
1

Objects and Classes

Fall 2001
Jeffrey T. Edgell

Objects and Classes

n An object is central
to OO design

n Objects tend to be
so general that they
may be hard to
define

n A class represents
the template for
creating an object

n An object is made of
3 basic elements:
n State (current data

values)

n Operations (what it
can do)

n Identity (object name
which remains static)

Class

n A collection or
grouping of objects

n Objects derived
from the same class
n Support common

operations

n Have the same
possible states

n A class must define
n Allowable operations

n Possible states



2

Class Example (book)

n Mailbox
n Every mailbox

regardless of it’s use
will support the same
type of operations
n Add a mail message
n List all stored

messages
n Delete a message
n Retrieve a message
n Purge the mailbox
n Etc.

n The state of the mailbox
conforms to the defined
behavior
n Messages are stored by

time
n Messages can be stored

for 30 days
n Messages will not

exceed 30 seconds

n No more than 10
messages allowed

Classes and Objects

n Any object that
adheres to the
description of a
class is an instance
of that class

n Example:
n Voice mailbox

n E-mailbox

n Etc.

Example

n GUI

n Operations
n Define input devices

n Get input

n Display information

n Adjust size

n Adjust color

n Etc.

n State definition
n Allowable colors

n Allowable input
devices

n Allowable sizes



3

Example

n Optical targeting
systems

n Operations
n Accept target

n Verify target

n Abort target

n Refine target

n State definition
n No target within 100

miles of civilian
population

n Military targets only

n System override by
target establisher
only

Example

n Automatic pilot

n Operations
n Accept coordinates
n Accept speed
n Monitor
n Change coordinates

n Change speed
n Alert pilot
n Watch for traffic
n Etc.

n State definition
n Acceptable

coordinates

n Acceptable
airspeeds

n Divert course of
aircraft if traffic is
within 1 mile

Inheritance Revisited

n One of the most
powerful aspects is to
build off the similarities
between identified
classes

n We see that most
systems there exist
subclasses that are a
refined version of a
more general class
(super class)

n Some slight changes in
the operations and data
exists

n An inherited class is
called a subclass or
derived class

n The parent is known as
a super class, base
class, or parent class

n For a language to be
OO it must posses this
feature



4

Building Software Using OO
Concepts
n In the software

process we see
many possible
lifecycles

n Most all lifecycles
posses the following
phases:
n Analysis

n Design
n implementation

n Various lifecycles:
n Waterfall

n Spiral

n RAD

n JAD

n Extreme
Programming

n Code and fix

n Dimensional

Analysis

n We start with a
generalized problem
that we attempt to refine

n A lot of documentation
is produced to support
and verify findings

n A requirement or spec
is typically produced
that will act as a
contract

n The spec should be:
n Complete and

unambiguous
n Contain functional and

non-functional detail
n Should not self contradict
n Must be reviewed and

verified by all
stakeholders

n Can be used to verify the
system once constructed

n Explain the whats and
not the hows

Design

n We must now pull
classes from the
domain

n There are many
methods to do this
n CRC

n The goal is to crisply
define classes and
relationships while
minimizing the basic
complexity

n Design is typically
decomposed into
two parts:
n High-level

n Detailed

n During design we
may utilize
prototypes



5

Implementation

n Moving the design to
reality

n In large systems,
adherence to interface
design is critical

n During implementation
we often use sub-
phases
n Unit test
n System test
n Integration test

n In traditional
approaches, the
integration and system
test is often completed
as a “big bang”

n The OO approach
emphasizes gradual
and steady growth
which reduces
regression efforts and
thus cost and
complexity

Specifics of OO Design

n Look for classes and
operations first

n The first task is to break
the problem into
classes

n Once classes are
identified, the
operations of those
classes must be
established

n The first search is for
the nouns in the
problem domain

n Once the basic classes
are identified, less
obvious classes will be
easier to discover

OO Design Process

n Grady Booch
defines a simple
process that we can
use:
n Identify the classes

n Identify the
functionality of the
classes

n Identify the
relationships among
all classes

n Booch is defining
goals and not steps
(paradigm)

n The process is
iterative as new
thoughts will evolve
with the introduction
of new classes



6

OO Design Process

n The final result of
the design will be
n A list of classes
n Their operations
n Their relationships

n The interface must
be well thought out
and defines

n The class hierarchies
will be defined

n Relationships
among classes is
often expressed
through graphical
notation

n Design is critical
(the last step prior to
coding)

The Class Interface

n Classes are always built
so they may be
accessed in one way

n Data can only be
accessed or changed
through the interface

n There is no
requirements for any
object to have an
internal understanding
of another object

n Example:
n Add a message to

the mailbox

n Mailbox(message)

n Set_temperature(tem
p)

Identifying Class
Relationships
n Three basic

relationships can
exist among classes
n Association (uses)

n Aggregation
(containment)

n Inheritance
(specialization)

n A class is said to use
another class if it
manipulates items of
the other class in any
way

n Example:
n Object airplane initializes

object autopilot
n Object user created a

mail message



7

Identifying Class
Relationships
n If a class can execute

all activities without
knowledge or use of
another class, it does
not use that class

n It is important to keep
the uses relationship
minimized to reduce
coupling

n The fewer classes we
have concerned about
the actions of another
class the less impact
here is with change

n If an object from one
class contains an object
from another class we
have an aggregation
relationship
n Example

n Mailbox object contains
message objects

n A class object contains
student objects

n The aggregation
relationship is also
known as the “has-a”
relationship

Identifying Class
Relationships
n With aggregation it

is often useful to
understand the
cardinality of the
relationship
n 1:m

n 1:1

n m:m

n Mailbox has 1
greeting

n Mailbox contains n
messages

n Plane has one
autopilot

n Class has n
students

Identifying Class
Relationships
n Inheritance is often

identified as the “is-
a” relationship

n Inheritance is more
difficult to identify
than the aggregation
relationship

n A Maxima is a
Nissan is a car

n A 747 is a jet is a
commercial aircraft
is aircraft



8

Traditional Design Approach

n Task-oriented
bottom-up or top-
down approach

n Typically a
combination of the
two approaches are
used

n We look for verbs to
identify procedures

n 2 drawbacks exist with
this approach
n Procedures are designed

to be small and solve
nontrivial problems

n Procedures do not hide
or protect data

n Classes are larger in
nature and hide
information

Design Hints

n Do not use a class
to describe a single
object

n It should be our goal
to use a class to
collect objects of a
common set of
operations

n We should make
classes broad
enough to capture
many objects

n Classes should be
narrow enough to be
meaningful

Object Oriented Design

Fall 2001
Jeffrey T. Edgell



9

The CRC Method

n A very useful tool in
identifying classes,
their operations, and
relationships to
other classes

n Allows for trying
various designs

n Provides a simple
technique to validate
and modify design

n Typically use 3’’x5”
index cards

n 1 card for each
class

Why cards are good

n The space is limited
thus reducing what can
be put into a single
class

n The cards can be
shuffled and
reorganized easily to
contemplated different
designs

n Easy to modify and
discard

n Durable and portable

The CRC Process

n Make a single card for
each identified class

n List the operations on
the left side of the card

n List collaborating
classes on the right of
the card

n List data fields on the
back

Class Name

Operations Collaborators

n It is easy and efficient to
use the card to role play
and walk through
various sequences to
solve a task



10

Tips for using CRC Cards

n It is a good idea to keep
the cards close together
n The visual aspect allows

us to visualize
relationships

n The cards are dynamic
and we often change or
tear them up

n It is unlikely that your
first several attempts at
arranging and assigning
responsibilities will be
somewhat incorrect

n The process is iterative
n Getting started

n Identify several objects
and associated
operations

n Allow each person to
assume the role of an
object

n Perform walk throughs of
various tasks

n One person should
analyze the walk through
critically

n The analyst role should
be rotated

Tips for using CRC Cards

n Any modifications or
suggestions should
be openly discussed

n Once all non-trivial
actions can be
performed with
concurrence by the
group, you have
reached a basic
design

n This method can
work with a single
designer, although it
is challenging with
only a single
perspective

Tips for using CRC Cards

n We should be
careful at this point
not to add
operations just
because they can
be performed

n Do what is needed
and what makes
sense (KISS)

n No implementation
details should be
placed on a card

n However, the design
is strengthened if
one can prove
multiple
implementations can
be performed for a
single design



11

Class categories

n It is impossible to
identify all of the
possible categories
and uses of classes

n However, there are
some common
categories that most
fall into (design
patterns)

n Tangible items
n Things easily identifiable

in the problem domain
(nouns)

n System interfaces and
devices
n We typically find these

after identifying the
tangible classes

n These capture system
resources and the
interaction of the system
n Display window, input

reader, output file, etc.

Class categories

n Agents
n Sometimes it is useful to

convert an operation of a
class to an agent class

n It has characteristics
around the action it
carries out

n Often we use agents to
decuple operations from
a class

n Events and transactions
n Typically used to retain

information from the past
n The last mouse position,

the last set of
coordinates for a plane,
the last keystroke

n Also used to deal with
scheduled events
n Customer arrival class

that specifies when
where, and what kind of
customer

n An event scheduler for
simulations

Class categories

n User Roles
n Used to establish

different users with
different roles and
permissions of a system

n Systems
n Typically the control

harness for the entire
system

n Used to initiate and
terminate the system

n Containers
n Used to retain

information for the
general application

n Examples:
n Mailbox (holds

messages)
n Invoice (holds orders)

n Address book (holds
addresses)



12

Class categories

n Foundation classes
n These are typically

generic fundamental
classes

n At the beginning we
should assume they exist

n Example
n Date, stack, rectangle

n They encapsulate data
types with well defined
properties and actions

n These classes are the
highest focus for reuse

n Collaboration
patterns
n Grouping classes to

achieve a goal

n Example
n Container and iterator
n Model and view

Recognizing class
relationships
n Association

n Easiest to identify

n Any class that
collaborates with
another class is
associated

n CRC cards will tell us
this

n Aggregation
n “has-a”

n If an object of one
class contains or is
the sole manager of
objects generated of
another class

Recognizing class
relationships
n Inheritance

n “is a”
n If a class has every data

type and operation of
another class and more

n Sometimes inheritance is
hard because the base
class has not been
identified

n Base class identification
is critical


