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1. Motivation i.e. why do we want to image degrees of the sky with VLBI? 

2. Challenges 

3. Calibrating wide-field VLBI data* 

a. Phase referencing 

b. Self-calibration 

c. Primary beam correction 

4. Conclusions / take-away points

Outline

2

*In particular, highlight the nuances between standard calibration and wide field + how 
techniques developed for wide-field VLBI can be applicable to standard VLBI observing!
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What do we mean by wide-field VLBI? 

• Simply concerned with imaging the entire primary 
beam of a VLBI array 

• See multiple science targets in one observations 

• Historically, much easier for shorter baseline 
instruments 

What are the advantages of imaging the entire primary 
beam?

Wide-field VLBI - definition
Credit: N. Wrigley

Primary beam corrected 
JVLA+MERLIN image of the GOODS-N field
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1. MOTIVATION



JACK RADCLIFFE                                                                  WIDE-FIELD IMAGING - CASA-VLBI WORKSHOP 2020

Herrera-Ruiz+17

Deane+14

 - VLBI detection+

++

Radcliffe+ in prep.

Some science examples - supermassive black hole binaries
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1. MOTIVATION
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• Rare (~0.3% of VLBI sources)

• Independently measure the sub-structure 
mass-function within galaxies.

• Unique probing of the low-mass end of the dark 
matter halo mass-function 

• High resolution of VLBI can constrain lens 
models

Spingola+18Gravitational lenses

5

SPINGOLA ET AL. 2018, 20191. MOTIVATION
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Gravitational lenses

• Spingola+19 searched 3640 mJIVE-20 survey sources 

• Found two gravitational lenses!

6

SPINGOLA ET AL. 2018, 20191. MOTIVATION
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• VLBI detection sure indicator of AGN (high 
brightness temperatures ) 

• Use VLBI to understand nature of radio-
mode AGN 

• Other AGN identification methods are 
notably incomplete or contaminated. 

• Note - there are many more wide-field VLBI 
use-cases too (e.g. ISM of nearest galaxies; 
Morgan+13, supernovae; Radcliffe+19 etc.)!

> 105 K

AGN surveys
COSMOS-VLBA – 2 degree survey

(Herrera-Ruiz+17, 18)
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1. MOTIVATION E.G. MIDDELBERG ET AL. 2011, 2013, HERRERA-RUIZ ET AL. 2017, 
RADCLIFFE ET AL. 2018
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• Assuming ~0.5 degree field-of-view (25m 
telescopes at 1.4 GHz) w/ Nyquist sampling 

• Very Large Array (VLA) A-configuration 
(1.4” resolution) -  

• Very Long Baseline Array (VLBA) - (~6 
mas resolution) - 

∼ 1.4 × 107 pixels

∼ 1 × 1011 pixels

Imaging the entire primary beam - challenges
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2. CHALLENGES

1. Image sizes
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Imaging the entire primary beam - challenges
2. Smearing

NVSS (VLA) - short baselines

e-MERLIN - long baselines

HPBW of primary beam

Edge of PB 
massively 
smeared

Centre of PB 
no smearing
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2. CHALLENGES

Image credit - T. Muxlow
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Imaging the entire primary beam - challenges

w-projection no w-projection
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e-MERLIN - source 7.5’ from pointing centre

Severity of these issues  baseline length & distance from phase centre∝
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3. Non-coplanarity or the  termw

2. CHALLENGES

𝖵(u, v) = ∬lm
𝖡(l, m) exp {−2πi [ul + vm + w (n − 1)]} dldm

n

• The pesky extra term of: 

stops us having a true 2D-FT 

1
n

exp [w (n − 1)] * n = 1 − l2 − m2

* computationally expensive

Ideal RIME
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EVN primary beam

• Correlate at high temporal & frequency 
resolution 

Result - monolithic and huge data set which is 
99.99999% noise 

• This huge single data set is often TBs* in 
size  

• Often have to shift to different positions in 
the primary beam which is inaccurate using 
standard software.

Solutions - standard 
‘wide-field’ correlation
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2. CHALLENGES

*Note: a 22 telescope, 12 hour EVN observation @ 1 Gbps > 15 TB  

Field-of-view due 
to smearing
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1. Split data into time chunks  

2. Correlate each chunk at very high time & 
frequency resolution to prevent smearing 

3. Copies & phase shift to multiple locations in 
primary beam 

4. Average in time & frequency 

Result - you receive lots of small (in FoV and size) 
data sets at different positions across the 
primary beam so it’s easily parallelisable! 

• Choice of phase centres is up to the user and 
could cover entire primary beam, or just some 
known sources of interest e.g. VLA positions etc.

Multiple phase-centre 
correlation
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2. CHALLENGES MORGAN ET AL. 2011, DELLER ET AL . 2011, KEIMPEMA ET AL . 2015
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2. CHALLENGES MORGAN ET AL. 2011, DELLER ET AL . 2011, KEIMPEMA ET AL . 2015
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• Calibrating wide-field VLBI data is much easier than you’d think. There are three areas that are 
different from standard VLBI data processing, 

a. Applying solutions in phase referencing 

b. Self-calibration 

c. Primary beam corrections 

• In addition, there are many pipelines that have been developed (e.g. rPICARD, Janssen+19), or in 
development (e.g. cm-VLBI pipeline & EVN CASA pipeline), that can make standard calibration 
much easier.

Calibrating wide-field VLBI data

13

3. CALIBRATING WIDE-FIELD VLBI DATA
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• cm-VLBI pipeline based in CASA (v5.7+/6.1+) currently in development (current v0.8) - https://github.com/
jradcliffe5/VLBI_pipeline - it needs some testers please :)! Nb. it’s modular so works with other pipelines.  

• Currently does the following, 

- A priori calibration for EVN & VLBA data (e.g. , gaincurves, ionospheric dispersive delays) 

- Fully parallelised a priori, flagging, phase referencing, and self-calibration via casampi (continuum only at the 
moment) 

- Support for use on HPC clusters controlled by SLURM / PBS Pro (+ usable on local machines) 

- Built for wide-field VLBI surveys, but direction-independent calibration works for normal data too. 

• In development, 

- Primary beam correction schemes  

- Multi-source self-calibration (and direction dependent calibration too) 

- Parameter automation (e.g. source finding, calibration solution intervals etc.)

Tsys

14

A shameless plug - the cm-VLBI pipeline
3. CALIBRATING WIDE-FIELD VLBI DATA

https://github.com/jradcliffe5/VLBI_pipeline
https://github.com/jradcliffe5/VLBI_pipeline
https://github.com/jradcliffe5/VLBI_pipeline
https://github.com/jradcliffe5/VLBI_pipeline
https://github.com/jradcliffe5/VLBI_pipeline
https://github.com/jradcliffe5/VLBI_pipeline
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• Typically, one phase centre will contain the 
phase, bandpass and fringe finders sources.  

• Most importantly - standard VLBI 
calibration applies 

• Calibration tables & flagging tables derived 
can then be applied to ALL other target fields 

• Easily parallelisable so calibration is very 
quick 

• Parallelisation implemented using casampi in 
cm-VLBI pipeline

Phase referencing

15

3A. PHASE REFERENCING

Other phase 
centres
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• Typically, one phase centre will contain the 
phase, bandpass and fringe finders sources.  

• Most importantly - standard VLBI 
calibration applies 

• Calibration tables & flagging tables derived 
can then be applied to ALL other target fields 

• Easily parallelisable so calibration is very 
quick 

• Parallelisation implemented using casampi in 
cm-VLBI pipeline

Phase referencing

Calibration 
tables/solutions 

15

3A. PHASE REFERENCING

Other phase 
centres
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• Atmospheric effects correlated on short baselines but not on longer baselines (>500 km) 

• Often uncorrelated at different locations within target field too… 

• Also, the number density of VLBI sources (and their flux densities) lower due to the ‘resolving 
out’/ spatial filtering effect.

Self-calibrating VLBI data

Troposphere / ionosphere

16

VLBI baselines

3B. SELF CALIBRATION
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In-beam phase referencing 

• Put a phase-centre on a bright source within the target field and use this to derive self-
calibration solutions. 

• Then, apply solutions to all other phase centres. 

• However, only some target fields have bright enough detections so…

Self-calibration solution 1

17

WROBEL ET AL . 2000, GARRETT ET AL. 20053B. SELF CALIBRATION

Bright VLBI detection
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In-beam phase referencing 

• Put a phase-centre on a bright source within the target field and use this to derive self-
calibration solutions. 

• Then, apply solutions to all other phase centres. 

• However, only some target fields have bright enough detections so…

Self-calibration solution 1

17

WROBEL ET AL . 2000, GARRETT ET AL. 20053B. SELF CALIBRATION



JACK RADCLIFFE                                                                  WIDE-FIELD IMAGING - CASA-VLBI WORKSHOP 2020

In-beam phase referencing 

• Put a phase-centre on a bright source within the target field and use this to derive self-
calibration solutions. 

• Then, apply solutions to all other phase centres. 

• However, only some target fields have bright enough detections so…

Self-calibration solution 1

Self-
calibration 
solutions

17

WROBEL ET AL . 2000, GARRETT ET AL. 20053B. SELF CALIBRATION
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 2016

VLBI detections

3B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 20163B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 20163B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

Copy, model, 
combine & 

stack

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 20163B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

Derive self-
calibration 
solutions

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 20163B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

Apply self-calibration 
solutions to all other phase 

centres

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 20163B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration (MSSC) 

• Use combined response (via  stacking) of detected target sources to derive self-calibration 
solutions. 

• So how does it work?

uv

Self-calibration solution 2

Image phase centres again (& repeat process if neccessary)

18

MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 20163B. SELF CALIBRATION

*parallelised via mpicasa
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Multi-source self-calibration
Standard phase referencing 

S/N ~ 43
MSSC 

S/N ~ 113

• Code publicly available for AIPS - https://github.com/jradcliffe5/multi_self_cal 
• CASA version in testing stage - https://github.com/jradcliffe5/MSSC_CASA 

19

3B. SELF CALIBRATION
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MIDDELBERG ET AL. 2013, RADCLIFFE ET AL. 2016

http://github.com/jradcliffe5/multi_self_cal
https://github.com/jradcliffe5/MSSC_CASA
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MSSC - not just for wide-field data sets

20

3B. SELF CALIBRATION

Phase centres

VLBI primary beam• Standard VLBI targets just a small FoV in 
the centre that may not provide enough S/N 
for self-calibration, but there’s other radio 
sources in the FoV. 

• Use multiple phase centre correlation on 
other potential sources in the primary beam 

• Then you may have enough S/N to self-
calibrate VLBI data-set 

• Plus you may find something interesting… 

The source you care about
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MSSC - not just for wide-field data sets

21

3B. SELF CALIBRATION

Example from real EVN 
observation of ESO422 

(background: ATCA)

• Standard VLBI targets just a small FoV in 
the centre that may not provide enough S/N 
for self-calibration, but there’s other radio 
sources in the FoV. 

• Use multiple phase centre correlation on 
other potential sources within the primary 
beam 

• Then you may have enough S/N to self-
calibrate VLBI data-set 

• Plus you may find something interesting… 
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• Primary beams are the most ubiquitous direction dependent effect (DDE) that affects all wide-
field radio observations. 

• Recap of the Radio Interferometry Measurement Equation (RIME; Smirnov+11) for antennas 
 and , 

• More of a problem for heterogeneous arrays (i.e. most VLBI arrays) as we shall see next. 

p q

The primary beam problem - the final frontier for wide-field 
imaging

22

𝖵pq = Gp (∬lm
Ep𝖡KpqEH

q
dldm

n ) GH
q

Direction-independent effects 
(DIEs) e.g. bandpass, complex gain 

errors

Visibilities as measured by baseline pq
Sky brightness distribution

Direction-dependent effects (DDEs) 
e.g. primary beam, ionospheric 

dispersions

Phase term -  

Kpq = exp {−2πi [upql + vpqm + wpq (n − 1)]}

Directional cosines (i.e. sky coordinates)

n = 1 − l2 − m2

3C. PRIMARY BEAM CORRECTION RADCLIFFE ET AL. IN PREP.
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• Assume DIEs ( ) are calibrated and no other DDEs are present so  are just the primary beam 
voltages. 

• For an homogeneous array e.g. MeerKAT, VLA, ASKAP etc. standard assumption is that the 
primary beam for each telescope is identical (  for all ) and non-varying with time 
so .  

• This means that each baseline observes the same apparent brightness distribution thus,  

• Standard imaging algorithms recover an image by assuming that each baseline observes the 
same apparent brightness distribution / common sky. Due to this, all of the baselines can be 
gridded so their projected baseline vectors form the uv plane,

G E

Ep = Eq = E p, q
E(t, l, m) ≡ E(l, m)

The primary beam problem - homogeneous arrays

23

𝖡app = E𝖡EH

𝖵(u, v) ≈ ∬lm
𝖡app exp {−2πi [ul + vm + w(n − 1)]} dldm

3C. PRIMARY BEAM CORRECTION
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• This is our standard imaging problem and 
can gridded, inverted, and de-convolved to 
recover . 

• We can then recover the true sky 
brightness distribution via, 

• Images generated will simply be the true 
brightness attenuated by some power beam 

• Thus the true source flux density can be 
recovered by dividing the image with the 
power beam response.

𝖡app

Homogeneous arrays

24

𝖡(l, m) =
𝖡app

|E(l, m) |2

3C. PRIMARY BEAM CORRECTION

The GOODS-N field as seen by the VLA
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• This is our standard imaging problem and 
can gridded, inverted, and de-convolved to 
recover . 

• We can then recover the true sky 
brightness distribution via, 

• Images generated will simply be the true 
brightness attenuated by some power beam 

• Thus the true source flux density can be 
recovered by dividing the image with the 
power beam response.

𝖡app

Homogeneous arrays

24

𝖡(l, m) =
𝖡app

|E(l, m) |2

3C. PRIMARY BEAM CORRECTION

The GOODS-N field as seen by the VLA
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• Not so simple for a heterogeneous array. Big issue comes from the 
following,  

• i.e. each baseline does not observe the same apparent 
brightness distribution 

• This manifests as a direction-dependent, antenna independent, 
and dominant, amplitude (and phase…) error. e.g. 

25

Heterogeneous arrays

𝖡app, pq = Ep𝖡EH
q ≠ 𝖡app, pq for all p, q VLBA + GBT observations of 

3C84 (Herrera-Ruiz+18)

HN (25m) to GBT (100m) 
baseline amplitudes

3C. PRIMARY BEAM CORRECTION RADCLIFFE ET AL. IN PREP.
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• This is more of a problem for very heterogeneous arrays (e.g. the EVN) and can drastically 
limit dynamic range quite close to the pointing centre. 

• Below is a simple simulation of e-MERLIN-A (approx. homogeneous) and e-MERLIN-B 
(heterogeneous with two telescope sizes) arrays observing on a point source with dynamic 
range of 1000 at different offsets from pointing centre.

26

e-MERLIN-A

OÆset = 00 10 20 30 40 50

e-MERLIN-B

00 10 20 30 40 50

3C. PRIMARY BEAM CORRECTION

Heterogeneous arrays
RADCLIFFE ET AL. IN PREP.
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• This can be even more severe for EVN arrays: 

• This error is proportional to source dynamic 
range so primary beam errors not too severe 
at low S/N. 

• Will become ever more important with 
increasing VLBI bandwidths and inclusion of 
sensitive (phased-up) elements e.g. 
MeerKAT / SKA. 

• To correct this effect, we need models of the 
primary beams!

27
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3C. PRIMARY BEAM CORRECTION RADCLIFFE ET AL. IN PREP.

Heterogeneous arrays
Homogeneous
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• VLBA and GBT estimates 
exist (e.g. Middelberg+2013) 

• Some for e-MERLIN (Wrigley 
2016) but about to be 
updated for whole array. 

• Only a few at 1-2 GHz for the 
EVN but all is about to 
change! Accepted proposal 
(EVN + e-MERLIN joint effort) 
to map EVN stations. 

• Current primary beam 
models at 1-2 GHz are crude 
estimates (taking into 
account blockages etc.; see 
Radcliffe+18)

Primary beam models - current status

28

3C. PRIMARY BEAM CORRECTION

Mapping the primary beam of EVN and e-MERLIN stations at 1.6 GHz by observing bright 
maser source W75N-VLA2. Results expected in Q2 2021.
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• With beam models / approximations at hand, how do we apply these corrections for 
heterogeneous arrays (and wide-field VLBI data)? 

• Currently three ways, 

a. Image plane correction (primarily homogeneous arrays only) 

b. ‘Differential’ / step-wise primary beam correction 

c. -plane correction i.e. -projectionuv a

Primary beam correction schemes

29

3C. PRIMARY BEAM CORRECTION
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• Can calculate total power beam, , for heterogeneous array via, 

                                       

                                               

• and divide subsequent image by .  

• Provides a scalar shift in the image plane (partially fixing flux 
densities) but does not correct for the direction-dependent 
antenna independent errors. 

• You can fix amplitude errors for some sources via self-calibration 
but crucially not all.

PT

Ppq(l, m) =
EpE*q + EqE*p

2 Wp(ν)Wq(ν)

PT =
Nant

∑
i,j=0;j>i

Ppq

PT

a. Image plane correction
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3C. PRIMARY BEAM CORRECTION

e-MERLIN-A

OÆset = 00 10 20 30 40 50

e-MERLIN-B
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Voltage beam for antenna p/q 
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• Correct each phase centre in  plane using gain table with a singular value for each antenna’s 
primary beam voltage, evaluated at centre of the phase centre (where  and ). 
Effectively does the following to each baseline, 

                                                    

• (Sometimes conducted)  outside of the phase centre centre, calculate error difference 
between real primary beam response and uv corrected response, and correct in the image 
plane to recover true fluxes.  

• Note that this only perfectly corrects amplitude errors at centre of each phase centre. 

• Residual amplitude errors proportional to  , distance from centre of phase centre & 
primary beam model errors but errors are much smaller than image plane only correction!

uv
l = lpc m = mpc

𝖵pq,obs(lpc, mpc) =
𝖵pq,obs

Ep(lpc, mpc)EH
q (lpc, mpc)

→

∇ EpEH
q

b. ‘Differential’ / step-wise primary beam correction
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3C. PRIMARY BEAM CORRECTION
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b. ‘Differential’ / step-wise primary beam correction
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3C. PRIMARY BEAM CORRECTION
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• 12 hour simulated 
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(central rms 
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Phase centres rms map 



JACK RADCLIFFE                                                                  WIDE-FIELD IMAGING - CASA-VLBI WORKSHOP 2020

• This is the current method used in published 
wide-field VLBI studies.  

• AIPS 

- For VLBA - AIPS task CLVLB (Middelberg+13, Herrera-
Ruiz+18) 

- For EVN (using Parseltongue) -  https://
github.com/jradcliffe5/EVN_pbcor (Radcliffe+18) 

or given by the EVN pipeline output. 

• CASA conversions currently being tested.
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EVN primary beam correction on real data (Radcliffe+18)
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b. ‘Differential’ / step-wise primary beam correction
3C. PRIMARY BEAM CORRECTION

Nb. rms map is smooth due to 
interpolation between phase 

centres!

Effelsberg primary beam HPBW

https://github.com/jradcliffe5/EVN_pbcor
https://github.com/jradcliffe5/EVN_pbcor
https://github.com/jradcliffe5/EVN_pbcor
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• New method corrects for primary beam response 
while gridding visibilities. 

• Implemented in the Image Domain Gridder (IDG) as 
part of the wsclean imaging package.  

• Will correct for primary beam effects with smaller 
error than other methods. 

• Method can also implement: 

- More complex beams (e.g. true frequency 
dependence - i.e. not , beam rotation of 
sidelobes etc.)  

- And other direction-dependent effects (e.g. 
pointing errors, TEC dispersion etc.)

1/λ

c. -projection a

34

OFFRINGA ET AL. 2014, VEENBOER ET AL. 2017 
VAN DER TOL ET AL. 2018

3C. PRIMARY BEAM CORRECTION

Ef Tm-65 Jb1 Wb

On-85 Mc Tr Sv

Bd Zc

All these correction schemes implemented / 
planned in cm-VLBI pipeline (not native to CASA)

-projection kernelsa

*Same 12 hour simulated EVN 
observation (central rms 

)∼ 4 μJy beam−1
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• New method corrects for primary beam response 
while gridding visibilities. 

• Implemented in the Image Domain Gridder (IDG) as 
part of the wsclean imaging package.  

• Will correct for primary beam effects with smaller 
error than other methods. 

• Method can also implement: 

- More complex beams (e.g. true frequency 
dependence - i.e. not , beam rotation of 
sidelobes etc.)  

- And other direction-dependent effects (e.g. 
pointing errors, TEC dispersion etc.)

1/λ
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OFFRINGA ET AL. 2014, VEENBOER ET AL. 2017 
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3C. PRIMARY BEAM CORRECTION

All these correction schemes implemented / 
planned in cm-VLBI pipeline (not native to CASA)

rms map 

*Same 12 hour simulated EVN 
observation (central rms 

)∼ 4 μJy beam−1
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With these advancements…
We went from this 19 years ago in the GOODS-N field Garrett+00

KPNO (OPTICAL) + WSRT (RADIO CONTOURS)

EVN
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4. CONCLUSIONS
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… to …

Observed 15 
years ago

Chi+13

36

4. CONCLUSIONS
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And finally!

J123608
+621036

16.0£15.5 mas

J123701
+622109

13.5£13.1 mas

J123644
+621133

5.3£4.5 mas
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+621541

5.4£4.6 mas

J123620
+620844

5.3£4.6 mas

J123624
+621643

5.4£4.6 mas

J123641
+621833

14.8£14.4 mas
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+621331

5.4£4.5 mas

J123659
+621833

5.3£4.5 mas

J123700
+620910

5.3£4.5 mas

J123715
+620823

5.3£4.6 mas
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+621733

5.4£4.6 mas
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+620838

15.8£15.3 mas
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16.1£15.3 mas
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5.3£4.6 mas
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12.5£11.5 mas
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15.6£15.3 mas
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+615659

9.6£9.0 mas

J123607
+620951

16.3£15.6 mas

J123555
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16.0£15.2 mas
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+620738

15.4£14.8 mas
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12.1£10.6 mas
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J123726
+621129

15.4£15.1 mas

J123646
+621405

5.4£4.5 mas

J123653
+621444

14.8£14.7 mas

J123716
+621512

15.4£15.0 mas

J123721
+621130

5.3£4.5 mas

J123720
+620741

15.9£15.5 mas

J123739
+620505

12.1£10.9 mas

J123751
+621919

11.9£10.6 mas

Radcliffe+18
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Key takeaways 

• Wide-field VLBI has many use cases 
and could be useful to your science. 

• Calibration is simple and additional 
steps easily parallelised (and becoming 
user-friendly!) 

• Additional calibration techniques 
applicable to standard VLBI 
observations e.g. MSSC. 

• Final hurdle of primary beam 
correction of heterogeneous arrays 
currently being overcome.

4. CONCLUSIONS
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