned independently

→ WSClean (Offringa+ 2014): w-stacking clean

20

➢ Direction-Dependent effects mainly due to ionosphere at lower freqs
→ affects position (shifts), and brightness (defocusing), with significant temporal fluctuations (can also affect polarization angle)

Credit: Rioja 2018

2020 November

▶ Direction-Dependent effects mainly due to ionosphere at lower freqs
→ affects position (shifts), and brightness (defocusing), with

- LEAP: real-time phase calibration in visibility domain, using frequency smearing as an efficient directional filter, better performance for longer baselines, no need an sky model
- Corrects for both shift and defocusing

JIVE

2020

- Applicable to **SKA1-LOW tied-array real-time beamforming** (pulsars + VLBI beams)
- ▷ LEAP + WSCLean → wide FoV with DDE corrected images

Other solutions for DDE's:

- Image in small "facets" where DDE's are constant: LOFAR facet calibration (van Weeren+ 2016)
- Probabilistic model for inferring ionospheric phase screens: Albert+ 2020, 2019

LOFAR facet calibration: each facet

DDE in regions far from calibrators improved with TEC screens -top row-(Albert+ 2019, 2020)

self-calibrated independently, isoplanatic, high resolution + dynamic 2020 range (van Weeren+ 2016)

Other solutions for DDE's:

JIVE

- Image in small "facets" where DDE's are constant: LOFAR facet calibration (van Weeren+ 2016)
- Probabilistic model for inferring ionospheric phase screens: Albert+ 2020, 2019

Other solutions for DDE's:

JIVE

- Image in small "facets" where DDE's are constant: LOFAR facet calibration (van Weeren+ 2016)
- Probabilistic model for inferring ionospheric phase screens: Albert+ 2020, 2019

Credit: Venturi+ 2020

Technical enhancements

- Broadband receivers ~4-8GHz: improve sensitivity + instantaneous coverage + improve observation efficiency + good polarisation response (e.g. BrandEVN)
- > Increase data rates x4: data storage and connectivity, data correlation
- Extend the frequency coverage to higher (e.g. triple band receivers) and lower frequencies (<1GHz), increase number of antennas with these frequencies</p>
- New additions to the networks: uv-coverage improvement, specially in the southern direction for SKA synergies (more on this in a sec...)
- > Extend FoV (e.g. PAFs) and align with "survey-modes" in other astronomical facilities
- Enhance software correlator to cope with previous upgrades, telescopes with multiple beams (e.g. SKA, PAFs), new observing modes (e.g. fast transients and pulsar processing modes)...

Image by Paul Boven (boven@jive.eu). Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov).

2020 November

Credit: Conway, 2008

EVN + e-MERLIN baselines: excellent spatial dynamic range 8000km to 6km i.e >1000:1

- > with many times VLA sensitivity
- Global VLBI promotes as VLA-like coverage
- + Multi-Frequency Synthesis (MFS) basically complete uv coverage!

uv-coverage of **EVN and** *e*-**MERLIN** with 18 stations total. Single frequency and 2 Gbps (256 MHz or 5% b/w)

Global VLBI *uv*-coverage with 30 stations world-wide. Single frequency and 2 Gbps (256 MHz or 5% b/w)

2020 November

Image by Paul Boven (boven@jive.eu). Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov).

2020 November

The African VLBI Network

2020 November

The African VLBI Network

2020 November

Credit: Phillips 2019

Global VLBI: LBA + EVN + EAVN + AVN (Ghana) + MeerKAT

2020 November

VLBI sustainable development

VLBI sustainable development?

CASA-VLBI Workshop

2020 November

JIVE

SKA & VLBI sustainable development

www.skatelescope.org 🖪 Square Kilometre Array 💟 @SKA_telescope 🛛 /SKA_telescope 📊 SKA Organisation 💽 YouTube The Square Kilometre Array

SKA & VLBI sustainable development

www.skatelescope.org 🛃 Square Kilometre Array 💆 @SKA_telescope 🥫 /SKA_telescope 📊 SKA Organisation 💽 YouTube The Square Kilometre Array

2020 November

SKA & VLBI sustainable development

The future of VLBI in the SKA era

2020 November

JIVE

JIVE

JIVE

2020 November

SKA provides ...

- Independent MULTI-BEAM
 CAPABILITY
- BOOST in SENSITIVITY to µJy regime
- Access to SOUTHERN SKIES
 and GC
- COMMENSALITY with other observing modes
- Superior AMPLITUDE & POLARISATION calibration
- Pristine RF environments and state of the art RFI detection/excision

2020 November

SKA provides ...

- Independent MULTI-BEAM **CAPABILITY**
- BOOST in SENSITIVITY to µJy regime
- Access to SOUTHERN SKIES and GC
- **COMMENSALITY** with other observing modes
- Superior AMPLITUDE & **POLARISATION** calibration
- **Pristine RF environments and** state of the art RFI detection/excision

2020 November

"Joining up Users for Maximizing the Profile, the Innovation and Necessary Globalization of JIVE"

European Union's H2020 research and innovation programme under grant agreement No 730884

"Joining up Users for Maximizing the Profile, the Innovation and Necessary Globalization of JIVE"

European Union's H2020 research and innovation programme under grant agreement No 730884

Work package 10: "VLBI with the SKA"

- > Provide support for SKA integration and operations within the VLBI arrays
- Led by Zsolt Paragi (JIVE) and Antonio Chrysostomou (SKAO)
- SKA-VLBI project scientist Cristina García-Miró (SKAO currently at JIVE)

2020 November

How we do VLBI with the SKA?

2020 November

VLBI with SKA1: key operational concepts

Multiple VLBI beams produced from a subarray of antennas/stations typically the core + individual SKA1 antennas or stations short uv-spacings

VLBI with SKA1-MID:

all observing modes within a subarray with bandwidth sacrifice

Correlation:

- Normal visibilities, zoom (100-3 MHz, 6 kHz-190 Hz)
- ✓ VLBI coarse visibilities: 200 vs. 13 kHz

Tied-array beams:

- ✓ 4 VLBI beams but up to 52 beams max per subarray (200 MHz b/w), from any subarray size
- ✓ Each VLBI beam: dual-pol real channels (1-128 & 200 MHz, 2-16 bits, Nyquist)
- ✓ RFI flagging/excision and polarisation correction
- ✓ 1500 for Pulsar Search PSS
- ✓ 16 for Pulsar Timing PST

Transients:

- ✓ Transient buffer (2x300 MHz search windows: -2,+60 sec, every 62 sec)
- Fast imaging pipeline for slow transients (>1sec)

VLBI with SKA1-MID: configurations

50

SKA1-MID simultaneous observing:

limited by processing resources (26+1 FSP=Frequency Slice Processor)

Band	VLBI + coarse Vis	Imaging	PSS	PST	Zoom
Band 1 (0.35- 1.05GHz)	4beams full (700MHz) (8 FSP)	Full (4 FSP)	1500b 300MHz (8 FSP)	16b full (4 FSP)	2 (2 FSP)
	4b 600MHz (6 FSP)	Full (4 FSP)	1500b 300MHz (8 FSP)	16b full (4 FSP)	4 (4 FSP)
Band 2 (0.95-	4beams full (810MHz) (10 FSP)	Full (5 FSP)	1500b 300MHz (8 FSP)	16b 600 MHz (3 FSP)	\sim
1.76GHz)	4b 600MHz (6 FSP)	Full (5 FSP)	1500b 300MHz (8 FSP)	16b full (5 FSP)	2 (2 FSP)
Band 5a/b	2/4beams 5/2.5GHz (26 FSP)	0	0	0	0
(4.6- 8.5GHz & 8.3- 15.3GHz)	4beams 600MHz (6 FSP)	512MHz (3 FSP)	1500b 300MHz (8 FSP)	16b 512 MHz (3 FSP)	6 (6 FSP)
	14beams 500MHz (21 FSP)	500MHz (3 FSP)			3.1MHz (1 FSP)
<	0	Full (26 FSP)	0	0	0

2020 November

VLBI with SKA1-LOW: configurations

SEFD - SKA1-LOW subarray radius

53

SKA1 Observatory model

2020 November

SKA1 Observatory: a global research infrastructure

SKA Regional Centres tiered model

JIVE

SKA image cubes with ~TB size, ~2¹⁶ frequency channels → SKA science-ready data products (forget SKA visibilities!)

Distributed network of SKA Regional Centres: subsets of SKA archive, processing and postprocessing capability, distribution of data and user support, open science model

SKA Data Challenges: build new culture on radio astronomy post-processing and analysis.

55

SKA1 Observatory: a global research infrastructure

SKA Regional Centres tiered model

2020 November

JIVE

SKA image cubes with ~TB size, ~2¹⁶ frequency channels → SKA science-ready data products (forget SKA visibilities!)

Distributed network of SKA Regional Centres: subsets of SKA archive, processing and postprocessing capability, distribution of data and user support, open science model

SKA Data Challenges: build new culture on radio astronomy post-processing and analysis.

New culture into the VLBI world!

SKA1 Observatory: SKA data challenges

57

SKA1 Observatory: SKA data challenges

SKA1 Observatory: SKA data challenges

CASA-VLBI Workshop

with HPC facilities access

ERIC

SKA1 Observatory: SKA data challenges for VLBI

2020 November

SKA1 Observatory: SKA data challenges for VLBI

INVITED SPEAKERS

14 - 17OCTOBER 2019

SKA GLOBAL HQ, UK

SKATELESCOPE.ORG/ SKA-VLBI-WORKSHOP

IFFE (U. of Pretoria/SARAO): Wide-field VL

RadioNet

2020 November

CASA-VLBI Workshop

JUMPING JIVE

Joint Institute for VLBI

SKATELESCOPE.ORG/ SKA-VLBI-WORKSHOP

RadioNet

2020 November

* RadioNeL

2020 November

SKA-VLBI WORKSHOP

SKA-VLBI KEY SCIENCE PROJECTS WORKING GROUPS

Active Galactic Nuclei

- Leah Morabito (Durham U.)
- John McKean (ASTRON/RuG)

Stars / Astrometry

- Maria Rioja (ICRAR-UWA/CSIRO; OAN)
- Hiroshi Imai (Kagoshima U.)

> Transients

- Manisha Caleb (U. Manchester)
- Zsolt Paragi (JIVE)

> Pulsars

- Dana Simard (U. Toronto)
- Franz Kirsten (OSO)

2020 November

GALAXIES and AGNs: Key Science Themes

JIVE

IPING JIVE t Institute for VLBI

GALAXIES and AGNs: Key Science Themes

GALAXIES and **AGNs**

AGNs at lower frequencies (MHz regime):

LoTSS - LOFAR Two-metre Sky Survey

Shimwell et al. 2019, Williams et al. 2019, Duncan et al. 2019; Special volume A&A Feb 2019 SKA1-LOW - VLBI

high resolution + sensitivity + low freqs

Unique probe for AGN science

- > **AGN/SF** disentanglement
- FRI vs. FRII characterisation
- Radio loud AGN: physics of hot-spots (spectral modelling)
- Radio quiet AGN: origin of radio emission, core identification and small scale jets or winds, gravitationally lensed galaxies
- Build a sample of resolved high-z AGN

What SKA-VLBI can do for your science? SKA1-MID - VLBI **GALAXIES** and AGNs

high resolution + sensitivity + multiple beams

- ➤ How is the VLBI sky at < µJy sensitivities?</p>
- > SKA deep-field surveys with targeted SKA-VLBI beams to extract radio/AGN science commensally

Plenty of science to exploit!

- ➤ Co-evolution → Feedback between SMBH and host galaxy
- Radio emission traces both SF/AGN activity
- > The VLBI method detects the largest number of AGN: VLBI wide-field surveys for AGN finder
- > **but also for:** SMBH binaries, gravitational lenses, radio SNe, LLAGN... CASA-VLBI Workshop

69

STARS/ Astrometry: Key Science Themes

STARS/ Astrometry: Key Science Themes

71

STARS/ Astrometry

Rioja & Dodson, 2020

SKA-VLBI

Most powerful tool for astrometry (distances + proper motions + positions + multiple beams)

New phase calibration techniques: "MultiView" (Rioja+ 2017) for >6GHz → 1µas

Ultimate astrometric accuracy + dramatic increase of # targets (large and complete surveys) → → new discoveries!

(exoplanets orbits, geometric parallaxes up to 100 kpc, pulsar parallaxes in the galactic centre, methanol masers parallaxes in LMC, AGN launching jets scales...)

2020 November

What SKA-VLBI can do for your science? TRANSIENTS/PULSARS: Key Science Themes

2020 November

CASA-VLBI Workshop

What SKA-VLBI can do for your science? TRANSIENTS/PULSARS: Key Science Themes

2020 November

CASA-VLBI Workshop

What SKA-VLBI can do for your science?

TRANSIENTS/PULSARS

e-EVN, JVLA, VLBA, e-Merlin

Chomiuk et al., Nature, 514, 339, 2014

SKA-VLBI to measure very accurately: Source expansion / apparent jet speed proper motions / distances (parallaxes)

- Faint synchrotron radio transients in the local Universe $d \le 200$ Mpc (z ~ 0.05) Faint collimated ejecta can be resolved within weeks! proper motions in the ~1 µas regime
- GW astronomy: SKA-VLBI sensitivities and excellent calibration needed for resolving mildly relativistic outflows, long-term radio afterglows (BNS mergers, long-GRBs, etc.)
- FRBs: SKA-VLBI for progenitor environments and highz localisations.
- Exoplanets: orbital motions will be detectable with SKA-VLBI.
- Magnetars: SKA-VLBI reaches the GC and covers a very large galactic volume for proper motion measurements.

The VLBI Future is

5 GENDER EQUALITY

11 SUSTAINABLE CITIES AND COMMUNITIES

17 PARTNERSHIPS FOR THE GOALS

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

> DECENT WORK AND Economic growth

2020 November

JIVE

CASA-VLBI Workshop

The VLBI Future is YOU

A01550985 Iñaki Palestino Díaz

(AI)

Thanks to our sponsors

This event has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 730562 (RadioNet) and 7308844 (JUMPING JIVE) CASA-VLBI Workshop

This presentation has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 7308844 (JUMPING JIVE)

Future of VLBI

Cristina García Miró miro@jive.eu SKA-VLBI scientist - JIVE