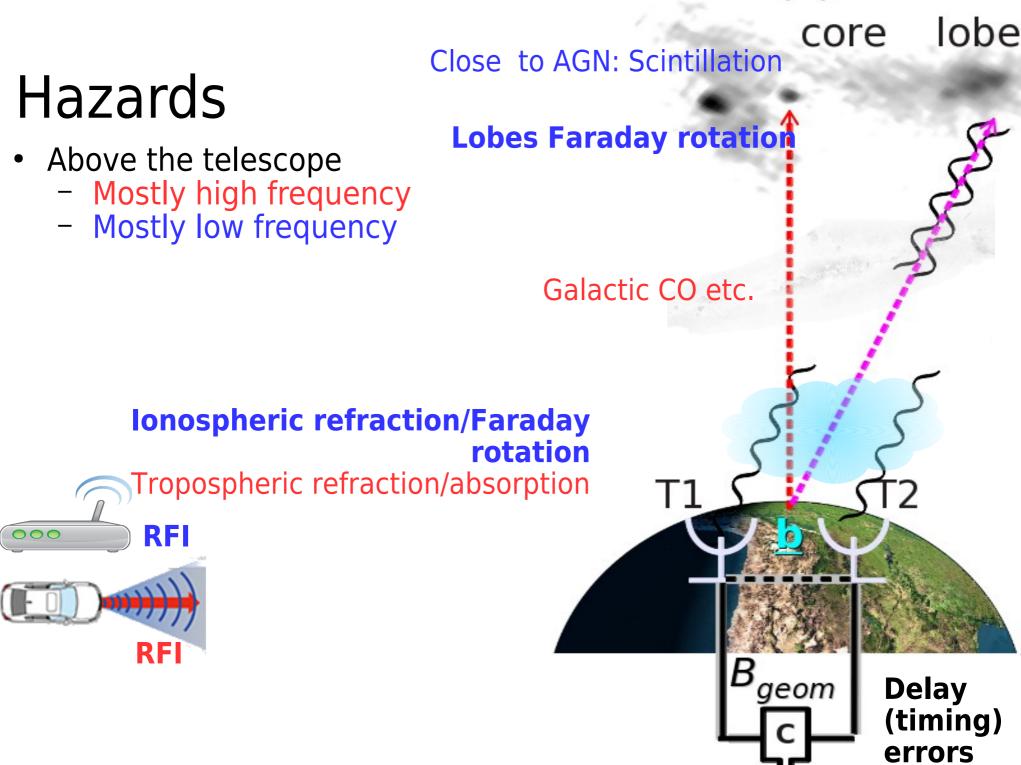

#### **Polarisation Calibration**

**EUROPEAN ARC** 

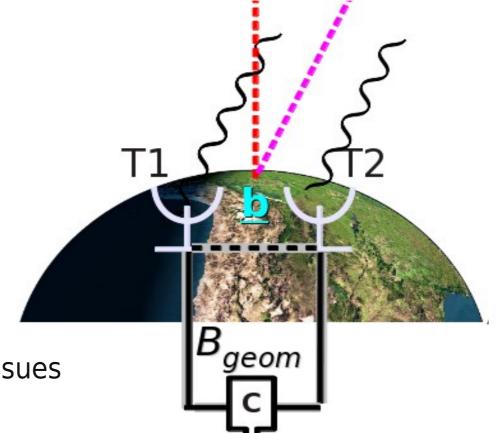

Anita Richards Thanks to Ivan Marti-Vidal, Robert Laing, Rosita Palladino, Michiel Brentjens et al.

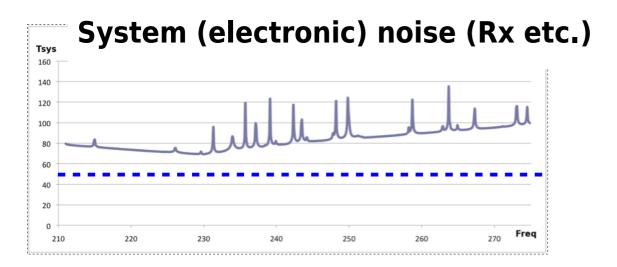
Main example: Linearly polarized continuum target Alt-az array with circular feeds



## Summary: Polarisation

- Recap: Origins of hazards to be corrected
- Polarization calibration of 3C277.1
  - Circular feeds (L, R), linearly polarised target
- Practical approach for calibration
- Polarisation image products and analysis
- Other cases including:
  - Circular polarization e.g. Masers
  - Linear feeds (X, Y), e.g. ALMA





#### Hazards

At the telescope and later

Antenna positions Pointing, Focus Efficiency (**surface**)

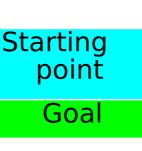
Timing and frequency information issues (station clock, local oscillator...)





**Receiver leakage** 

Insufficient corrections for delay tracking






## **Measurement Equation**

 $\underline{V}_{ij} = \mathbf{M}_{ij}\mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{F}_{ij}\mathbf{F}_{ij}\mathbf{F}_{ij}\mathbf{S}_{ij}\mathbf{S} \mathbf{I}_{n} (x, y) e^{i2\pi (uijx+vijy)]} dxdy + \mathbf{A}_{ij}$ 

#### Vectors Visibility = f(u,v)Mage



Additive baseline error

#### Scalars

Methods

**S** (mapping <u></u>*l* to observer polarization)

*x,y* image plane coords *u,v* Fourier plane coords *i,j* telescope pair

#### Jones Matrices Hazards

Multiplicative baseline error

Bandpass response

Generalised electronic gain

Dterm (pol. leakage)

E (antenna voltage pattern)

Parallactic angle

Tropospheric effects

- Faraday rotation (ionospheric)
- **S** Faraday rotation (astronomic)

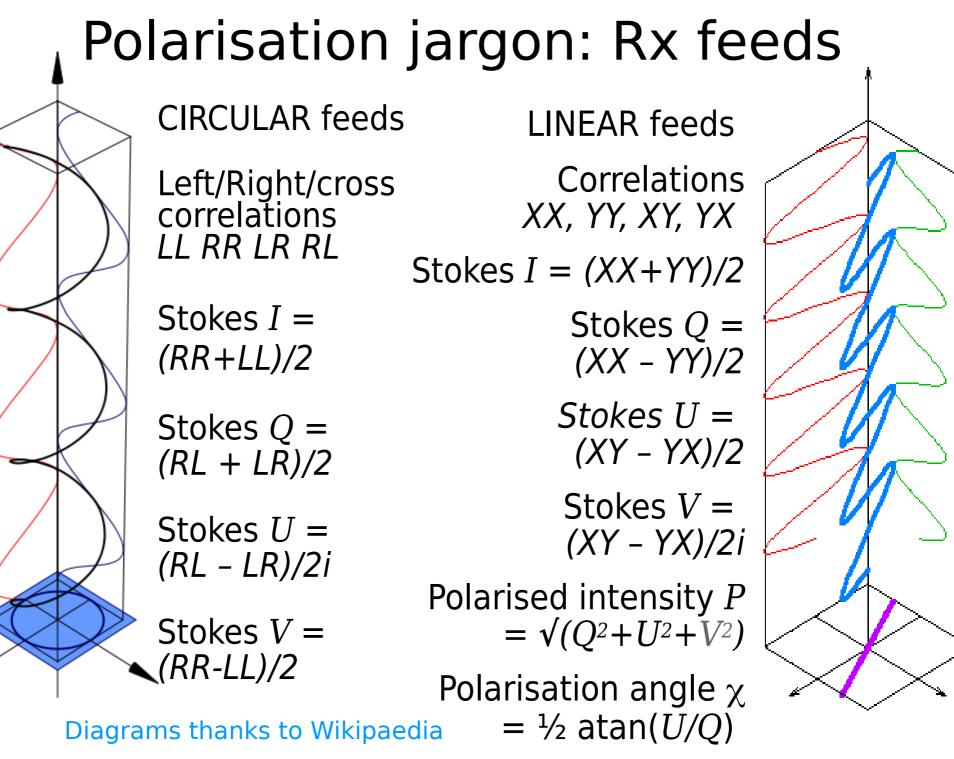
#### Calibration and polarisation

- Basic calibration derives corrections per-antenna
  - Phase and amplitude v. frequency (delay, bandpass)
  - and v. time (phase calibrator solutions, self-cal) G
    - Incl. ionospheric and tropospheric refraction corrections
- Separate R and L corrections applied to all correlations
- These were performed in Calibration and Self-calibration
- Now correct RL and LR
  - Parallactic Angle (instrumental)
  - Cross-hand delays (mostly instrumental)
  - Polarisation leakage in receiver systems (instrumental)
  - Faraday rotation of polarisation angle (ionosphere etc.) **F**,**S**

#### Stokes parameters

Circular feeds, correlated visibilities (see Brentjens talk)

$$I = (R_1 R_2^* + L_1 L_2^*)/2$$
$$Q = (R_1 L_2^* + L_1 R_2^*)/2$$
$$U = (R_1 L_2^* - L_1 R_2^*)/2 i$$
$$V = (R_1 R_2^* - L_1 L_2^*)/2$$

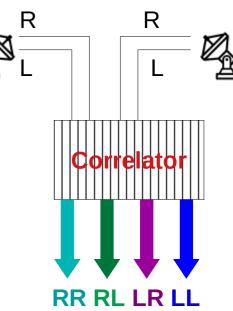

 Extra-galactic continuum sources usually only show linear cm-wave polarisation at ≥10-mas resolution

- I, Q, U of interest; V reveals residual leakage

- Polarised intensity  $P = \sqrt{(Q^2 + U^2)}$
- Polarisation angle  $\chi = \frac{1}{2} \operatorname{atan}(U/Q)$ 
  - Image polarisation angle half visibility R-L phase offset
    - You can prove using formal definition of Stokes parameters in terms of electrical vector angle (Brentjens); recall:

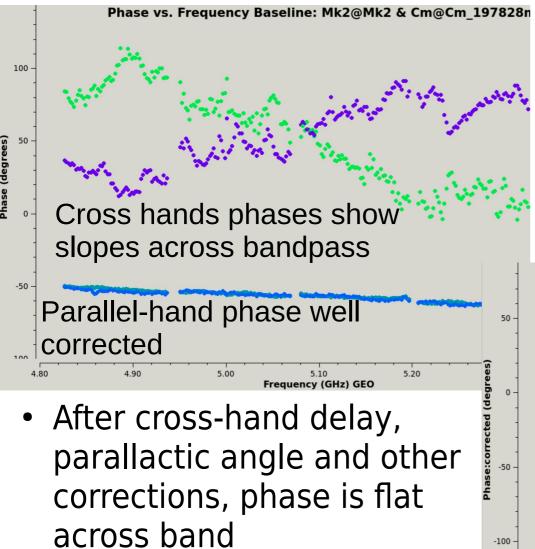
7

 $Ae^{i\phi} = A(\cos\phi + i\sin\phi) \qquad \sin 2\phi = 2\sin\phi\cos\phi \qquad \cos 2\phi = \cos^2\phi - \sin^2\phi$ 



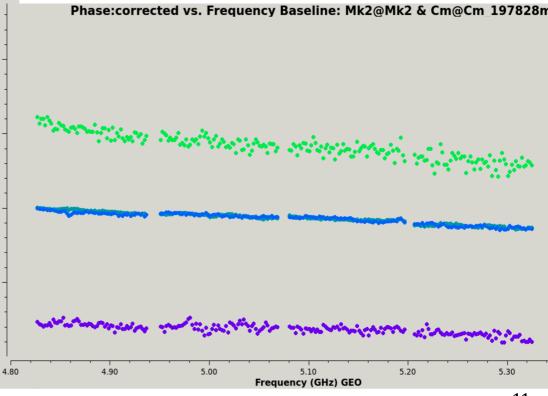

### 3C277.1 total intensity prior calibration

- 3C277.1 aka 1252+5634 and calibrators as used for Calibration and Self-calibration tutorial
- Calibration and Self-calibration scripts run
  - refantmode='strict' ensures consistent R-L phase
- Apply all flagging & calibration to the relevant sources in the full data set all.avg.ms
  - Including self-calibration of target
    - So, slightly different approach from Imaging script
- Split out 'CORRECTED' column into all.avg.pol.ms
  - New 'DATA' column visibilities have LL RR calibrated
    - Polarization calibration for RL and LR and relative R-L


#### Polarization calibration (for circular feeds)

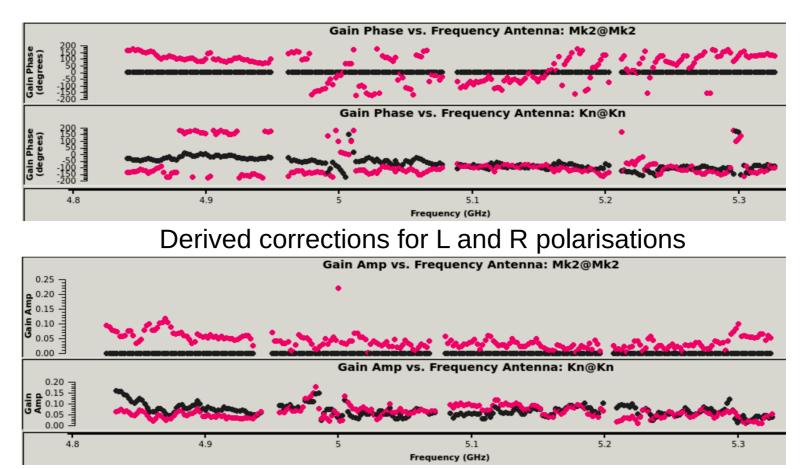
- 1) Correct cross-hand delay
  - Strongly-polarised calibrator
    - Fit to cross-hand phase slope with frequency
- 2) Correct leakage ('D-terms')
  - Calibrator model here, 3C84 is known to be unpolarised
  - If calibrator has non-zero polarisation, calculate:
    - Need at least 3 scans over 6 hr
    - Use parallactic angle rotation to deduce source polarization
- 3) Apply parallactic angle correction
- 4) Correct rotation of pol. angle (L-R phase difference)
  - Calibrator with known angle




### Cross-hand delay corrections

-100



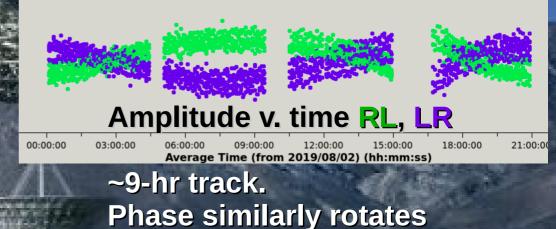

 Slight slope due to source structure/ spectral index

Use 3C286 model to correct cross-hand delay (remove slope across band



## Leakage corrections

- Rx system does not separate polarisations perfectly
  - Leakage constant during observations, frequency-dependent
- Derive corrections using source of known polarisation
  - Here, 3C84 has known, zero polarisation



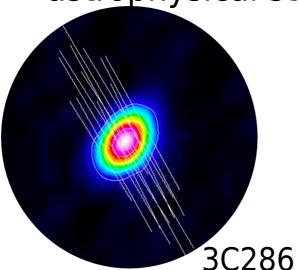

#### Parallactic angle rotation

 An alt-az telescope rotates as it tracks

 The receiver feeds rotate with respect to a celestial source

> Cross hands of polarisation undulate diurnally - Geometric correction required



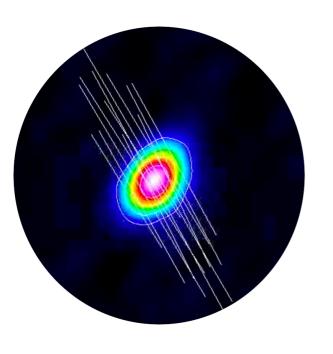

Bill Petrachenko NRCan Alex Dunning, ATNF Wikipedia

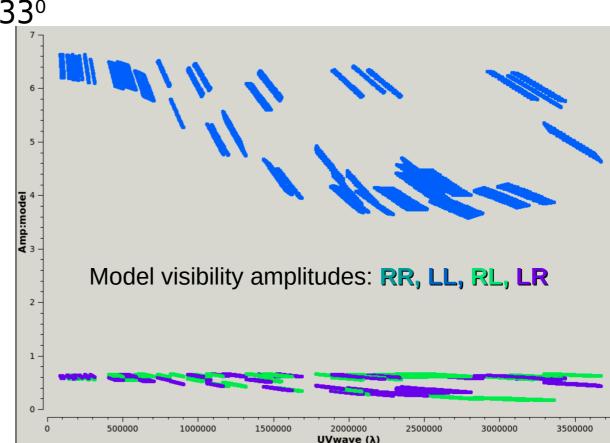
#### Polarisation angle calibration

- Ionosphere/ISM Faraday rotation of linear pol. angle  $\chi$  by angle  $\beta$ 
  - Depends on magnitude and direction of magnetic field B and depth/density of ionised medium

E

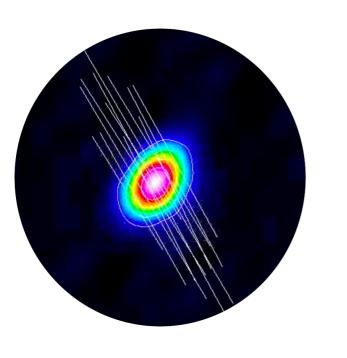
- Correlations RL, LR make Q and U
  - Based on observed R L offset
- Derive correction to align with astrophysical standard

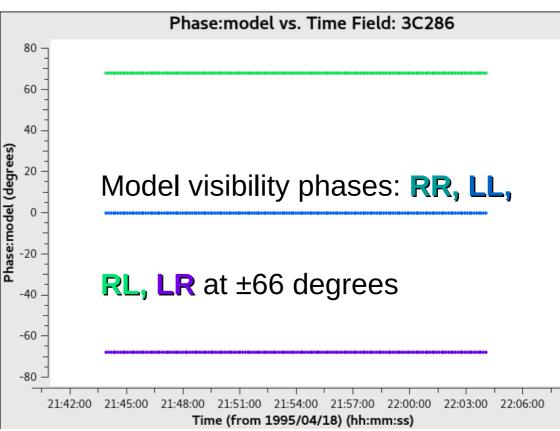




CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=1945979

К

## 3C286 polarised model


- 3C286 has strong, well-studied, stable polarisation
  - see VLA etc. catalogues
  - e-MERLIN model (slightly resolved around 5 GHz)
    - Position angle  $\chi$  33°
    - ~10% polarised

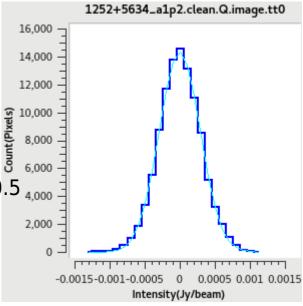





## 3C286 polarised model

- 3C286 has strong, well-studied, stable polarisation
  - see VLA etc. catalogues
  - e-MERLIN model (slightly resolved around 5 GHz)
    - Position angle  $\chi$  33°
    - ~10% polarised






## Polarization imaging

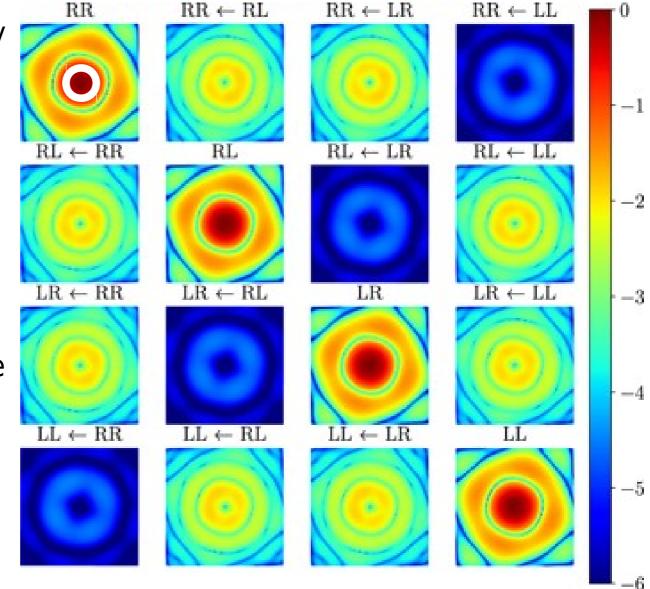
- Apply total intensity calibration and:
  - Cross-hand delay corrections KCROSS (if required)
  - Leakage 'D' terms
  - Parallactic angle correction
  - Pol. angle correction
- In tclean: stokes='IQUV' (or chosen products)
  - Even if you expect no circular pol., V useful diagnostic
- Interactive masking: click 'all polarizations' if you expect the same total *I* and polarization distributions
  - I may be dynamic range limited, lower noise in QUV
  - After cleaning, can make:
    - (linear) polarized intensity image  $P = (Q^2 + U^2)^{0.5}$
    - polarization angle  $\chi = \frac{1}{2} \operatorname{atan}(U/Q)$  (use atan2 to remove ambiguity)

# De-biasing and blanking

- Linear polarized intensity  $P = (Q^2 + U^2)^{0.5}$ 
  - Q and U image noises sums to zero
    - But P image must be entirely positive
  - *P* will appear too high due to 'Rician bias'
- Rician bias is complicated depending on S/N
  - See e.g. Wardle & Kronberg 1974; Bon Wong Sohn 2011
  - Weak polarization:  $P_{\text{corrected}} \sim (P_{\text{obs}}^2 \sigma_P^2)^{0.5}$ 
    - Rayleigh approximation at low S/N
  - CASA task immath can de-bias using parameter sigma
    - Or viewer estimates bias to remove for suitable images
- Also blank pol. angle image input maps at  $\sim \sigma_P$



## **Polarisation accuracy**

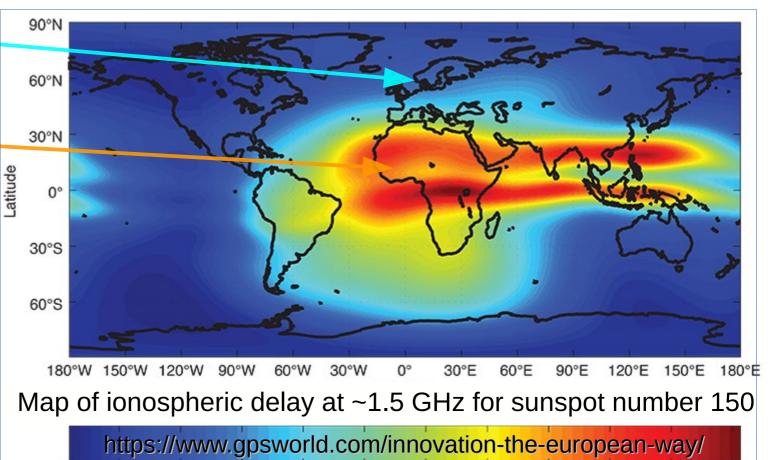

- Leakage: We assumed 0319+4130 is unpolarised.
  - Apply the polarisation calibration
  - Image 0319+4130 and make Poli P image
    - At I peak position, P / I is fractional linear leakage
- Polarization Angle: 1331+3030 core has constant  $\boldsymbol{\chi}$ 
  - In aperture enclosing I peak, measure Pola ( $\chi$ ) rms
- Circular polarization
  - − At cm  $\lambda$ , resolution ≥few mas, QSO cores have V~zero
    - Apparent V tells you circular leakage
    - Measure 0319+4130 V / I

## Additional considerations

- Bad data, especially RFI can affect polarisations selectively
  - Make sure all correlations are flagged if one is to avoid biasing polarisation
- Even if you are not interested in polarization, it should be calibrated for high dynamic range, wide-field imaging
  - The I, Q, U, V primary beam responses differ
- For high accuracy on long baselines, parallactic angle rotation should be corrected to align the L and R phases
  - Position error ~1% interferometric beam at 1.6 GHz
    - e.g. 2 mas at 200 mas resolution significant at S/N >100
- I is affected by leakage from V for circular feeds and (worse) from Q for linear feeds

## Primary beam response

- Primary beam affected by surface setting, asymmetry, relative feed orientation, receiver optics, reflections...
  - Colour log scale of fractional sensitivity (diagonal plots)
- Off-diagonal plots show asymmetries and leakage
  - <few% within FWHM (white circle), as for 3C277.1
- Direction-dependent calibration essential for wider fields




VLA sensitivity and leakage Jagannathan et al. 2017

22

## Ionospheric variability

- 1) Effective path to Dwingeloo ~10m shorter than to Kutunse
- Models to correct delays during observations
- TEC monitoring to correct after data recorded
- 4) Final corrections derived from astrophysical standards



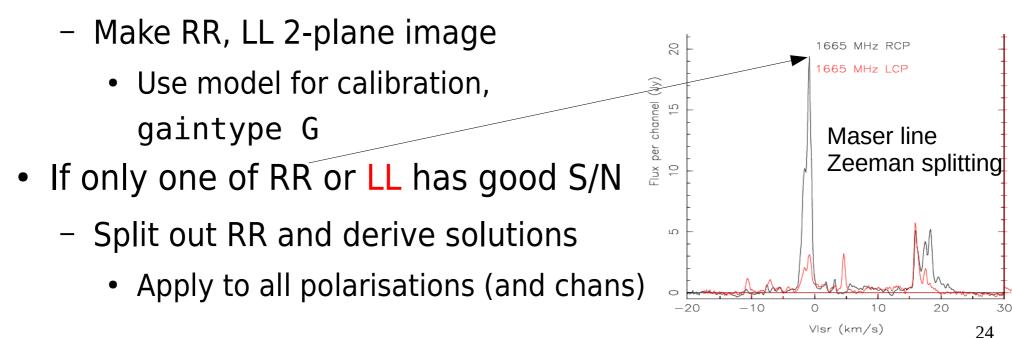
Meters of delay

|   | Standards    |              |           |                |             |         |
|---|--------------|--------------|-----------|----------------|-------------|---------|
| • | For cm-wave, | small field, | assume pe | er observation | corrections | suffice |

- Additional issues for VLBI
  - Polarisation calibrators may be highly resolved
  - Can use simultaneous short-spacing (e.g. VLA for VLBA) model

22

e


16

18

20

## Targets with circular polarisation

- Circular feeds: same use of calibration sources
  - Including polarization calibration if all 4 pol products
- Target self-calibration: Do not use total intensity model as that forces RR=LL and removes  ${\cal V}$
- RR and LL both strong (bright source &/or small V)



## Linear Feeds (XY e.g. ALMA, ATCA)

Leakage **D** in the Linear Basis:  $V = DPV^{true}$ : Visibility **V**; Stokes IQUV; parallactic angle **P** effect  $\Psi$ 

Contaminating fractions *Ud* etc

• Linearized, sorted, dV~O, regrouped Stokes

$$V_{XX} = (\mathcal{I} + Q_{\psi}) + \mathcal{U}_{\psi}(d_{Xj}^{*} + d_{Xj})$$

$$V_{XY} = (\mathcal{U}_{\psi} + i\mathcal{V}) + \mathcal{I}(d_{Yj}^{*} + d_{Xj}) + Q_{\psi}(d_{Yj}^{*} - d_{Xj})$$

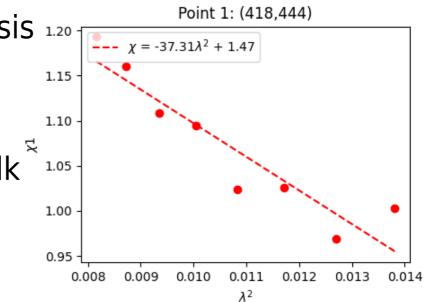
$$V_{YX} = (\mathcal{U}_{\psi} - i\mathcal{V}) + \mathcal{I}(d_{Yj}^{*} + d_{Xj}^{*}) + Q_{\psi}(d_{Yj}^{*} - d_{Xj}^{*})$$

$$V_{YY} = (\mathcal{I} - Q_{\psi}) + \mathcal{U}_{\psi}(d_{Yj}^{*} + d_{Yj}^{*})$$

Cross-hands complex offset proportional to I, constant in time

Leakage in all correlations, frequency-dependent

## Linear Feed Data Calibration (dish)


- Observe polarization calibrator 3 times over at least 3 hr
  - Significant but unknown polarization
- Calibrate total intensity of bandpass and phase-ref cals
  - Bandpass, time-dependent phase, amplitude gaintype T
    - i.e. average XX, YY (no assumptions about polarization)
- Time-dependent cal of pol. cal.: gaintype G to keep X, Y separate
- Polarization calibration
  - Cross-hand delay
  - XY phase offset
  - Estimate Q and U from calibration gain variation with parallactic angle
  - Remove parallactic angle, re-calibrate XY YX using improved QU model
    - Remove residual time-dependent errors
  - Solve for leakage
- The good news: known feed orientation properties provide good estimate of 'true' polarization angle
- See e.g. ALMA 3C286 CASA Guide, Ivan's 2017 ERIS tutorial

## Additional resources

- VLA polarisation CASA guide No. 2.3 https://casaguides.nrao.edu/index.php?title=Karl\_G.\_Jansky\_VLA\_Tutorials
  - Including Rotation Measure synthesis 1.20
    - Change of pol. angle  $\chi$  with  $\lambda^2$  due to source plasma
- References as at end of Calibration talk
- Brentjen's talk (LOFAR)
- Hales 2017AJ....154...54H

Calibration Errors in Interferometric Radio Polarimetry

- VLBI polarization calibration in CASA
  - Marti-Vidal et al. A&A, 646 (2021) A52
  - Janssen et al. A&A, 626 (2019) A75

