Design Specification for the
Post-Correlator Integrator
in the EVN MKIV correlator

EVNDOC #112

VERSION 1.00

Harro Verkouter

December 18, 2001

1 What is the Post Correlator Integrator

The Post Correlator Integrator (PCInt for short) is a device that will enable
enhancement of the scientific output of the EVN MKIV correlator ! and/or
perform various calculations on the data e.g. correction, normalization, FFT.

As the name of the device suggests, these calculations will be carried out post-
correlation. This means that the geometrical delay model has been applied to
the datastreams and that actual correlation has already taken place.

Without the PCInt, the correlated data would be flushed to disk, ready to be
inspected and if found good, exported to the end user: the PI. With the PClInt
in place, an intermediary step after flushing to disk and prior to exportation
could be inserted. The output of the PCInt would then be used as input to
the inspection/export stage. As such, the output of the PClnt is similar to the
output of the correlator itself.

As an aside, even if the PCInt would do no processing at all, it would still
enhance the output of the correlator just by enabling subsecond integration time
for the whole correlator (256k complex lags/integration). This is something we
cannot sustain with the current setup.

IThe PCInt could be used by both the EVN and the DZB correlators. It is our goal to
keep development as parallel as possible between the two systems. However, some parts of
this document may be more DZB specific whereas other portions may be more EVN specific.

Design of the PClInt 2

2 Functional Requirements

This section will briefly discuss the various envisaged functions the PCInt would
have to perform, as well as some of the requirements that we would like the
system to fulfill.

2.1 Functions

This section lists the functions that we already know we want the PClnt to
perform. It is not unimaginable that in the future more functions will be added.

o FFT. Transform the correlated lag data into the frequency domain. Most
of the astronomical data processing software works on data in the fre-
quency domain.

e Multiple Field Center processing. By applying a (time dependent) cor-
rection to the already correlated data, it is possible to produce a new
datastream that behaves as if it was correlated with a different phase
center.

e Filter. It must be possible to filter out data that matches (or does not
match) various criteria.

o Integrate. It must be possible to integrate the data.

e Normalization. The data coming from the correlator must first be properly
normalized.

e Corrections. It must be able to apply various corrections, e.g. quantization
corrections.

o RFI Mitigation. This item is DZB specific. For the WSRT, the PClnt
would be used to detect/filter RFI spikes in the data.

2.2 Requirements

It was assumed that the PCInt always at least did some form of datareduction;
integration or FFT’ing the data. Recent discussions, however, revealed that
there are applications in which it is useful to dump the raw correlator data at
its maximum rate. This led to a notion of possibly pushing the requirements
for the whole system. It was felt that 160MByte/s was the maximum useful
datarate. This means that the requirements have shifted (upward) with respect
to the previous design. At this point I will refrain from specifying more detailed
datarate requirements. In the end, all that counts for the design of the system
is the total anticipated datarate it has to cope with. In the orginal specification
a number of 40MByte/s is targeted at. In the new design we will target at
160MByte/s sustained datarate.

Design of the PCInt 3

3

Installation requirements

Whichever solution for the PClInt is chosen, it is clear that it should fit in the
existing physical, electrical and software environment. This section will briefly
describe the constraints we know of.

3.1

3.2

3.3

Physical environment

Our correlator consists of four VME racks. Per rack there are some unoc-
cupied VME-slots. The equipment should fit in these slots. This implies
that the boards have a 6U VME form factor.

The PCInt will read data from the correlator boards via a high speed serial
link, a so called COMM-port. The lenght of this cable is limited; if the
length exceeds = 25¢m the throughput of the cable will/can be affected.

Any equipment installed (either in the VME racks or somewhere else)
must provide easy access to cabling and or pushbuttons (for reset?).

Heat production must be controlled. It may prove necessary to install
more fans or increase the heat dissipative capacity of the existing system.

Electrical environment

All equipment should comply to european voltage levels: 220V AC/50Hz.

The boards to be placed in the rack should be compliant to the VMEG64
standard.

The PCInt must interface to the standardized Texas Instruments C40-
high speed serial link.

Single PClInt units will interface to a network infrastructure (ethernet) us-
ing normal UTP cabling, 10/100BaseTX. Sometime in the future the dat-
achannel may be enhanced to use 1000BaseSX or 1000BaseFX, whichever
is more appropriate.

Software environment

For data transport and control message transport over the network we will
be using standard TCP /IP socket communication.

We will strive to integrate the PCInt control as transparently as possible
within the structure of the Jodrell Correlator Control Software, JCCS.

Input data formats need to be defined. We have the input from correlator
board to PCInt and we could also regard the raw data which is stored on
disk as input to the offline processing software and hence we could discuss

Design of the PClInt 4

it as well under output formats since it is the output of the online data-
capture software. The format of the data as it comes from the correlator
boards is available from Albert Bos.

e Qutput dataformats should be specified. There are two points in the
system at which output has to be defined: how the raw data coming
from the individual PCInt boards is stored on disk and second, how the
(optionally) processed data is stored on disk. The fact that after dumping
the data to disk processing is optional hints at that maybe there should be
no difference between these formats at all. Also, it must be kept in mind
that we will want to read the (optionally processed) data into ATPS++.
This has implications for our program j2ms2, which is responsible for doing
just that.

o Realtime constraints. Basically, in the whole PCInt there is only one
action which is time-critical. It is the reading of data off the COMM port.
This task has to complete before the new integration arrives at the COMM
port. Sending the data out over e.g. the ethernet may take longer than a
single integration. It is necessary to buffer the data in that case.

Design of the PCInt)

4 Implementation details

In this section we will propose an implementation capable of satisfying all pre-
viously mentioned requirements.

The diagram shows a schematic view of the system. All components shown on
the figure will be discussed. You will find the multiplicity of the components
listed. Sometimes these multiplicities are optional, not known yet, subject to
how much money is available or subject to other constraints but at least envis-
aged to be > 1. In these cases the multiplicity is noted by a variable in italic
font. Possible multiplicity of components has a lot of impact on the design of
software. Therefore it is advisable to identify all locations where you would
want multiplicities > 1 as early as possible in your project.

The idea behind the design is quite simple, actually. In the current system, the
correlated data is read from the correlator boards by the Realtime system via
the VME bus. After that, the data is sent off via ethernet to the current DDD
machine where the data is reformatted and written to disk. With the PClInt
in place, the datapath will be slightly different. The correlator boards put out
the correlated data over the high speed serial link. Four correlator boards write
their data to one SBC. The SBC, in turn, puts out the data over the ethernet
onto a DDD machine where the data just gets flushed to disk. In this design it
is assumed that all processing takes place offline in order to be able to keep up
with the maximum datarate. After the data is stored on disk, offline software
is run to perform the desired actions on the data.

4.1 Glossary of components found in the system

This section will describe (shortly) all components shown in figure 1. This list
will contain the components that we will find in the system after the PClnt
has been implemented; as such some of the components will not be found in the
current system whereas others are. The items not found in the current system
will be marked with a .

CCC The Correlator Control Computer. A UNIX host running software re-
sponsible for controlling the whole of the correlator system.

Correlator rack A VME rack populated with a number of VME-boards. Each
of the four correlator racks contains the following boards:

Correlator board Custom built board where all the correlations are ac-
tually calculated. A correlator board features a high speed serial link
on its frontpanel, connected to one of the on-board Texas Instruments
C40 Digital Signal Processors (DSP).

Realtime System A UNIX Single Board Computer (SBC) acting as rack
controller. Interfaces to all the installed hardware via the VME-bus
and interfaces to the CCC via ethernet.

Design of the PClInt

il RT System (x1) ‘
A

VME

Correlator Board (x8) I

Ethernetcard

SBC (x2) ||

Cortelator rack (x4)

100TX
1000FX
(x8)

Switch

ccc

DDD (x7)

I_I—

EEE (x4) |

I FibreChannel

FC Switch

i ‘J
ReidAray (xm)

Figure 1: SCHEMATIC OVERVIEW WITH ALL COMPONENTS INSTALLED

% SBC An Intel Pentium()

based SBC with two PCI Mezzanine Card

(PMC) slots, an onboard ethernet controller, memory controller and
VME controller. The PMC slots will be fitted with

% C40 COMM A PMC module that features four high speed serial

links.
% Gbit eth A Gigabit

PMC ethernet card.

% DDD The Data to Disk Distributor. Even though there is a DDD machine
in the current system this one is marked with a %. The PClInt poses new
requirements on the DDD machine and on top of that it is anticipated
that we need more than one machine to cope with the datarate.

% EEE Evaluation and Export Engine(s). These machines are the ones where
the software runs that does the actual computations on the captured data.
In order to keep processing time within acceptable limits it is assumed that

Design of the PCInt 7

multiple machines will be running in parallel to work through the data.

% Raid Array SCSI Disks with RAID controllers feature flexible fast trans-
parent accessible voluminous storage. Just what’s needed. Maybe, cheaper
IDE disk arrays will be able to do the trick as well.

% Switch Switch(es) inserted in the datapath between the SBC outputs and
the DDD machine(s) to ensure maximum throughput and flexible signal
routing.

% FC Switch FibreChannel switch inserted between the DDDs, EEEs and the
RAID Arrays.

As is evident from this section, a lot of the necessary hardware is not available
in the current system. This design of the PClInt is scalable; it is possible to
implement it in (at least) two stages. Below these two stages are described.

4.1.1 Stage 1

The SBC comes with an embedded 10/100Mbit /s ethernet controller. We pro-
pose to use the 100Mbit link to enable subsecond integration times for the full
correlator. It should be ’trivial’ to sustain 0.25s integration with the full cor-
relator (trivial in the sense of datarate, not necessarily implementation). 0.25s
integration time means a total output datarate of the correlator on the order of
10MByte/s. Per SBC that boils down to 1.25MByte/s which is easily sustained
by the 100Mbit link.

Furthermore, the DDD host which is responsible for flushing the data to disk
can be just a single machine. Modern IDE disks can sustain 20MB/s. As far
as ethernet hardware required the following is envisaged: the eight 100MBit/s
links go into a single switch with also a 1Gbit/s link, to which the DDD host is
attached. In this stage we have a single DDD host receiving all the data.

4.1.2 Stage 2

In the next stage we will upgrade the PCInt to accomodate the full datarate.
The SBCs will be fitted with Gigabit ethernet cards, a gigabit switch needs
to be acquired and mass storage (RAID array) must be attached. The existing
100Mbit links remain in use as the route via which the SBCs boot and via which
control information can be sent/received.

It may prove to be necessary to have multiple DDDs in place in order to sustain
the desired 160MByte/s datarate. Since the amount of data produced is likely
to grow non-linearly, it is advisable to have multiple EEEs in place. It may be
possible to have just a pool of machines which can be used for DDD tasks as
well as for EEE tasks. There may be no compelling argument to have a set
of machines dedicated to DDD tasks and a set of machines dedicated to EEE
tasks. Each processing/datacapture node needs to be fitted with a fibrechannel
adapter and S/W to access the storage concurrently with the other nodes in the

Design of the PCInt 8

system (for point-to-point connections this arbitrating software is not necessary,
however, we’re not sharing diskspace either in that case).

5 Effort involved

This section will cover all tasks that need to be done in order to arrive at a
production capable system.

It makes sense to split the work into different parts: a system independent part
and an application specific part. This is to ensure that the DZB correlator can
use this system as well as the EVN correlator.

The system independant part comprises of the work that needs to be done in
order to get the correlated data stored somewhere on disk in some pre-defined
format. After that, application specific processing takes over.

Furthermore, it makes sense to investigate which tasks are needed for the two
different stages, mentioned in the previous section.

The target is to have a system ready by the end of stage 1 which has been
designed and implemented in such a way that the transition from stage 1 to
stage 2 is really an upgrade and should not introduce more development. This
can be achieved because the conceptual difference between stage 1 and stage 2
is zero: they are the same. The time it takes to do the transition from stage 1
to 2 wholly depends on how well stage 1 has been implemented.

5.1 The system independent part for Stage 1

The effort described in this section ensures that the data will eventually end up
somewhere on disk, ready for further processing.

For the test setup we require a working VME rack + HPUX RT System +
correlator boards + input board + SBC. All but the SBC is already up and
running.

Furthermore, we need a standalone Linux machine (as a bootp-server and test
DDD host) in order to boot the SBC and control it. Currently, a standalone
Linux machine is up and running.

Action 1 = We are left with ordering at least one SBC and a PMC high speed
serial link module.

5.1.1 The SBC

e The SBC must be booted with Linux. This must be set up/figured out.
We may need to build a kernel ourselves first.

e The SBC must be able to communicate with the RT System in the rack
via the VME bus. This requires a technical part (dealing with the VME
bus) and a logical part. The technical part must be developed. The logical

Design of the PCInt 9

part can be taken from the existing code since a communication protocal
has already been developed in order to control the PCInt DSP boards.

o A driver for the high speed serial links must be written. I think it is safe
to say that there is very little chance that there is a Linux driver for this
specific PMC card. The driver will enable us to read the data off the
module into the SBCs main memory.

e A task must be written that runs on the SBC which is responsible for the
following modules:

— accepting commands from the RT System
— read data from the serial links

— sort the data (would be very nice if that could be done on the SBC,
rather than offline) this requires that there must be a mechanism via
which the SBC receives the sorting information from the RT.

— tag the datablocks with an identiefier that uniquely identifies the
block (such that later on, offline task can find back where the data
is/came from)

— sends the data out over an ethernet interface Optimally, the SBC is
passive in this. It listens if somebody desires to make contact with
it. If somebody does, they will receive the data. This enables a
mechanism where the DDD host(s) decide who reads which SBC(s)
and where the SBC(s) push the data across to the DDD host(s).

— read out the correlatorboards via the VME bus and/or output the
data via the VMEbus to the RT host in the rack. The technique to
do either should be rather trivial, it needs to be discussed how to
control the SBC task to make it read/write via the VME bus.

5.1.2 The DDD host

In this section it is assumed that there will be some form of interaction between
the Online Software and the DDD host (see later on for details on this).

Given the fact that it must be possible to run all of the corrections offline as
well as doing them on the fly (if datarate low enough) and that we may want
to switch off on-the-fly normalization etc., e.g. just the raw correlator counts
are wanted, it makes sense to design a system where the capture software (the
equivalent of the current EVNFRA_TRANSFER routine) and the processing
software share a lot of functionality. A more elaborate discussion follows under
section 5.2.

At minimum, the capture software should feature the following functionality
e A basic command interface should be up and running, e.g. to shut down

the system or maybe even to start it up, preferrably also remotely. By
that it is meant that the operator does not have to log on to the machine

Design of the PClInt 10

and start processes manually but that operations can be started from a
central place, e.g. CCC.

e It is desirable to have some ’autodetection’ protocol in the system. The
DDD hosts can then dynamically keep track of which SBCs are online and
which aren’t. Simple UDP broadcasts spring to mind.

e The minimum information required by the DDD host is that it is informed
when a new job is about to begin such that it can set up its connections
and work out how to balance the load and where to put the data. The
information required contains at least the following items:

— experimentid
— jobid

— subjobid

— bocfrate

— integrationtime

— boardmask

These variables describe which correlator boards take part in the experi-

ment (boardmask), also it notifies the DDD hosts which experiment/job/subjobid

it is that is starting (needed for directory where to store the data) and
the bocfrate+integrationtime+boardmask indicates how much data is to
be expected to come off the system, which enables an algorithm to work
out a load-balancing scheme (if needed).

e The DDD hosts should be informed when a job is finished such that the
job can be cleaned up neatly, close files etc.

e Some (remote)monitoring scheme must be present such as to enable mon-
itoring the sytem from a central place

e The same holds for a debugging scheme. It must be able to access the
system remotely and find out what it’s doing.

Note that the last two are not really necessary to make a running system but
for the production system at least the monitoring should be in place.

5.1.3 The online software

From the previous section it follows that it would be nice to have some form
of commucation between the Correlator Control Computer (CCC) and the dat-
acapture hosts. As it must be possible to even control the test setup PClnt,
it makes sense that the package developed for that purpose be included in the
JCCS in due time. Since the control module most presumably will be a stan-
dalone module, it is to be expected that incorporation into JCCS will lead to no
great problems. Furthermore it is to be expected that the online software needs
to be modified in the correlator configuration area. More details on (possible)
implications for the online software can be found in the tasklist, task Ge.

Design of the PCInt 11

5.2 The application specific part for Stage 1

It is possible to define two distinct datarate domains for the DDD software. The
'low datarate’ domain and the ’high datarate’ domain. The difference being that
we define the "low datarate’ domain to be the span of datarates for which it is
possible to do the most basic corrections on the fly. Think of normalization,
quantization corrections, van Vleck corrections. In the ’high datarate’ domain
there will be not enough CPU power to perform these calculations on the fly.
The big difference between the two domains will be the format of the output
data. In the low datarate domain, the system would write floating point data,
whereas in the high datarate domain the system would write integers (just the
counters). As a result, the datafiles must contain some description of what kind
of data they contain and which processing steps have been run on them.

It is important not to forget the constraints mentioned earlier in this document
regarding dataformats. The output of processed data should for convenience be
almost equal to non processed data in order to minimize the number of different
dataformats.

Tasks to implement and considerations to take into account encompass
e it must be easy to use

e flexible/easy to configure/control operation of all available processing mech-
anisms

e it must be easy to add new algorithms or other operations (loadable mod-
ules?). Maybe even make the capture software capable of using these
modules

e be able to run parallel. Presumably we do not need real clustering software
like e.g. Beowulf. Our needs do not require loadbalancing, fail-safety or
anything fancy that is usually found in these systems.

e enable support for output to different formats?

Once these tasks have been succesfully implemented, a workable Stage 1 machine
should be up and running.

5.3 System independent part for Stage 2

In order to complete the full project hardwarewise, the following should be done.

Action 2 = Fit the SBCs with PMC gigabit ethernet controllers. It will shorten
development time dramatically if the card comes with a Linux driver.

Action 3 = Buy a gigabit switch with on the order of 16 ports. At least eight
inputs and two or more outputs (i.e. two or more DDD hosts) are necessary.

Design of the PCInt 12

Action 4 = Buy one or more RAID systems, the fibrechannel switch with ~eight
ports. The estimate is that four ports is not enough to accomodate more than
one RAID system, more than one DDD hosts and more than one EEE host.
Furthermore one fibrechannel controller and license for the S/W that enables
concurrent access to the RAID systems between the machines per machine has
to be aqcuired.

From the software point of view there should be little changes to be made, as
argued before.

5.4 Application specific part for Stage 2

Some of the development mentioned in section 5.2 might be put off to here. At
this stage it becomes really important to be able to do something to the data.
Provided Stage 1 was completed according to the description given before, this
should not pose a problem. It would mean enhancing functionality or adding
new functionality.

Design of the PClInt 13

6 Facts and figures

This section will discuss expected datarates, throughputs and will aim to provide
justification for choosing the components described in figure 1.

It is not necessary to discuss possible astronomical requirements in too great
detail. As mentioned before, for the design of the PCInt and the choice of com-
ponents, it is enough to know what the maximum expected output datarate
of the system will be. How the correlator is actually configured does not mat-
ter too much (e.g. think of recirculation enabled yes or no, cross polarization
products yes or no).

6.1 Output of the Correlator boards

Let’s define (for ease of use) the basic unit of correlation to be the full readout
of one correlator board (i.e. 32 correlator chips). It is not necessary that the
correlator board is fully used all the time but for the calculations we want to
get a figure for the maximum capabilities of the system.

For these considerations it is sufficient to assume that all actions on the data
(these can be left undefined at the moment) are synchronized by a central inter-
rupt: the Begin-Of-Correlator-Frame interrupt, or BOCF interrupt for short.
This BOCF interrupt occurs with a user-configurable frequency. In the calcu-
lations this BOCF rate will be identified as fyocr, in units of Hz.

For one correlator board, a readout of all registers of all correlator chips yields
20,000 32-bit words of data. This includes 16,000 32-bit words of correlated
data and 4,000 32-bit words of monitor data. This leads to a datavolume of

DV = 80,000 bytes
= DV = 78.125 kByte per readout (1)

The outputdatarate for one correlator board now can be linked to the actual
BOCF frequency. At each BOCF interrupt, the correlator chips are readout.
Recirculation might be configured. This means that the data is sent through
the correlator multiple times. Let us call this the recirculation factor n,ecire,
indicating exactly how many times. What happens is that the correlator board
first does Nyecirc readouts before one sample is complete. As a result, one
sample is produced every Jvoer 14 might be that the user desired to integrate
for some amount of time. Integratlon is done on whole samples and it is a user-
configurable parameter, nintg. Nintg Will indicate how many samples the user
wishes to integrate. Consequently, at the output of one correlator board we will

Design of the PCInt 14

measure a datarate equal to

(DV : nrecirc) : (fba—rf)

DR — Nrecire
Nintg
— (DV) fbocf)
Nintg
— 78,125 Jtoet kByte /s ()
Nintg

As is clearly visible from equation 2, indeed the recirculation factor has no effect
on the output datarate.

It is now possible to estimate worst case (i.e. maximum) datarate figures for
both the EVN and DZB correlators. From a datarate point of view the main
difference between the two is the maximum bocf rate; fyocy = 64 Hz for the
EVN correlator and fy,.f = 100 Hz for the DZB. Assuming no integration takes
place, the following maximum expected datarate per correlator board result

DRgyvn = (78.125 - 64) kByte/s

= 5,000kByte/s

= 4.88 MByte/s (3)
DRpzp = (78.125 - 100) kByte/s

= 7812.5kByte/s

= 7.63MByte/s (4)

6.2 The SBC
6.2.1 Into the SBC

The high speed serial link between the correlator board and the SBC has a
listed bandwidth of 20 MByte/s. Each PMC-COMM module has four of such
links. Each SBC will receive data of four correlator boards. The manual of the
PMC-COMM module states that the bandwith decreases to ~ 15 MByte/s if all
four channels are used in parallel. Therefore the assumption is that 15 MByte/s
will be the maximum throughput of the serial links.

It is unlikely that the system can sustain this maximum throughput. 50 % of
the maximum throughput is more likely to be a value that can be sustained.
This leads to an estimated sustained throughput per serial link of

BWeomm = 7.5 MByte/s (5)
This leads to the following conclusions re. performance of the COMM port

e For the EVN no problems are expected with the COMM ports since the
expected maximum datarate is ~ 60% of the estimated sustained through-
put

Design of the PClInt 15

e For the DZB maximum throughput may prove to be difficult since the
maximum expected datarate is practically equal to the estimated sustained
datarate. It remains to be seen if the COMM ports can actually sustain
7.5 MByte/s.

As it is also possible to read the data into the SBC from the correlator boards
via the VME bus, we can estimate (based on the performance of the VME bus)
what datarate can be achieved using this route. Tests by Albert Bos have shown
the VME bus to be capable of transferring data at a rate of ~ 7 MByte/s. From
this we can draw the following conclusions:

BWVME =7.0 MByte/s (6)
BW it corrboara = 0.875 MByte/s, TMByte/sfor 8 boards (7
0.875
= Nreadout gz = a
= Nreadout,q,; =~ 11, using 1
1
= Tn min,yme — 3 2
intymin, Nreadout gz
= Tint,min,vme =~0.1s (8)

6.2.2 Inside the SBC

Once the data have arrived on the PMC-COMM module, the data have to be
transferred to the SBC’s main memory. From there it must be transferred to
the output device. All devices on the SBC are connected to the system bus, a
32bit/32 MHz PCI bus. The theoretical maximum throughput of such a PCI
bus is 132 MByte/s. Experiments by others ([De Vos/Kant], [MkV recording])
have shown that is possible to sustain at least 60 MByte/s over this bus.

As noted before, the data have to be sent over the PCI bus twice. This leads to
the following total datarate that has to be sustained by the PCI bus on the SBC
(remember that one SBC has to deal with the data of four correlator boards)

DRpcr,evy =2-(4-DRgvnN)

=2-(4-4.88) MByte/s, using eq. 3

= 39.04 MByte/s (9)
DRpcr,pzB=2-(4-DRpzB)

=2-(4-7.63) MByte/s, using eq. 4

= 61.04 MByte/s (10)

Comparing equations 9 and 10 to the measured sustained throughput of 60 MByte/s,
the following can be concluded

e For the EVN it seems that sustaining the maximum datarate is feasible
since the maximum datarate is ~ 66% of the measured sustainable rate.

Design of the PClInt 16

e For the DZB, again, it seems that sustaining the maximum datarate re-
mains questionable. Again, the expected maximum datarate is practically
equal to the measured sustainable throughput.

6.2.3 Out of the SBC

For the output of one SBC, two envisaged media are envisaged. The first will
be a normal 100Mbit/s ethernet link. The second will be a Gigabit ethernet
adapter. Other media exist but ethernet is flexible, (relatively)cheap and will
meet, our requirements.

Condider the maximum output datarate of one SBC. As stated before, one SBC
will be responsible for handling data of four correlator boards, hence we find

DRouiput,evn =4-DRgevn

=4 -4.88 MByte/s, refer eq. 3

= 19.52 MByte/s (11)
DRowiput,pzB =4-DRpzB

=4 -7.63 MByte/s, refer eq. 4

= 30.52 MByte/s (12)

Compare this to the estimated throughput of the ethernet connections

100Mbit For a 100Mbit link, using TCP/IP protocol, the theoretical through-
put is ~ 9.5 MByte/s. However, a more reasonable figure for sustained
throughput would be 50% of the maximum throughput, i.e. ~ 5MByte/s.

Gigabit or, 1000Mbit. Basically, the estimates are just a factor 10 higher,
amounting up to ~ 50 MByte/s. This is a very low estimate since [De Vos/Kant]
have shown that 60 MByte/s can be sustained over Gigabit ethernet.

It is obvious that a 100Mbit link cannot be used for the maximum datarate. In
both the EVN and DZB cases integration has to take place. It is possible to
estimate the lowest integration time for both systems. Since integration time,
bocf rate and output datarate are linked together by eq. 2 and the fact that we
want to limit this value to 1.25 MByte/s (= ;—oab¥te/s___y it follows

4 correlator boards

195> 763102 Jooet
Nintg

fbocf

Nintg

Nintg 1
> — > — 13
fbocf - 16 ()

Equation 13 is in units of time. It means that whatever the bocf rate is, the

= <164

integration time must be > %th of a second in order for the 100Mbit link to be

able to sustain the datarate.

Design of the PCInt 17

In the case where the data is read into the SBC via the VME-bus, again the
100Mbit link seems to be the limiting factor. In this case, only one SBC will be
used, hence only one 100Mbit link will be available for transport to the DDD
host(s). As the estimated throughput of the 100Mbit link is ~ 5 MByte/s and
the fact that this speed is lower than the VME-bus speed, if follows that we
cannot sustain 0.1 s integration with this system. We find

50>8-7.63-102. f”—f using 7
Nintg

= fbocf

Nintg

Qo

<82

Nint
= it

4
fbocf (1)

| =

In short, an integration time of 0.125 s should be feasible.

For the Gigabit ethernet adapter the actual estimate is not all that important
since either of the estimates is well beyond the maximum of the two anticipated
maximum datarates. The ‘worst case scenario’ is the DZB situation, where the
SBC has to deal with 30 MByte/s. This required bandwidth is ~ 60% of the
lowest estimate for the sustained throughput hence no problems are expected
here for both systems.

6.3 Output of the full correlator

As the system contains eight SBCs it is possible to work out the requirements
for the offline system. Evidently it has to be able to deal with the combined
output of all the SBCs. The total maximum output datarate of the two systems
is

DRgyn =8-DRspc,EVN

= (8 -19.52) MByte/s, using eq. 11

— 156.16 MByte/s (15)
DRpzp =8-DRsBc,pzB

= (8 -30.52) MByte/s, using eq. 12

= 244.16 MByte/s (16)

These numbers indicate the potential of both these MKIV correlators. However,
it must be noted that this is lag-data. As such, the net scientific output is half
the numbers given in egs. 15 and 16.

Moving these amounts of data around in a network should not pose real prob-
lems, provided that the network infrastructure is Gigabit ethernet based. This
includes Gigabit switche(s) and multiple datacapture hosts. Multiple switches
may or may not be necessary, depending on the actual design of the switch. Mul-
tiple capture hosts will be necessary to sustain the maximum datarate. More
on that topic in the next section.

Design of the PClInt 18

6.4 Capture and Storage

Following the data downstream, two hurdles have yet to be taken. Capturing the
data that has been sent across the ethernet and storing it on disk. As the total
datarate of either system is very high, the datacapture hosts and mass storage
device(s) attached to them must be able to deliver this. The requirements pose
a firm constraint on the design of the infrastructure.

6.4.1 The datacapture hosts

First the datacapture hosts are encountered. Since all of the network will be Gi-
gabit ethernet based, each datacapture host will have to be fitted with a Gigabit
ethernet card. For the moment let’s consider standard PCI based workstations
(cheap, readily available and easy to develop upon). Estimates in previous sec-
tions (see secs. 6.2.2 and 6.2.3 for PCI bus performance and Gigabit ethernet
throughput) show that one datacapture host should be able to capture data
for two SBCs. This leads to the conclusion that, in order to sustain the full
datarate, four datacapture hosts need to be in place.

Again it must be noted, that the situation for the EVN is more likely to be sus-
tainable. The requirements for the DZB system are (again) quite close to either
the measured sustainable throughput or the theoretically estimated throughput.

6.4.2 The Storage subsystem

As for the storage subsystem not many candidates are available, the most logical
choice seems to be a SCSI based RAID array. It must be noted that these RAID
arrays are not cheap. However, they are the sole solutions that will surely meet
our requirements. It seems appropriate to use RAID arrays in a so called Storage
Area Network (SAN). The difference between plain RAID systems and SAN is
easily explained as follows. Raid arrays can be attached to a single host machine
via a 'normal’ RAID controller. Now the RAID array is only accessible from this
specific host. In order to circumvent that, vendors attach the RAID controller
to a Network Interface Card (NIC) and put the whole assembly in a single box.
Nowadays, this NIC most often is a FibreChannel controller. As a result of this
solution, the storage has become an entity in the network. The storage logically
resides at the same level as a hub, router or workstation. The connection from a,
host machine to the storage is then routed via the FibreChannel network rather
than a direct connection via the PCI bus/RAID controller.

Some of the unique features of these SAN-RAID arrays include

e Scalability: at any time, the storage capacity can be enlarged simply by
putting in more disks (provided the device is not full yet).

e Speed/Safety: these systems are specifically designed to either get the
most performance or the most safety out of the system. Evidently, the
focus in the case of the PClInt is on speed.

Design of the PClInt 19

e Flexibility: since these SAN-RAID arrays are separate units, i.e. not
attached to any particular computer, the storage can be easily shared
transparently between multiple machines.

Measurements have shown (see [Rorke Galaxy45]) that write transfers up to
135 MByte/s can be sustained by these arrays. Again, it might be safer to
assume a 60 % of that, resulting in 80 MByte/s. This would indicate that in
order to sustain the full datarate for the EVN, two parallel RAID arrays would
be necessary. For the DZB situation, three parallel arrays would be necessary.
However, this might prove to be impossible to configure since there are four
datacapture hosts. It would mean that the data has to be split. Easier would
be to implement four parallel arrays. If that can be done is fully dependent on
the financial situation.

Concluding, it may be stated that the total datarate sustainable by the system
can be expressed as follows

DRtotal,sustaz’nable = Ngrray - 80 MByte/S (17)

where ngrrqy is the number of parallel RAID arrays present in the system.

Design of the PClInt 20

7 Targets, Tasks and Deliverables

This section aims to provide a timeline, a list of work-packages, milestones and
decision points. This is to have a clear overview of the work involved and events
by which it is possible to track progress in the development. Also, some of the
vagueness of previous sections is removed. The discussions in previous sections
mostly listed an argumentation with optionally some alternatives, suggestions
or enhancements that could be thought of. This section aims to provide a clear
road to a defined system.

Since it is difficult to present parallel tasks in a textdocument like this, the
presentation might be somewhat different than when looking a project plan.
The goal is to order identified tasks logically together. Where possible parallel
development is an option, it will be mentioned explictly.

7.1 Preliminaries for the test setup

Identified tasks for constructing a test setup incorporate

1 Getting the correlator testrack back online. The rack has been switched off
for a year. In the meantime the network situation re. the HP Realtime system
booting from daw02 has changed. Includes

a The development PC (with TexasInstruments’ CodeComposerStudio soft-
ware installed) needs to be found and installed near the test rack.

b It must be verified that the PC can communicate with the correlator board
DSPs via the JTAG emulator.

2 There must be a Linux PC installed near the test rack. This machine will
be used as control and datacapture host. As such the following needs to be
fulfilled

a Before one or more SBCs become available, set up this PC to have two
ethernet cards. One will be used for setting up a private network with all
the SBCs and the control PC in it. The other will preferrably be used to
connect the control PC to the local NFRA network (needs to be discussed
with systeembeheer). The idea is that network traffic from and to the SBCs
does not interfere with the NFRA network.

b The SBCs need to boot from a remote computer. This control PC will act
as the bootp-server. This must be set up.

3 It is necessary to select and buy at least one SBC so development in that area
can start.

4 The PMC-COMM module can be ordered. However it is not as urgent as the
SBC. Development of the SBC software can start long before a PMC-COMM
module becomes available (see task 6f).

Design of the PCInt 21

7.2 Making the test setup work

In order to make the test setup work, a lot of software needs to be written.
Development of some parts of the software can start before a SBC or PMC-
COMM module is available.

5 Since it is likely that the capture software and the processing software will
become complex projects, a solid make-system will have to be set up. This
make-system should include support for

a easy adding of third party libraries and easy control of where these support
libraries are located.

b easy adding of libraries, modules and applications. This encompasses that
new code will be picked up automatically by the system.

¢ it must run under Linux as well as under Solaris (Sun).

6 A lot of work can be done without hardware really being available. Actually,
these tasks preferrably should be done without using any hardware! Things
that spring to mind are design issues like

a infrastructure/datapaths. Think about and write up how the envisaged
system should be controlled. It must be defined how to move information
around the system. Discuss which parts in the system need which kind of
information to operate properly. How to set up control paths to all ele-
ments. Details of communication messages need to be thought of. Discuss
protocols for communication. Also, discuss a protocol for autodetecting
which hosts in the network are available. It enables the software to dy-
namically find out which SBCs, DDDs and/or EEEs are currently online.
Compare to e.g. the ARP protocol for ethernet networks.

b interface. How to interface to the user. Identify which parts need to be
interactively controlled and which parts dont. Think of the processing
software. How to indicate which processing is desired and how to optionally
control the parameters of the processing.

¢ SBC task. Think of a design how the SBC reacts to commands and how
it makes things happen. This propably involves Inter-Process Communi-
cation (IPC) as there may be different processes running on the SBC, e.g.
the process that monitors the VME bus for commands, the process that
monitors the ethernet for incoming connections.

d dataformats. Define how the data is represented at each stage in the pro-
cess. Includes description of diskformat after dumping and/or processing.

e operational environment. It must be discussed and defined how operation
of the system is envisaged. Questions that have to answered include how
does one indicate that the PCInt should be used? Do we want to be able
to switch between using/not using the PCInt at all? Does the PCInt dis-
rupt current operational software? There are a number of programs in

Design of the PCInt 22

the operational environment that rely on output of certain programs. Fur-
thermore, the administration of jobs that have been correlated might be
inflicted. Backup procedures might have to be reviewed and investigated.
Error checking: how does JCCS react if not all of the hardware appears
to be present. At what level of the JCCS should the PCInt be visible and
to what extent should it be controllable/monitorable? The advent of the
PClInt also has implications for the data_handler/CDI in JCCS. These pro-
cesses migh time out since they will not be used if the PCInt is used. In
short: investigate the impact of the PCInt and identify where in the JCCS
awareness of the PClInt is needed.

Apart from designing, implementing software could already start since the
SBC will be running Linux. Given that the high level software will be coded
in C++ and provided that the proper abstractions are made in the design,
a lot of high level software can be developed and tested, even without the
actual hardware in place. The object oriented nature of C++ allows for easy
implementing fake hardware. Softwaredevelopment can be started on

f A framework for the SBC software. Abstractions can be made for control
channel, data-input path, data-output path and optionally some processing
(sorting). . This enables good and easy testing of the logical level of the
software.

g A framework for the processing software can be designed. Interfaces be-
tween the individual processing modules can be defined and some de-
fault/test modules can be developed to test the functionality and the control
of the system.

7 When a SBC comes available, work must start on the following issues

a The SBC must be made to boot off a bootp-server. Once the SBC boots a
Linux kernel, development could start on the SBC-specific software.

b Get the VME driver to work, i.e. figure out how to program the VME
controller such that communication between the HPUX-Realtime system
in the correlator rack and the SBC is possible.

¢ Test and verify the control path RT<SBC.
d Implement, test and verify the control path DDD<SBC.
e Implement, test and verify datapath DDD<SBC.

f Implement, test and verify datapath CorrelatorBoard<-SBC. It must be
noted that this cannot be done unless a PMC-COMM module is installed
and a driver is available (see task 8). Also, the data must be sorted by the
SBC. This is an intermediate step between receiving the data and sending
it out again.

g Heat production and powersupply issues must be investigated. The correla-
tor racks of the production correlator must be upgraded; a new powersupply
must be installed.

Design of the PClInt 23

Of course, not only the SBC software needs to be written, the existing control
path from CCC—RT—PCIntDevice must be validated.

h The currently used control software (dzbtp, dzbsp) might have to be changed
to reflect the change in PCInt hardware.

i Functionality may have to be added to support operation/control of the
PClInt

8 If a PMC-COMM module is available and installed on the SBC work can start
on coding a driver for the module. This driver makes the hardware available
to the Operating System of the SBC, Linux. Once operation of the device is
available communication between the CorrelatorBoard and the SBC can be
tested and implemented.

By now, if all previous tasks have been completed, development can continue
on further. More specifically, the following tasks will focus on operating a test
version of the system.

9 Develop a module that really controls the SBCs from a central place. This
means implementing a scheme that should have been thought out in task 6a.

10 The SBC control module must be functional and must respond to the various
commands (via ethernet as well as via the VME bus).

11 Develop a module that controls the DDDs from a central place.

12 The DDD task must be functional, in that it must respond to configuration
commands, it must be able to start and stop capturing data.

13 Some elementary processing modules (maybe even non-functional ones) should
be available and should eventually be applied on-the-fly, in order to test the
logic of the system.

14 A basic off-line utility should be produced, also to test offline processing of
the data.

It would be nice to have multiple SBCs and/or DDDs available by this time.
Not necesseraly all hardware but just to find out if the control modules, the
datapaths etc. all deal correctly with multiplicities > 1. Most notably, the mul-
tiplicity of the SBCs is more important at this stage since it was envisaged that
at the end of Stage 1, a moderate datarate (~ 10 MByte/s) could be sustained.
This requires all the SBCs to be in place but there is no need yet for multiple
DDDs since a well equipped workstation should easily be able to deal with this
datarate.

7.3 Migrating from test setup to Stage 1

Obviously, some more work must be done before the test setup can be declared
to have reached the end of Stage 1. As noted before it requires (hardwarewise)

Design of the PCInt 24

15 Buying all SBCs and PMC-COMM modules.
16 Buying and installing powersupplies in the correlator racks.

17 Installing the PMC-COMMs on the SBC and install the SBCs in the correlator
racks.

18 Buy a multiple 100 Mbit/s = 1Gbit/s switch and cabling.

19 Buy a well equipped workstation and install it in the basement as DDD. It
should feature (besides the usual equipment)
Gbit ethernet card

10/100Mbit card to attach the machine to the local NFRA or basement
network

A lot of diskspace

e Maybe multiprocessor

Also software effort is involved in migrating from the test setup to Stage 1.
Identifiable task are

20 Do incorporate the PCInt control module in JCCS.

21 EVNFRA_SETUP, which is the routine via which CCC controls the Correla-
tor setup, must be adapted to be able to configure the PClnt.

22 JCCS must be PCInt aware and comply to the requirements mentioned in or
following from task 6Ge.

23 The processing software must be able to at least do basic processing like van
Vleck correction, quantization correction and normalization.

24 The offline software j2ms2, which is responsible for translating correlated data
to AIPS++ MeasurementSets must be changed such that it can interpret the
output of the DDD software. This will enable easy inspection of the data as
well as the possibility of shipping out the data to the PI.

Provided that these tasks are fulfilled, the PCInt has now reached an operational
stage. It should be feasible to make regular use of the PCInt from this stage on.

7.4 Upgrading from Stage 1 to Stage 2

Most of the issues that need to be dealt with in order to faciliate this step
were already discussed in section 5.3. For sake of completeness a list of tasks is
presented here

25 Select, buy and install PMC-Gigabit ethernet adapters. Take care that they
come with Linux support.

26 Buy a Gigabit switch, adapters and cabling.

Design of the PClInt 25

27 Buy a number of rack-mountable workstations.

28 Buy mass storage devices, fibrechannel controllers for the workstations and
software that enables concurrent access to the storage from multiple hosts.

After setting up and installing the hardware, only little configuration changes
should be necessary in order to change to using this setup. The fact remains
that if Stage 1 was completed satisfactory, upgrading from Stage 1 to Stage 2
really involves nothing more than installing bigger and faster hardware.

Design of the PClInt

Contents

1

2

What is the Post Correlator Integrator

Functional Requirements
2.1 Functions
2.2 Requirements L

Installation requirements

3.1 Physical environmento
3.2 Electrical environment Lo oL
3.3 Software environment

Implementation details

4.1 Glossary of components found in the system
411 Stagel
4.1.2 Stage2

Effort involved

5.1 The system independent part for Stage 1.
51.1 TheSBC e
5.1.2 TheDDD host
5.1.3 The online software

5.2 The application specific part for Stage 1

5.3 System independent part for Stage 2 L.

5.4 Application specific part for Stage 2 0oL L.

Facts and figures

6.1 Output of the Correlator boards

6.2 TheSBC e
621 Intothe SBC
6.2.2 Insidethe SBC
6.23 Outofthe SBC.

6.3 Output of the full correlator

6.4 Capture and Storage
6.4.1 The datacapture hosts
6.4.2 The Storage subsystem

Targets, Tasks and Deliverables

7.1 Preliminaries for the test setup
7.2 Making the test setup work 0oL
7.3 Migrating from test setup to Stage 1
7.4 TUpgrading from Stage 1 to Stage 2

26

Design of the PCInt 27

References

[De Vos/Kant] Smaller Distances Interconnect, Figure shown at Lofar Meeting,
May 8 2001, Dwingeloo.

[MkV recording] MkV recording of 512Mbit/s using a disk based system

[Rorke Galaxy45] Document describing properties of the Galaxy 45 RAID ar-
ray, available in PDF from http://www.rorke.com

