Objects and Classes

Fall 2001
Jeffrey T. Edgell

Objects and Classes

An object is central
to OO design
Objects tend to be
so general that they
may be hard to
define

A class represents
the template for
creating an object

An object is made of

3 basic elements:

= State (current data
values)

= Operations (what it
can do)

= |dentity (object name
which remains static)

Class

A collection or

grouping of objects

Objects derived

from the same class

= Support common
operations

= Have the same
possible states

A class must define
= Allowable operations
= Possible states

Example

Optical targeting State definition

systems = No target within 100

Operations miles of civilian
population

= Accept target
= Verify target
= Abort target

= Military targets only
= System override by
target establisher

= Refine target only
Example
Automatic pilot State definition
Operations = Acceptable
= Accept coordinates coordinates
= Accept speed = Acceptable
= Monitor : airspeeds
= Change coordinates .
= Divert course of
= Change speed & 3 T
: aircraft if traffic is
= Alert pilot Tl
= Watch for traffic b
= Etc.

Inheritance Revisited

One of the most An inherited class is
powerful aspects is to called a subclass or
build off the similarities derived class

between identified \

classes The parent is known as

a super class, base

We see that most
class, or parent class

systems there exist

subclasses that are a For a language to be
refined version of a OO0 it must posses this
more general class feature

(super class)

Some slight changes in
the operations and data
exists

Building Software Using OO

Concepts

In the software
process we see
many possible
lifecycles

Most all lifecycles
posses the following
phases:

= Analysis

= Design

= implementation

Various lifecycles:

= Waterfall

= Spiral

= RAD

= JAD

= Extreme
Programming

= Code and fix

= Dimensional

Analysis

We start with a
generalized problem
that we attempt to refine
A lot of documentation
is produced to support
and verify findings

A requirement or spec
is typically produced
that will act as a
contract

The spec should be:
Complete and
unambiguous

Contain functional and
non-functional detail
Should not self contradict
Must be reviewed and
verified by all
stakeholders

Can be used to verify the
system once constructed
Explain the whats and
not the hows

Design

We must now pull
classes from the
domain
There are many
methods to do this

s CRC
The goal is to crisply
define classes and
relationships while
minimizing the basic
complexity

Design is typically
decomposed into
two parts:

= High-level

= Detailed

During design we
may utilize
prototypes

Implementation

Moving the design to
reality

In large systems,
adherence to interface
design is critical
During implementation
we often use sub-
phases

= Unit test

= System test

= Integration test

In traditional
approaches, the
integration and system
test is often completed
as a “big bang”

The OO approach
emphasizes gradual
and steady growth
which reduces
regression efforts and
thus cost and
complexity

Specifics of OO Design

Look for classes and
operations first

The first task is to break
the problem into
classes

Once classes are
identified, the
operations of those
classes must be
established

The first search is for
the nouns in the
problem domain

Once the basic classes
are identified, less
obvious classes will be
easier to discover

OO Design Process

Grady Booch
defines a simple
process that we can
use:

= |dentify the classes
= |dentify the

functionality of the
classes

= |dentify the
relationships among
all classes

Booch is defining
goals and not steps
(paradigm)

The process is
iterative as new
thoughts will evolve
with the introduction
of new classes

OO Design Process

The final result of
the design will be
= A list of classes

= Their operations

= Their relationships
= The interface must

be well thought out
and defines

= The class hierarchies
will be defined

Relationships
among classes is
often expressed
through graphical
notation

Design is critical
(the last step prior to
coding)

The Class Interface

Classes are always built
so they may be
accessed in one way
Data can only be
accessed or changed
through the interface
Thereis no
requirements for any
object to have an
internal understanding
of another object

Example:

= Add a message to
the mailbox

= Mailbox(message)

= Set_temperature(tem
p)

Identifying Class

Relationships

Three basic

relationships can

exist among classes

= Association (uses)

= Aggregation
(containment)

= Inheritance
(specialization)

A class is said to use

another class if it

manipulates items of

the other class in any

way

Example:

= Object airplane initializes
object autopilot

= Object user created a
mail message

Identifying Class

Relationships

If a class can execute
all activities without
knowledge or use of
another class, it does
not use that class

It is important to keep
the uses relationship
minimized to reduce
coupling

The fewer classes we
have concerned about
the actions of another
class the less impact
here is with change

If an object from one
class contains an object
from another class we
have an aggregation
relationship
= Example
= Mailbox object contains
message objects
= A class object contains
student objects
The aggregation
relationship is also
known as the “has-a”
relationship

Identifying Class

Relationships

With aggregation it
is often useful to
understand the
cardinality of the
relationship

= 1:m

[lag

= m:m

Mailbox has 1
greeting

Mailbox contains n
messages

Plane has one
autopilot

Class has n
students

Identifying Class

Relationships

Inheritance is often
identified as the “is-
a” relationship
Inheritance is more
difficult to identify

than the aggregation

relationship

A Maximais a
Nissan is a car
AT747isajetisa
commercial aircraft
is aircraft

Traditional Design Approach

Task-oriented
bottom-up or top-
down approach
Typically a
combination of the
two approaches are
used

We look for verbs to
identify procedures

2 drawbacks exist with
this approach
= Procedures are designed
to be small and solve
nontrivial problems
= Procedures do not hide
or protect data
Classes are larger in
nature and hide
information

Design Hints

Do not use a class
to describe a single
object

It should be our goal
to use a class to
collect objects of a
common set of
operations

We should make
classes broad
enough to capture
many objects
Classes should be
narrow enough to be
meaningful

Object Oriented Design

Fall 2001
Jeffrey T. Edgell

The CRC Method

A very useful tool in
identifying classes,
their operations, and
relationships to
other classes

Allows for trying
various designs
Provides a simple
technigue to validate
and modify design

Typically use 3"x5”
index cards

1 card for each
class

Why cards are good

The space is limited
thus reducing what can
be put into a single
class

The cards can be
shuffled and
reorganized easily to
contemplated different
designs

Easy to modify and
discard

Durable and portable

The CRC Process

Make a single card for
each identified class
List the operations on
the left side of the card
List collaborating
classes on the right of
the card

List data fields on the
back

It is easy and efficient to
use the card to role play
and walk through
various sequences to
solve a task

Class Name

Operations | Collaborators

Tips for using CRC Cards

It is a good idea to keep
the cards close together
= The visual aspect allows

us to visualize
relationships
The cards are dynamic
and we often change or
tear them up
It is unlikely that your
first several attempts at
arranging and assigning
responsibilities will be
somewhat incorrect

The process is iterative
Getting started

= |dentify several objects
and associated
operations
Allow each person to
assume the role of an
object
Perform walk throughs of
various tasks
One person should
analyze the walk through
critically
The analyst role should
be rotated

Tips for using CRC Cards

Any modifications or
suggestions should
be openly discussed
Once all non-trivial
actions can be
performed with
concurrence by the
group, you have
reached a basic
design

This method can
work with a single
designer, although it
is challenging with
only a single
perspective

Tips for using CRC Cards

We should be
careful at this point
not to add
operations just
because they can
be performed

Do what is needed
and what makes
sense (KISS)

No implementation
details should be
placed on a card
However, the design
is strengthened if
one can prove
multiple
implementations can
be performed for a
single design

10

Class categories

It is impossible to
identify all of the
possible categories
and uses of classes
However, there are
some common
categories that most
fall into (design
patterns)

Tangible items
= Things easily identifiable
in the problem domain
(nouns)
System interfaces and
devices
= We typically find these
after identifying the
tangible classes
= These capture system
resources and the
interaction of the system

= Display window, input
reader, output file, etc.

Class categories

Agents

= Sometimes it is useful to
convert an operation of a
class to an agent class
It has characteristics
around the action it
carries out
Often we use agents to
decuple operations from

Events and transactions
= Typically used to retain
information from the past

= The last mouse position,

the last set of
coordinates for a plane,
the last keystroke
= Also used to deal with
scheduled events
= Customer arrival class
that specifies when

ey where, and what kind of
customer
= An event scheduler for
simulations
Class categories
User Roles Containers

= Used to establish
different users with
different roles and
permissions of a system

Systems
= Typically the control
harness for the entire
system
= Used to initiate and
terminate the system

= Used to retain
information for the
general application

= Examples:
= Mailbox (holds
messages)
= Invoice (holds orders)

= Address book (holds
addresses)

11

Class categories

Foundation classes Collaboration
= These are typicall

generic funtggmen¥d patterns

classes = Grouping classes to
= At the beginning we achieve a goal

should assume they exist
= Example = Example

= Date, stack, rectangle = Container and iterator

= They encapsulate data = Model and view

types with well defined

properties and actions
= These classes are the

highest focus for reuse

Recognizing class

relationships

Association Aggregation

= Easiest to identify = “has-a”

= Any class that = |f an object of one
collaborates with class contains or is
another class is the sole manager of
associated objects generated of

= CRC cards will tell us another class
this

Recognizing class
relationships

Inheritance

= ‘isa’

= If aclass has every data
type and operation of
another class and more
Sometimes inheritance is
hard because the base
class has not been
identified

Base class identification
is critical

