Post-Correlation Review
version 4.0

01 november 2008

This document is a new guide for the creation of fits tapes following the correla-
tion of an experiment. The FITS-creation process has two broad stages: first is the
selection of subjobs you want to include in the final fits file (1), and second is the
conversion process from correlator-data format through Measurement Set to FITS,
with some flagging of the data while in the Measurement Set (§2-4). After you've
made the FITS files, there remains the important stages of archiving, cleaning up
after yourself and pipelining (94-6).

0. for the remorselessly impatient

Below is a checklist for the process, with references to paragraphs in the main text.
Items in {braces} may not need to be done for every experiment.

1) Selecting subjobs to use:

vexsum.pl [lLa] pb
showlog [1b] pb
LogFile output [1.c] p.7
plotweight.pl [1d] p.l10
ExportFile output (lis-file) J[le pl3
Daily review of correlation [1f] pl5

2) Making Measurement Set(s)

Setting up the working disk [2.a] p.l8
getdata.pl [2b] pI19
j2ms2 2] p20
3) Operations on the Measurement Set(s)
Starting glish [3] p22
{3filt} [3.a p2a4
{duptim.g} [3b] p25
{polflag.g} [3c] p25
Check sampler stats [3d p26
ObitVV [3d] pa2T
fixfbs [3.€ p27

fixuvw.g [3f] p29

{plyflg.g} e 1 2 =4 I 10

standardplots.g [3h] p33

other investigative/diagnostic plots[3j] ©p.35

flagweight [3k p42
4) MS + FITS

tConvert [4a p44

Cover Letter [4b] pd5

archive [4c] pd47

{Transfer FITS files to physical media} [4.d] p.49
5) Housekeeping

D3: jobs (once distributed) [ba] p.53

E3: jobs/MS/ancillary files [56b] p.53
6) Pipeline [6] p.53
7) Appendix: lengthy Behind-the-Scenes topies [App] p.54

The checklist on the following page can be used to guide the process of making
FITS files and related activities (green means step done in glish; italic font means
a step to think about before applying; brackets mean steps usually not required).
Figure 1 that follows shows the general flow of data & communications within the
EVN for an experiment, with the purview of this guide outlined. Figure 2 shows a
flowchart for the review process itself. These can all be found on the JIVE how-to
wiki (via the “local-access” portion of the correlation menu item of the JIVE web-
page: www.jive.nl/correlator/#), as can much other supporting documentation.

The rest of this guide attempts to conform to a convention in which:
Typewriter text font signifies verbatim parts of a path, program input, etc.

Italic font signifies parts of a path, program input, etc. that may vary (usually
experiment-, job-, or disk-related).

{braces} signify a task or parameter that may not be required.

The computers you will be using are referred to as C* (currently ccsops, for corre-
lator control), D? (currently juw36, where raw correlated data live), and E? (cur-
rently PCInt, where the bulk of the post-correlation operations take place). Unless
otherwise specified, everything in here assumes you have logged in as user jops.

There is also a web-based interface for going through these steps that has been
developed under the aegis of EXPReS, called EZJive. This document does not go
into that, but the descriptions of the steps and the various looks under the hood at
underlying principles/algorithms/problems should be directly transferable.

Post-Correlation Review Checklist

1. select good subjobs

2. getdata.pl

4. Full-MS ops:

b) check Autocorrs / SampStats

C) 2BV

d) fIXIDS

B, tCONVEIt
6. Cover Letter

7. Archive: FITS [(incl.exp.README)
Stnd.Plts/Cvr.Ltr []

8. FITS ——> DAT (dd) | DVD (k3b) / etc

9. Disk—Housekeep
a) DDD (juw26) [| (>distrib.)l

b) EEE (PCINtY) [] .

10. Pipeline

User/P1 JIVE Stations VLBEER

:
sched

>=| vlbi_arch/
Ant. control <s/ mmmYY/
OBS
Media O |z L > (logs, GPS)
Feedback O | _, |
Review
Confirm Purview of the Post-Correlation

Review Guide

email __| COR

|
Review ——> EVN Archive

) —~—4 Post-Corel e-mail
Review

(]| Diagnostic Plots
Pipeline

11

{

retrieval _E_\{N_ _AI_C_hI_V_e_
Arrange Supp.Sci
Visit

Figure 1: Operational flow of data/communications for an EVN experiment.

Correlator —= | Raw Ouput || (lag-based)

[[AIPS++ Measurement Set v.2]] (freq-based)

_

GLISH ——

Review Diagnostic
Flagging Plots

IDI FITS —>
AIPS t Plots
CL Tables

1 year
$ publicl){private (1yr)

web-based EVN Archive \
R

Figure 2: Flowchart for the post-correlation review process.

]

1. Selecting Subjobs.

a. vexsum.pl.

This should have already been run prior to correlation, with the output in the
/ccs/expr/EXP directory of ccsops, typically with the name ezp.vxsm. (Note
that in this guide FXP denotes supplying the experiment name in upper-case, exp
in lower-case.) If vexsum.pl hasn’t already been run, the most usual syntax is:

vexsum.pl -tel vezfile > erp.vxsm

The additional parameter —tel provides a list of telescopes in the VEXfile for each
scan. There’s also a -mode parameter that will output the name of the mode for each
scan; this can be useful at first for quickly checking whether this is a multi-mode
experiment or not, but the name of the mode usually takes up so much room in each
row to be not worth printing in the general case. (An easier way to check whether an
experiment is multi-mode is to use: “grep mode= vezfile”, and scan whether there
is more than one mode referenced by the scans. The output of vexsum.pl provides
an easy to read summary of the experiment — each scan gets its own output line
with scan/pass number, start/stop time, start byte-number, and source. The byte-
number refers to the first station in the VEXfile. If there was a gap between two
scans in a given pass, there will be a “*” after the time-range of the scan following
the gap. Below is a sample extract (from EL0O35A):

No0001 P01 159/11:00:00 — 11:02:30 1518.987970000
No0002 P01 159/11:02:30 — 11:10:00 713.680035424
No0003 P01 159/11:10:40 — 11:12:40* 1557.330436480
No0004 P01 159/11:12:40 — 11:20:10 742.423946752
No0005 P01 159/11:20:10 — 11:22:40 1594.454220800
No0006 P01 159/11:22:40 - 11:30:10 771.169736328
No0007 P01 159/11:30:50 — 11:32:50* 799.915541976
No0008 P01 159/11:32:50 — 11:40:20 809.708236800
No0009 P01 159/11:40:20 — 11:42:50 838.511333376
No0010 P01 159/11:42:50 — 11:50:20 848.112365568
No0011 P01 159/11:51:00 - 11:53:00* 874.740528368

*J1113+1442 McOnNtUrSh
* B1059+169 EfMcCmOnUrJbNtSh
*J1113+1442 McCmNtOnShUr
* B1059+169 EfMcCmOnUrJbNtSh

* J1113+1442 McCmNtOnShUrJb
*B1059+169 EfMcCmOnUrJbWbNtSh

* J1113+1442 EfMcCmONUrJbTrNtSh
* B1059+169 EfMcCmOnUrJbTrNtWbSh
* J1113+1442 EfMcCmONnUrJbTrNtSh
*B1059+169 EfMcCmONnUrJbTrNtWbSh
* J1113+1442 EfMcCmONnUrJbTrNtWbSh

The output of vexsum.pl is a useful overview of the experiment’s schedule, and as
a quick look-up translation table between UTCs, scans, sources, and participating
stations.

b. showlog.

showlog can function as the source of information about the correlated subjobs.
The vexsum.pl -tel output provides a summary of the scans in the experiment
and stations participating in them. showlog outputs will allow you to begin to
review whether all these scans have been correlated to the best of our ability, and
to pick among multiple correlations of the same scan(s).

» — Start showlog on ccsops by:
showlog EXP

You will see the summary of all scans come up in the window, with four buttons
on the upper right. There are two kinds of output useful in the course of post-
correlation review: the basic loghook file and the exp.1lis file.

i1 — The logbook file is made by clicking on the LogFile button. A pull-down menu
will result. From here, you can restrict the Type (PROD, TEST, CLOCK; default =
all), the Status (GOOD, REVIEW, FAIL, ABORT, CRASH; default = all), or Profile (i.e.,
the runjob.pl profiles) displayed. you can Sort the results by JOB (chronologically
as correlated), SCAN, LAGS, or PROFILE. This sorting is single-key sorting; you can’t
simulate a multiple-key sort by sorting first on the second key and then on the first
— subsequent sorts do not retain the order from previous sorts in “breaking ties”.
With FieldLayout you can suppress some columns; the default LogFile output
currently takes 220 characters per line. Finally, Print/Save allows you to make a
hard copy of the output. 91l.c discusses the information contained in the loghook
file in more detail.

19— When you click on the ExportFile button, the LogFile format summary will be
replaced by a *.1lis-file format summary (91.g). Clicking again on ExportFile gets
a pull-down menu. Here, you can select by profile or Print/Save. The exp.lis
file you save from here will drive the production of the FITS file. If the experi-
ment used multiple profiles (e.g., separate line/continuum passes, different phase
centers, subbands correlated separately) that will go into separate Measurement
Sets & FITS files, then you should make a separate lis-file for each profile, sav-
ing them to distinct filenames. It’s probably best if you create the tt *.lis-files
in the /ccs/expr/EXP directory. €1.e discusses the information contained in the
*.1is-file in more detail.

c. LogFile output.

JIVE Correlator Logbook ~ Sorted on: JOB

Selection: Type = ANY Status = ANY Profile = ANY

24 Sep 2002 09:57:56

Exp Jobld SJ Pass ScBegin ScEnd Type Status Lags Int CPol Integrations ~ Data validity Array Version VexFile profile Operator
NO2L2 206210936 1 3A No0015 No0015 CLOCK GOOD 256 4 Xpol (2/9/0/312/157) 100.0% local IbShEMeL 1el3001 n0212.hsL.vix Zsolt
#Fringes to Mc, Wb, Jo(). Sh, and Ur()
and Hh were not scheduled in this scan,

e Saned e (qot present i tis scan).

NO2L2 CLOCK NONE 256 4 Xpol local TrNt<>WhOnJb<>EfMc<><><><><><><> rel3001 n0212.hs1.vix Zsolt
Aborted. Restat Csorelator.
NO2L2 CLOCK NONE 256 4 Xpol local TrNt<>WhOnJb<>EfMc<><><><><><><> rel3001 n0212.hs1.vix Zsolt
No data commg through. Aborted.

NO2L2 20621111 CLOCK NONE 256 4 Xpol local TrNt<>WhONJb<>EfMc<><><><><><><> 1el3001 n0212.hsLvix Zsolt
Corrlator il e restarted

NO2L2 206211149 1 CLOCK ABORT 256 4 Xpol local TrNt<>WhOnJb<>EfMcs><>Ar<><><><> rel3001 n02I2.hsL.vix Zsolt
Nordata from covre\awr

NO2L2 206211222 1 CLOCK FAIL 256 4 Xpol local TrNt<>WhOnJb<>EfMc<><>Ar<><><><> rel3001 n02I2.hsL.vix Zsolt

Nosts 506o112s7 1 sA Noo026 o026 CLOCK GOOD' 256 4 Xpol (O/LIOIS44/198) - 100.0% local TrNK>WDONIb<>EfMo<><>Ar<><><><> el3001 n02i2hsLuix Zsolt
1 Success! Fringes to Ar(l), €, Tr, Nt O
Wb and Jb clock updates checked, O

Roza 20851140 1 oA NoooR? NoOO27 CLOCK GOOD 256 4 Xpol (1/1/1/544/29) 100.0% local ~TiNtHh<>On<>ShEMcUr<><><><><><> rel3001 n02l2.hs1.vix Zsolt
Hh fringes; clock is perfect

NO2L2 206211423 1 6A No0028 No0028 CLOCK GOOD 32 4 Xpol (0/0/0/840/54) 100.0% local TrNtHhWbONIDSHEMCUr<><><><><><> rel3001 n02i2.hsL.vix Zsolt
Allilescopes (except AR) ncluded, nlags=32
#Itis a reverse pass except for Hh, Sh, an
All clocks are OK. Tr produced no mnges
#in this scan (0 weights)

NO2L2 ~ 206211506 1 5A No0026 No0026 CLOCK GOOD 256 4 Xpol (0/0/0/420/132) 100.0% local ~Tr<><>WbOnJb<>EfMc<><>Ar<><><><> rel3001 n02i2.hs2.vix Zsolt

2nd headstack fringes to all telescopes.

participating in this scan (including Ar).

NOaLz * 206211538 1 GA NoOUL No0O31 CLOCK GOOD 64 4 Xpol (0/0I0/63432) 100.0% local Tre>HhWBONJBSNEIMOUr<><><><><><> rel300L n0212hs2.vix Zsolt

Ur, Sh and Hh headstack 2 is also O

R03L5 30aob101 T 1A No0oOT No00O? PROD GOOD 32 1 Xpol 4/0/3/544/1308 100,0% local NtTAWbMCONJb<><>Sh<>Ur<><><><><> 1el1706_n0212.hsl.vix production_hs1 Hans
NO2Lz 206251943 1 2A NoDOOB NoOOI4 PROD GOOD 32 1 Xpol 134/1B/420/1504 100.0% local NITAWDM<>Ibo><Shoalr><><>>> el106 nozi2hei.vix production_hsl Hans
NO2L2 208251943 2 3A NoOOL5 NoOO1S PROD GOOD 32 1 Xpol 4/0/3/684/1302 0.0% local NITAWDMcORJbEf<>Sh<>Ur<><><><><> rel1706 n02i2.ns1vix production_hs1 Hans
NosLs 306202083 3 4A Neoors Neaozs PROD CRASH 3 1 Xpol SaorAIS25Io64/1665 100,09 ocal " NLTANENCOMIDETSaShesrses <o s L7080 heix production_hs1 Hans

Almost everything collapsed.
NO2L2 206252155 1 4A No0019 No0025 PROD GOOD
#Dpu_ 2: Auto uackmg failed, footage 16018 —> 466 at headpos:

32 1 Kool 485/3/561/684/1906 100.0% local NETFWbMCONJbEf<>Sh<>Ur<><><><><> rel1706 n0212.hs1.vix
96.0 (40 sar
NTAWBMCONJbEAI<><><><><><><><> 1€l1706 N0212.hsL.vix

NO2L2 206252155 2 S5A No0026 No0026 PROD GOOD 32 1 Xpo\ 4/0/3/544/1302 100.0% local

NO2L2 206252316 1 6A No0027 No0034 PROD GOOD 32 1 Xpol 4/0/3/840/1420 100.0% local NtTrWhMcOnJbEf<>ShHhUr<><><><><> rel1706 n02I2.hs1.vix
NO2L2 206260830 1 4A No0019 No0025 PROD GOOD 32 1 Xpol 4/0/3/684/1307 100.0% local NtTrWhMcOnJbEf<>Sh<>Ur<><><><><> rel1706 n02I2.hs1.vix
NO2L2 206261121 1 1A No0001 No0007 PROD GOOD 32 1 Xpol5/2/482/420/1548 100.0% local <>TrWbMcOnJb<><>Sh<>Ur<><><><><>rel1706 n02I2.hs2.vix
#Dpu_1: Auto tracking failed, footage 3052 -> 6646 at headpos: ~76.9 (10 samples)

Onta) ungble (o peak head - aving up (scan 810 14)

NO2L2 206261121 2 2A No0OO8 ROD FAIL 32 1 Xpol 4/2/542/312/1507 66.7% local <>TrWbMc<>Jb<><>Sh<>Ur<><><><><> rel1706 n0212.hs2.vix

 Onia) ungble (o peak head - aiving up

121 3 3A No0015 No0016 PROD REV\EW 32 1 Xpol 142/1/167/544/980 100.0% local _<>TrWbMcOnJbEf<>Sh<>Ur<><><><><>rel1706 n0212.hs2.vix
N02L2 206261338 1 3A No0015 No0018 PROD GOOD 32 1 Xpol 9/3/17/544/1361 100.0% local Tr<>WbMcOnJbEf<>Sh<>Ur<><><><><>rel1706 n02l2.hs2.vix
NO2L2 206261338 2 4A No0019 No0025 PROD FAIL 32 1 Xpol 95/3/793/544/1569 100.0% local Tr<>WbMcONJbEf<>Sh<>Ur<><><><><> rel1706 n02l2.hs2.vix
NO2L2 206261519 1 5A No0026 No0026 PROD GOOD 32 1 Xpol 5/4/408/420/1755 100.0% local _Tr<>WbMcONJbEfAr<><><><><><><><> rel1706 n02I2.hs2.vix
NO2L2 206261519 2 6A No0027 No0034 PROD GOOD 32 1 Xpol 4/0/3/684/1419 100.0% local Tr<>WbMcOnJbEf<>ShHhUr<><><><><> rel1706 n02I2.hs2.vix
N02L2 207152222 1 2A Ncooos NDDOlA PROD FAIL 32 1 Xpol 4/1/337/220/1454 80.0% local <><><>UrSh<>McWh<><>Jb<><><><><> rel1706 n02I2.hs2.vix
71 2 1 Xpol 4/0/3/544/1300 100.0% local <>Ef<>UrShTrMcWbOn<>Jb<><><><><> rel1706 n0212.hs2.vix

207152 019 NoO 00D 3
¥ Dpu 8: Auto tvacklng taied, 'Dolage 13570 25 1108 2t headpos 255.0 (31 samples)

Listing 1: LogFile output (from N02L2)

Listing 1 is the LogFile output for N02L2. The first line provides sorting/selection
information. the output itself has one line per subjob, with some number of optional
comments immediately following (beginning with “#”). Some of these comments
are automatically generated by the correlator-control software, others are entered
by the operator during correlation. The fields for each subjob follow the column

headers at the top.

The most important ones are:

JobID, SJ = means to identify the data

ScBegin, ScEnd = first & last scans in the subjob

Type, Status

Lags, Int,

Integrations, Data = summary of problems (see bullet below)

Array = location of stations per SU (“<>" denotes an empty SU)

Version

Vexfile

profile

The JobID is of the form YMoDyHrMi, the time corresponding to when the job
began being correlated. Only the last digit of the year is included (thus there is an
inherent “decadal bug” in the job-naming convention). Leading Os are not included
in the JobID. The subjob-ID “SJ’ is simply an integer counting the number of
Recently, the

Cpol

of the correlator control software
VEX file used
runjob.pl profile used

production_hsl Hans
production_hsl ~ Hans
production_hsl Hans
production hsl Martijn
production_hs2 Martijin
production_hs2 Martijn
production_hs2 Martijn
production_hs2 Martijn
production_hs2 Martijn
production_hs2 Martijn
production hs2 Martijn
production_hs2_ Martijn
production_hs2 Martijn

operator-entered description of subjob purpose & quality

correlation parameters used for the subjob

subjobs done within each job. The SJ can be in the double-digits.

existence of SJ=0 has occurred in some cases — so far these appear to be duplicates

of SJ=1 and should be ignorable.

ScBegin & ScEnd can be compared to the vexsum.pl output to ensure there are
no scans missing from the correlated data (however, be alert that there are ways in
which the ScnBegin and ScEnd can be wrong — usually one too low and too high,
respectively — cf. §App.1.f.7). The Array allows one to trace playback problems
seen on station(s) to a possible underlying cause in a specific SU/Mk5/DPU.

e The five numbers in Integrations are derived from the job’s data_handler.log

5th

file (¢f. §App.1.1.7), and denote:

: The total number of integration periods encountered (Nj). The product Njpg X

tint should be close to the total time spanned by the subjob (including gaps);
see the vexsum.pl output for the start time of the first and end time of the last
scans in a subjob.

: The modal value of the number of interferometers (Njt) during the pass (i.e.,

if you made a histogram of Ny applicable over each of the Nj,:, the number
reported would be the most-occurring Ni¢). Table 1 below shows the Ni¢ per
subband as a function of Ny, and Npo (this is also available on ccsops, in
the file /ccs/expr/nifs.out). If the reported number corresponds to a smaller
Ngta , you can figure out how many stations you lost; if it is some other number
that doesn’t correspond to any Ngia, you may have had serial-link or correlator-
configuration problems. Remember to divide the 4" number by Ny, before

trying to find it in the table.

Nsta 1 pol 2pol 4 pol
2 3 6 10

3 6 12 21

4 10 20 36

5 15 30 55

6 21 42 78

7 28 56 105
8 36 72 136
9 45 90 171
10 55 110 210
11 66 132 253
12 78 156 300
13 91 182 351
14 105 210 406
15 120 240 465
16 136 272 528

Table 1: N per subband as a function of N, and Ny

3rd.

15t:

The number of integrations that have an Nj¢ different from that reported in the
4t column. You don’t know a priori whether these different Ni¢’s are greater or
less (or some combination of both) than the reported N;¢ . The usual situation
is that a station drops out during the subjob. Weight plots (91.d) can often
shed light on the causes of the 3™ & 4" numbers.

The number of skipped integrations. These generally come about at the very
end of the subjob where the end BOCF (Beginning of Correlator Frame) num-
bers become zero for all interferometers. A large number here will also be
reflected in a correspondingly too-large Nj,.. This number of skipped integra-

8

2nd

tions is currently insensitive to “systick missed” errors; if the 5" column is

a fair amount less than the duration of the subjob (including gaps) divided by
the integration time, then grep the job’s data handler.log (found under the
JobID directory — cf. §App.1.f.7) for “systick missed”. If there are lots of
these, you may want to consider recorrelation.

: The number of AAARGHHHHHs. These occur when only some number of

interferometers have mismatching BOCF numbers at the beginning or end of an
integration compared to the other interferometers. These usually mean at best
a temporary loss of some fraction of the interferometers (if AAARGHHHHHs
occur in pairs, the second occurrence may signal the recovery of the missing
interferometers), but may also suggest a more pernicious problem.

The Data percentage field shows the percentage of good data to expected data
(based on the “modal” 4" number). Percentages that can’t be expressed as
M /Ngta, where N, is the number of stations successfully participating in the
subjob (i.e., that haven’t dropped out prior to the R stage on the status mon-
itor) and M is an integer < Ng, point to something wrong with the sub-
job. Most likely there has been a connection problem somewhere in the input
side of the correlator, or a problem with a limited number of correlator chips.
QApp.1.f.2 discusses how to get more detailed information out of the the job’s
data_handler.log; 9App.1.f.ii discusses how to go further in tracking down
where the problem may lie.

If for some reason you want to change information in a subjob (type, status are

the usual things that might need changing, the others are derived automatically and
should be left alone), you can edit the logfile from showlog EFXP. Follow the menu-
chain from the LogFile button: Edit Logfile, then Edit. The window background
now becomes pink, and provides a “visual editor” environment. You can position
the cursor after the type/status you want to change, use BackSpace to erase, and
re-type your desired modification. Save the changes via LogFile, Edit Logfile, & Save.

d. plotweight.pl.

plotweight.pl is a perl script that plots station weights or autocorrelation am-
plitudes directly from the correlated data, saving you the time of having to make a
Measurement Set first. Since it reads the correlated data themselves, rather than
just the data_handler.log, it provides a more fundamental view of what’s in the
subjob than does showlog. A cron job runs every morning (usually 05:17, but
can be made to vary in light of jobs left running overnight) to make the weight &
autocorrelation-amplitude plots for all jobs run during the previous day (or more
precisely, for all jobs that don’t yet have corresponding plots). The treasury of
plots lives on /data/PltWgt/EXP/ JobID.SJ.wt.{ps|pnglgif} for the weight plots
and /data/PltAuto/EXP/JobID.SJ.auto.{ps|pnglgif} for the autocorrelation-
amplitude plots. This disk is also cross-mounted on ccsops. We have begun
gzip’ing the postscript weight/auto-correlation plots to save on disk space. The
heading of the plot shows the job/subjob, the experiment, and the range of scans
covered by the plot (a partial final scan gets included). The Mark5/SU on which
each station is mounted in the subjob appears in the annotation. Scan boundaries
are marked by thin gray vertical lines; if there is also diagonal hatching, the time
range “interior” to the hatching is a gap in the schedule (i.e., no source being ob-
served; recording media stopped). The data shown in gaps is irrelevant, since the
time-range of the gap will be omitted from the Measurement Set (cf. §2.c). The
subband /polarization channels are color-coded (legend at the bottom of the page).

Figure 3 shows an example weight plot from a correlation of a segment of scans
from EK024C. You can see some of the features mentioned above (gap shading,
subband /polarization color-coding). Further, there are numerous examples of “Di-
agonal Weights” (§App.1.g.7.7y) and SB5/LCP seems to be dead in Jb & On (with
disk-based experiments, most probably the sign of a correlator problem). You can
see that the weights in gaps is irrelevant — such data won’t make it through into
the Measurement Set anyway. Because of the SB5/LCP problem, this whole range
would have to be recorrelated. If this didn’t happen, then you’'d need to recorrelate
some of the scans to avoid using the Diagonal Weight events: scans 27-28 or Jb &
Sh, and also scans (35)-36 for Wb (§App.1.g.i.y discusses how the fringes actually
disappear a short time before the onset of the Diagonal Weight event in the weight
plot; you’d have to look into things to see whether the recorrelation of scan 35 were
absolutely necessary — but since it’s so short, it might just be easier to recorrelate
it anyway).

If you want to run plotweight.pl (say on a job from the current day, before
the cron job has had a chance to run), the syntax that you would generally use is:

plotweight.pl -dev output.ps/veps JobID/SJ

It should be fine to run this from the /ccs/expr/EXP directory. If you have lots of
stations, also including the command-line parameter —nant N,,; will set the maxi-
mum number of plots per page to Nane. Output can go to any recognized /supported
pgplot device (the default in the absence of a ~dev argument has the plot go to the

10

ko4 R
i e, Weights for 706071438/

B peu ' !
- . —
2 ‘ . :
I — 1
oL | k] i e = b L 1 *) 2|
P Wb DPUD |
el 4 3 = = — —
@ | f » ! & ' =
= b T [M ! Ll =7
| = : ! !
(=, . - -]
[dp DPU4 !
iy — [
I - i
| = = - 1
= :h 4 A 4 A H |
(=] o —r s T : s _
[on oPuz ' ! |
i t - s | —
.g - i - - - 1 ty ——
o ; A= |
M oPU-B
g L A—
L ! - - - - - (1]
e : ; ” . |
o | . / £ 7 o
EN P 14 T |
& = - - = 5 H — |
= [;1 H : k|
o - = “ - - £ .
! \ { 3 |
(=N = i |
F- ek e
it - = = - = - |
n | !
o | '] 1] % 1
-1 S| - . 3
| sh us
3] 5 e | —_) |
nf - = 1
&l lh.‘hﬁ f [4 |
sk | L A ' . - \
Da"as™ o4"gg™ 157 agm 45 05700 157
L Sub 0 LooBue 3 Sub B
RR 3ub.0 3ub. 1 3ub.7 3ub. 3 b2 Byl B Sub.7

Figure 3: plotweight.pl weight plots for a correlation of a segment of scans (from
EK024C).

screen, but in this case it seems you can’t save or print it, and if you want to resize
the pgplot window, you’ll have to execute plotweight.pl a second time after set-
ting the new size). plotweight.pl run without any arguments returns a list of all
possible arguments. You can also generate these plots from showlog via the Inspect
Data button on the top. Click on either screen or printer, and then double click on
the subjob you want plotted. There’s no way to save to a file through this route.

i — Behind the Scenes: wgtpltr.sh

wgtpltr.sh is the shell-script run in the cron job to make the plotweight.pl
plots for the previous day’s jobs. It is usually scheduled to run at 05:17 each day.
It looks through all jobs on all D? disks, and for any job that lacks a corresponding
plot in the directories mentioned above, it runs plotweight.pl to make the plot.

11

The early morning run time intends that there should be no jobs running, because
its algorithm will be fooled by a job in progress when it runs: it will make plots
based on the partially-completed job, but not go back and (re)make plots for the
fully-completed job. The recent progress in getting long sub-jobs and round-the-
clock e-VLBI off the ground makes it harder to have this run as an automated
cron job without encountering these partially-completed-subjob plots. Should this
occur, the fix is to delete the partial-subjob plots (weight & autocorrelation), and
either wait for the next day or run wgtpltr.sh manually from the command line.*
You could also do this, say if your experiment has just finished & you don’t want
to wait until the next day to look at the plots. Do this logged onto D3 as jops,
and execute wgtpltr.sh. Be careful to make sure that no job is running when you
start this (or will be in the immediate future). If uncomfortable doing this, let me
know if you think that partial-job plots have been made.

ii — Behind the Scenes: plotweight.pl cron job

Here’s the result of crontab -1 jops on juw36 showing the daily automatic
run of wgtpltr.sh to make a weight plot and an autocorrelation plot for each job
(line broken into two for display purposes):

17 5 x * *x /export/home/jops/bin/wgtpltr.sh>>
/data/PltWgt/cron.log 2>&1

12

e. ExportFile output. (= lis-file)

EIO09A ei009a.vix Prod ei009a.ms ei009a.ms.UVF

+ 708271659/1 - No0001 No0001 64 4 noX 0/0/0/216/222 100.0% GOOD PROD prod_cont ei009a.cont.vix rel2806
+ 708211008/1 - No0002 No0O06 64 4 noX 0/1/25/216/176 100.0% GOOD PROD prod_cont ei009a.cont.vix rel2806
+ 708201355/1 - No0007 No0018 64 4 noX 0/0/0/216/459 100.0% GOOD PROD prod_cont ei009a.cont.vix rel2806
+ 708201440/1 - No0019 No0060 64 4 noX 0/0/0/216/1727 100.0% GOOD PROD prod_cont ei009a.cont.vix rel2806
+ 708201643/1 - No0061 No0145 64 4 noX 0/0/0/216/3512 100.0% GOOD PROD prod_cont ei009a.cont.vix rel2806
+ 708210902/1 - No0121 No0126 64 4 noX 0/1/0/216/230 100.0% GOOD PROD prod_cont ei009a.cont.vix rel2806
+ 708230841/1 - No0001 No0O06 2048 4 noX 0/0/0/72/424 100.0% GOOD PROD prod_line ei009a.line.vix rel2806
+ 708230915/1 - No0007 No0018 2048 4 noX 0/0/0/72/458 100.0% GOOD PROD prod_line ei009a.line.vix rel2806
+ 708230952/1 - No0019 No0060 2048 4 noX 0/0/0/72/1726 100.0% GOOD PROD prod_line €i009a.line.vix rel2806
+ 708270807/1 - No0061 No0080 2048 4 noX 0/0/0/72/815 100.0% GOOD PROD prod_line ei009a.line.vix rel2806
+ 708270911/1 - No0081 No0109 2048 4 noX 0/0/0/72/1196 100.0% GOOD PROD prod_line €i009a.line.vix rel2806
+ 708271322/1 - No0109 No0124 2048 4 noX 0/4/107/72/639 100.0% GOOD PROD prod_line ei009a.line.vix rel2806
+ 708271410/1 - No0121 No0145 2048 4 noX 0/0/0/72/1051 100.0% GOOD PROD prod_line ei009a.line.vix rel2806

Listing 2: ExportFile output (from EIO09A).

Listing 2 is the ExportFile output for EIO09A. The first line lists the experiment
name followed by the default values for:

o VEX file (default = ezp.vix) — this will be used as the top-level VEX file
when running j2ms2 from this lis-file (cf. §2.c).

o runjob.pl profile (default = Prod) — not currently significant; j2ms2’s use
of lines in 1lis-file is controlled by the “4 /=" in the first column.

o Measurement set name (default = exp.ms) — this will be the name of the
MS j2ms2 will make when run from this lis-file.

o FITS-file name (default = exp.ms.UVF) — not currently significant; the

actual name of FITS file(s) is controlled by tConvert (cf. §4.a).

Usually, you would want to change the name of the VEX file and output MS to
match your specific situation. Changing the name of the profile and FITS file-name
isn’t currently necessary, but change them anyway to achieve internal consistency.

The main body of the 1is-file contains a subset of the columns from the LogFile
output, plus a first column that is “+” or “~”. This first column controls whether to
include data corresponding to the subjob/scan-range in its line or not: “4”=include,
“”=gkip. This feature can provide you scan-by-scan control over what goes into
the MS (and hence the FITS files). By the time you've gone through the weight
plots and hunted for recorrelations, you should be in a position to be able to set the
“+/-" field appropriately for each subjob. There other modifications you can make
to the *.1lis-files to provide you with fine control over exactly what data goes into
the MS, to be discussed presently.

The example shown in Listing 2 is for an experiment with separate continuum
and line correlation passes (2 different profiles, 2 different vex files). In real life
you’d want to save separate lis-files for each profile/VEX-file by using the profile-
selection feature under the ExportFile pull-down menu (§1.b.#i4), and edit the first
line of each to make the fields appropriate for specific correlation:

cont: ETO09A ei0O09a.cont.vix Prod eiOO9a.cont.ms ei009a_1_1.IDI

13

line: EIO09A ei009a.line.vix Prod ei009a.line.ms ei009a_2_1.IDI

Don’t worry about FITS-file naming convention, that will be discussed in due time
(§4.a) — the above file-names do conform to the current convention, but they’re
currently not significant in this line of the lis-file. For disk-based experiments,
the column after the Job/SJ ID contains a single hyphen (this used to be place for
pass number in tape experiments). The next two fields are the begin and end scan
contained within the subjob. To get ahead of ourselves a bit, it is by editing these
scan-range boundaries that we can gain scan-by-scan control over which subjob
contributes which data to the MS. The ExportFile feature in showlog sorts the
subjobs within each profile by scan number, facilitating the creation of pre-time-
sorted measurement sets.

¢— Run in the standard way, j2ms2 limits taking data from each subjob to the range
of scans specified in each row of the 1is-file. Currently, this scan-range checking
occurs though a numeric comparison of scan numbers, although this interpretation
of the scan-names is a little restrictive (they are not intrinsically constrained to be
in the form of “Nonnnn”). To date though, this has posed no practical limitations.
j2ms2’s scan-range checking obviates the earlier need to edit “output” VEX files (a
process that will therefore not be discussed here), and provides a record of how the
Measurement Set was built, allowing reliable reconstruction of it, if ever necessary
later. The scan-range checking therefore makes it much more straightforward to
use “partial” subjobs, to avoid duplicate data entering the MS, and to keep the
resulting MS in increasing-time order. Below are some points about the process of
handling initially overlapping scan-ranges in different subjobs (arising because of
re-correlations).

e The usual situation is when the latter part of a subjob has to be recorrelated.
In this case, both subjobs would get a “4”, and you just have to change the
end-scan of the first subjob to be its last good scan.

o If there was some overlap of good scans between the first & recorrelated
subjobs, then you have some more flexibility in how to pick the end-scan of
the first and the start-scan of the second.

e The situation in which some scans in the middle of a subjob get recorrelated
illustrates how to handle a more general situation (most typically arising because
of a diagonal weight in the middle of a subjob that gets “fixed” by a gap in
which the SUs reconfigure). The two keys are to have each line contain just the
scans you want to include and to maintain increasing-scan order in the lis-file.
The trick is that you may “re-use” a subjob: first taking some scans from the
original subjob (before the “bad” scans), then moving on to the scans from the
re-correlated subjob, and then picking up the rest of the scans from the first
subjob, as illustrated in listing 3 (original subjob 508091658 = scans 18-39;
re-do subjob 508100923 = scans 24-26).

14

+ 508091658/1 — No0018 No0023 32 2 noX 0/0/0/160/1455 100.0% GOOD
+ 508100923/1 — No0024 No0026 32 2 noX 0/0/0/160/728 100.0% GOOD
+ 508091658/1 — No0027 No0039 32 2 noX 0/0/0/160/1455 100.0% GOOD

Listing 3: lis-file extract (from GTO006) illustrating recorrelation of scan in the
middle of a subjob.

11 — The program checklis provides a quick way to check for overlaps or skips in
a lis-file from the linux prompt:

checklis exp[-modifier-].1lis

checklis lives in jops’s path on either ccsops, juw36, or PCInt. It looks through
the specified 1lis-file and returns any instances of overlaps or skips in the scan-
range numbering on consecutive “4” lines. If no exceptions are found, then it just
prints out the first & last scan. It’s possible that skips are intentional (you may
be making partial MSs), but overlaps would always be wrong (either introducing
duplicate data or including subjobs out of time order). Subjobs put into the 1is-file
out of time order would trigger at least one of these exceptions, so are not separately
mentioned.

i1t — 1 generally try to make/put the .lis-files in the main correlation-control
directory for the experiment (/ccs/expr/EXP), so that it’s easy for anyone else to
find them if necessary.

f. Daily review for recorrelations

In general, we want to make sure the correlation wrings the last drop of astro-
nomical knowledge out of the data as recorded (within reason — we have only a
finite time for the correlation process per experiment). Now that stations record
onto disk-packs, equipment problems at our end are generally easier to see, because
the a priori quality of the data is much higher. However, there are still certain ways
in which a station can have a deleterious effect on their recordings, some of which
we might be able to overcome — as well as spurious artifacts that our system can
add to the data. Much of the art of support-scientisting comes in recognizing what
is and isn’t worthwhile to pursue; that it remains perpetually enthralling arises from
the ever-shifting state of the correlator, experiments, and the set of behaviors their
interaction spawns (§App.1.g). Some basic guide-lines:

e loss more than one station, or loss of a vital station (e.g., Ef/Gb/Jby/Wha,, for
an experiment requiring sensitivity, Sh for an experiment requiring the longest,
baselines). Obviously, recorrelation isn’t useful if, for example, a station with
bad playback has other problems precluding useful data (e.g., it was stowed
for high winds, the ezp.sum file from sched shows that sources were below the
horizon).

15

generic playback problems, if exactly repeatable on different playback units, are
probably are intrinsic to the recorded media. Tapes in this instance were trickier
than disks, since it’s not out of the realm of experience for the same tape-pass
to play significantly differently on two units, or even twice on the same unit.
Some station units may have lower weights (on some channels) for all stations
— this is usually a sign of a malfunctioning board or connection between boards
and the backplane.

sometimes entire scans may be missed, for various reasons. These need to be
picked up in recorrelation (one of the prime reasons for next-day checking of the
previous day’s correlation, and keeping a running list of remaining scans to be
correlated — much reduced chance of something inadvertently being overlooked,
and easier to recorrelate while the experiment’s media are still mounted).

Diagonal weights (§App.1.g.i.y) can occur in experiments that use 16 MHz sub-
bands. Typically, the fringes to the affected station actually disappear before
the onset of the characteristic diagonal weight signature — make sure that DW’s
have been re-done, and than any necessary preceding scan(s) were included in
the re-do.

The last scan may not have been fully completed. In some cases, you may be
able to intuit this problem from the weight plot (e.g., an established pattern of
phase-referencing scan lengths seems to be broken), but in some cases this will
not be perceptible (time missed due to premature ending is too small a fraction
of the overall job length). If you have suspicions, the quickest way to check
is to look at last successfully recorded integration for the sub-job in the job’s
data_handler.log (§App.1.f.0).

Ghost-data termination (§App.1.g.i.€). This can be recognized from the weight
plots as an event in which more than one station has 0-weight starting (or
ending) at the same time. This is caused by a correlator bug in which the
lack of data from one station can knock out the data for another station. The
classic GDT event occurs after one station has left the array, never to return (on
the basis of scans selected for this subjob); for a while correlator will continue
to output data for it (the “Ghost data” effect — qApp.1.g.i.d), but this will
eventually cease (~7-12min). When it does, another station’s weight may also
go to 0 at the same time. An alternate version of the GDT problem occurs at
the beginning of a subjob, when some station doesn’t participate in the array
from the very beginning. Here, another station’s weight may be stuck at 0 until
the time the “late” station come into the array, at which time its weight will also
jump up. The solution is to recorrelate, being more careful in the scan-range
selection to avoid subjobs whose beginning or end miss a station.

16

2. Making the Measurement Set(s).

a. Setting up the Working Disk, Necessary Files

¢ — If you haven’t already done so during clock searching, you’ll need to create a
working directory for the experiment on E3 (PCInt). To log onto PCInt, use ssh -X
-1 jops eee.jivepci.nfra.nl. The “eee” machine is something that will put you
onto one of the PCInt nodes. The data directories have mount points of the form
/data/NM/, where Nis (currently) in the range 0 — 5 and Mis 0 — 1. If you have
some problem with the eee address, you could alway log directly onto a node, the
most typical way being core-N-m. jivepci.nfra.nl, where N refers to the same
0-5 range for the data directory mount points. In the past, some post-correlation
steps have gone quicker when you log onto core-/N-m, where N is the same as the
mount point where your data lives.

Log-in as jops, and create a directory for the experiment on a mount point
/data/Nm/your-ID/ EXP. Some mount points are being used for additional pur-
poses, so you can run df -h | grep data to judge where there will be enough
room for the experiment’s data during the FITS-creation stage — you generally
shouldn’t need more than ~2.5 times the space taken up by the output correlator
jobs. wyour-ID can be your name, initials, etc., which really only serves to iden-
tify who “owns” the experiments that live in subdirectories under this path, which
makes the subsequent housekeeping (95) easier to administer. cd to this directory.

12 — Once the experiment has been completed, a copy of the cover-letter tem-
plate (c¢f. 94.b) and an experiment “summary” should live on ~jops/piletters
as exp.piletter and exp.expsum respectively (for jops logged into “upstairs” ma-
chines, not ccsops, juw36, nor PCInt). This expsum-file is useful in pipelining (cf.
96) to see which sources are private, and hence whose plots and post-SPLIT FITS
files receive password-protection. Complain to me if these don’t exist when you
need them.

i1t — scp the exp.lis file(s) over. j2ms2 will use one of these files in making each
Measurement Set, including all subjobs whose lines begin with “+” and excluding
those whose lines begin with “~”. The name of the “top-level” VEX file to use
(cf. 92.c.ii) and the name of the output Measurement Set to make are in the first
line of the lis-file. In most cases where you need multiple 1is-files, there should
be a different top-level VEX file and a different output Measurement Set in each.
There may also be reasons to make a separate Measurement Set for each mode in
a multi-mode schedule (e.g., a multi-source spectral-line experiment with different
Doppler-shifts for each source) if the PT wants. As touched on below (93.h.éii),
multi-mode Measurement Sets also currently pose problems for standard plots. If
you run j2ms2 with the name of an existing Measurement Set, it will append data
to that one, which is useful in some circumstances but definitely not in others
(especially if you wind up “mixing” different top-level VEX files into the same MS).

17

Once the exp.lis file(s) are just as you want them, it’s time to move on to
processing the actual data themselves.

b. getdata.pl

getdata.pl is a perl-script that automates the retrieval of correlator jobs. The
syntax is:

getdata.pl -proj EXP -1lis exp.lis

You will first have to supply the jops password when prompted (don’t include
passwords in scripts you may make to run getdata.pl. The screen echos “Ig-
noring - [line-text...” for each line in the exp.lis not having a “+” as the first
(non-space) character, and then the data from the “good” jobs begin to flow. The
screen echos all the files that are being pulled across.

1 — getdata.pl gets jobs rather than subjobs, so it will get all subjobs of a multiple-
subjob job even if only some of them are in the 1is-file. Other than taking up a
little more disk space, this has no impact on subsequent steps. If a job already exists
on the working disk, getdata.pl is smart enough to skip over it and not waste time
getting it again, writing “Skipping JobID” to screen (thus there’s no penalty for
having the same subjob listed multiple times with different scan ranges).

11 — For experiments needing multiple VEX files, remember to use multiple 1is-
files and to make sure the VEX file and Measurement Set names are correct in the
first line of each of your lis-files. getdata.pl will automatically pull over the VEX
file mentioned in the first line of the 1is-file. This will later be needed as the “top-
level” VEX file by j2ms2 (cf. 92.c.ii). The principal reasons for requiring multiple
top-level VEX files involve correlation runs using different subsets of the scheduled
SB/pols — continuum/line, correlation by individual SB to provide higher Nj,q,
ete.

iii — Behind the Scenes: getdata.pl

When pulling over the specified correlator jobs, getdata.pl also splits a long
comment line in the output VEX files (the 6 line, showing the command-line
syntax for the older version of prep_job, cf. 92.c.ii). Without this operation in
each output VEX file, j2ms2 would fail, producing a “string too long at line
(7 error message (but without explicitly mentioned the file in the warning). This
used to be accomplished via running a separate perl-script: fixvex.pl */*.vex.

18

c. j2ms2

j2ms2 converts correlated data into a Measurement Set. The syntax you would
most likely use is:

j2ms2 -v exp.lis

This will use the specified 1is-file to obtain the name of the top-level VEX file
and resulting Measurement Set, and to control what subjobs contribute to the MS,
using the scan-range checking described above (cf. §1.e.i). In all cases, data at
times outside of scans will not go into the MS. If for some reason, you don’t want
the scan-range checking, replace the -v in front of the 1is-file with -V.

A single experiment that requires more than one MS will need a separate j2ms2
run for each lis-file, which will result in separate MSs if the 1is-files have different
output-MS names in their first lines. All of the subsequent operations in €43-6
should also be performed for each MS and resulting FITS files.

j2ms2: Version of Tuesday 29 May 2007/11:50:50 begins

JIVEMSFiller: Adding GhostBusterFilter []
VEXperiment — Using VEXfile=eb032c.geod.vix
shronek Experiment EBO32C ottt
Output is placed in: tst.ms

Data is written in the MS in the frequency domain

readCorrelatorSetup: '/data/31/rmc/EB032C/707121059/EB032C_707121059.vex’
readCorrelatorSetup: Skipping unknown validity_mode = local
readCorrelatorSetup: Skipping unknown feature_bits =

===> Find: Scan No0002 (#2): 1727+453/geodetic ** 17-Jun—-2007/07:03:36
Corr: Nf 32/Ti 2s/P [rr,Il,)JJABsw v. 2.0/BOCF 32Hz

FrequencyConfig: ‘geodetic’ (#0) recorded [rl]
[#0: 8 MHz, from 6.61299 GHz, LSB (VEX channels: <0:r><1:1>)]
[#1: 8 MHz, from 6.62099 GHz, USB (VEX channels: <2:r><3:1>)]
[#2: 8 MHz, from 6.63299 GHz, LSB (VEX channels: <4:r><5:1>)]
[#3: 8 MHz, from 6.64099 GHz, USB (VEX channels: <6:r><7:I>)]
[#4: 8 MHz, from 6.65699 GHz, LSB (VEX channels: <8:r><9:I>)]
[#5: 8 MHz, from 6.66499 GHz, USB (VEX channels: <10:r><11:I>)]
[#6: 8 MHz, from 6.68299 GHz, LSB (VEX channels: <12:r><13:1>)]
[#7: 8 MHz, from 6.69099 GHz, USB (VEX channels: <14:r><15:1>)]

Tue Aug 28 12:58:16 2007 WARN Meas|ERS::filMeas(MeaslERS::Files, Double) (file /data/00/casa-devel/casa/code/measures/implemen
t/Measures/Meas|ERS.cc, line 94):

Requested JD54268.3 is outside the IERS table data range

Calculations will proceed with less precision

Tue Aug 28 12:58:16 2007 WARN MeasTable::dUT1(Double) (file /data/00/casa-devel/casa/code/measures/implement/Measures/MeasTable
.cc, line 6437):

No requested dUT1 data available from IERS tables.

Proceeding with probably less precision.

===> Finding visibilities without a Scan [not writing 'm]

===> Find: Scan No0003 (#3): 1740+521/geodetic ** 17-Jun-2007/07:05:24
Corr: Nf 32/Ti 2s/P [rr,II,|/ABsw v. 2.0/BOCF 32Hz

FrequencyConfig: ‘geodetic’ (#0) recorded [rl]
[#0: 8 MHz, from 6.61299 GHz, LSB (VEX channels: <0:r><1:1>)]
[#1: 8 MHz, from 6.62099 GHz, USB (VEX channels: <2:r><3:1>)]
[#2: 8 MHz, from 6.63299 GHz, LSB (VEX channels: <4:r><5:1>)]

===> Find: Scan No0005 (#5): 1800+782/geodetic ** 17-Jun-2007/07:09:24
Corr: Nf 32/Ti 2s/P [rr,II,J/ABsw v. 2.0/BOCF 32Hz

FrequencyConfig: ‘geodetic’ (#0) recorded [rl]
[#0: 8 MHz, from 6.61299 GHz, LSB (VEX channels: <0:r><1:1>)]
[#1: 8 MHz, from 6.62099 GHz, USB (VEX channels: <2:r><3:I>)]
[#2: 8 MHz, from 6.63299 GHz, LSB (VEX channels: <4:r><5:1>)]
[#3: 8 MHz, from 6.64099 GHz, USB (VEX channels: <6:r><7:I>)]
[#4: 8 MHz, from 6.65699 GHz, LSB (VEX channels: <8:r><9:I>)]
[#5: 8 MHz, from 6.66499 GHz, USB (VEX channels: <10:r><11:I>)]
[#6: 8 MHz, from 6.68299 GHz, LSB (VEX channels: <12:r><13:>)]
[#7: 8 MHz, from 6.69099 GHz, USB (VEX channels: <14:r><15:1>)]

Translated @ 1.71056 Mbytes/s

0
0SCN: 14616
OOSubjobRNG: 4872

Listing 4: j2ms2 output (from EB032C).

Listing 4 shows an example of what you’d see on the screen as j2ms2 runs.
It begins by mentioning the j2ms2 version and the top-level VEX file it uses, and

19

gives the name and domain (i.e., frequency or time) of the output Measurement Set.
j2ms2 then starts in on converting the data in the correlator output, scan-by-scan.
During the process of data conversion, it lists the scan that it’s currently working on,
together with the relevant source, mode, start-time, and some basic frequency set-
up information derived from the VEX file. Together with the vexsum.pl output, this
provides a way of tracking progress as it runs. When run in the standard fashion as
above, the scan number reported by j2ms2 matches the scan-name’s “number” from
the VEX file. The description of the correlator parameters (N, tint, polarizations)
lets you check whether there was some problem in the correlation (which of course,
you would have most likely already found from showlog). More information about
the frequency/polarization set up of the scan follows; this provides the means to
check that you're using the proper top-level VEX file — if you've used the wrong
VEX file in the first line of the exp.1lis you will see unexpected information here
(and get wrong frequency information in the MS). It’s also possible that j2ms2 will
refuse to run, should Ny, in the top-level VEX file be inconsistent with what it finds
in the correlator output. You're provided a running total of the number of rows
created in the Measurement Set (not shown in the hard copy in Listing 5). When a
new scan begins, you see the information for it. If there is a gap in the experiment or
j2ms2 encounters scans which you ruled out via the scan-range checking in the 1is-
file, you will see the “Finding visibilities without a Scan” message. When a
subjob is completed, you see a summary of the number of visibilities written to the
MS, filtered (mostly ghost data, c¢f. §App.1.g.i.0), outside of scans (i.e., in gaps),
and outside of the 1lis-file specified scan ranges. Since the exp.lis is (or should
have been...) in scan order, the resulting Measurement Set will be in time order.

i — A more manual way of running j2ms?2 is:
j2ms2 {-d time} -o MSname jobID/subjobID

Here, the “-d time” is included to make a lag-based MS, otherwise the default
frequency-based MS results. The “-o0” parameter controls the name of the MS
produced. Multiple j2ms2 runs using this format with the same MS name will con-
tinue building up the MS by appending the data for the currently-specified subjob
at the end. In this usage, the top-level VEX file must have a name dirname.vizx,
where “dirname” is the name of the working directory (i.e., easiest if the correlator
jobs live in, the MS goes to, and j2ms2 is run from the same directory) — usually
dirname = EXP. Failure to have this name match results in a cryptic “Aargh -

[StdException: Experiment is not COF.] (j2ms2.cc:804)” error right
at the beginning of the j2ms2 run. If you have to juggle multiple top-level VEX
files in this approach, it’s best to ftp them all to your working directory on E3,
and cp the appropriate one to dirname.vix just before running j2ms2 (especially
useful if you have a shell-script of several of these single-subjob j2ms2 runs). Of
course, the intent of driving production via the lis-file shields you from
all this complication.

20

3. Operations on the Measurement Set(s).

Measurement Set, ops usually occur in the aips++ environment. Run

glish {-1 logger.g}

“_»

and wait for the prompt. The “-1 logger.g” option starts a GUI dialogue-
box with logging information. Without the “-1 logger.g”, some of the logging
information would go directly to the terminal. Depending on what you're doing,
either may be preferable.

There are a couple tricks that may make your experience more enjoyable:

o make your xterm wider — glish function calls can go from line to line, but
once you're on the second line you can’t get back to the first (say to backspace
over a mistake), and even on the second line backspacing is annoying (2" line
reprinted for each backspace).

o before starting glish, check the tty in the xterm you’re working in, in case you’ll
need to safely kill it (& not someone else’s) from another xterm. On PCInt, this
really hasn’t been a problem anymore.

o Ctrl-a & Ctrl-e bring you back to the beginning and end of the line respec-
tively. Up-arrow retrieves the history of commands; the well-planned session
will involve mostly Up-arrows and minor editing of previous commands.

Basic Measurement Set architecture to keep in mind:

e the main table comprises a set of rows. Each row contains 2 stations (autocorre-
lation: both stations the same), a time, a data array with dimensions Ny x N,
(or Niag for a time-based MS), a weight vector with dimensions of Ny, and
various pointers to sub-tables that allow one to figure out:

o what frequencies correspond to the different N, frequency points, what the
net sideband is, etc. (the DATA_DESCRIPTION & SPECTRAL_WINDOW tables)

o what the polarization mapping is for the Ny, entries in the DATA column
(the DATA_DESCRIPTION & POLARIZATION tables)

o what source is being observed (the FIELD table)
o information about the stations (the ANTENNA table)
o information about the job from which the row came (the PROCESSOR table).

e any column from the main or sub-tables can be read into variables in glish, an
interactive/scripting language that has some of the features of FORTRAN, C,
IDL, and pascal, including support for pgplot.

When you run a “program” in glish, you're actually calling functions by passing a
command-line of parameters. Most much-used functions are automatically loaded
whenever you start glish (as user jops). Other functions have to be explicitly loaded
via the include ’FUNCTname.g’ command. The expected syntax and default

21

values can be seen by simply typing the function name without any arguments (if
you get just F back, then the function isn’t loaded). You can pass parameters to
the function according to the syntax returned; if you follow the parameter order,
then you don’t have to supply the parameter names. Unsupplied parameters revert
to their default values. You can omit some parameters, but then the first one (and
all subsequent ones) you do supply after the omission requires a name. The same
applies if you include a parameter out of order. Some examples for a fictitious
function (here, \/ means good syntax, x means bad syntax):

full syntax: funct(MSname, weight=0.2, outfile=’ ’, live=T)
\/ funct (’MyMS.ms’, 0.4, ’file.out’, F)
y/ funct(’MyMS.ms’, 0.4, ’file.out’) — live stays T

x funct(’MyMS.ms’, ’file.out’) — weight omitted, outfile parameter
name not specified — will try to assign “file.out” to the parameter weight,
which may have adverse consequences depending on how carefully the func-
tion checks for expected variable type, etc.

\/ funct(’MyMS.ms’, outfile=’file.out’)

x funct(’MyMS.ms’, outfile=’file.out’, F) — once outfile specified,
all subsequent parameter names also need to be given

\/ funct(’MyMS.ms’, outfile=’file.out’, live=F)

\/ funct(live=T, weight=0.2, MSname=’MyMS.ms’, outfile=’file.out’)
— order doesn’t matter if all names given

Generally, it’s much less typing if you get in the habit of entering the parameters in
order. Most functions have been tailored to have at least a fairly reasonable order.

Functions return a single “thing” (integer, string, record, etc.). If the function
isn’t assigned to a variable (using a := function(parameters)), then the return goes
to the screen (which may or may not be desired). glish doesn’t remember internal
variables in functions once the function returns (unlike, say, IDL does).

A quick way to get a summary of what’s in your MS (stations, sources, frequency
set-up) is with the mssum function: mssum(’ MSname?’). Listing 5 shows the
result for EZ015 (a single-mode experiment).

- mssum('ez015.ms’)
Antenna ID 0 is Ef EFLSBERG Source ID 0 is 487
Antenna ID 1 is Mc MEDICINA Source ID 1 is 515
Antenna ID 2 is Wb WSTRBORK Source ID 2 is 947
Antenna ID 3 is On ONSALA85 Source ID 3 is 0234+285
Antenna ID 4 is Tr TORUN Source ID 4 is J0801+4401
Antenna ID 5 is Nt NOTO Source ID 5 is J0808+4950
Antenna ID 6 is Jb JODRELL1 Source ID 6 is 4C39.25
Source ID 7 is J0932+5306

Subband 0: 8.00 MHz @ 1.63061 GHz / 64 fp (LSB) [RR LL RL LR]
Subband 1: 8.00 MHz @ 1.63849 GHz / 64 fp (USB) [RR LL RL LR]
Subband 2: 8.00 MHz @ 1.64661 GHz / 64 fp (LSB) [RR LL RL LR]
Subband 3: 8.00 MHz @ 1.65449 GHz / 64 fp (USB) [RR LL RL LR]
Subband 4: 8.00 MHz @ 1.66261 GHz / 64 fp (LSB) [RR LL RL LR]
Subband 5: 8.00 MHz @ 1.67049 GHz / 64 fp (USB) [RR LL RL LR]
Subband 6: 8.00 MHz @ 1.67861 GHz / 64 fp (LSB) [RR LL RL LR]
Subband 7: 8.00 MHz @ 1.68649 GHz / 64 fp (USB) [RR LL RL LR]
R

Listing 5: mssum output (from ez015.ms).

22

—Q;. {scanfix.g} scanfix.g has a long history as a utility to fix up various things
in the MS. By now, developments in j2ms2 have rendered these corrections moot
in normal circumstances. We've recently come across an instance in which data in
gaps were not properly excised in an e-VLBI experiment. Some background in this:

o j2ms2 omits data coming off the correlator for stations at times in which the
station isn’t participating in a scan (which include all stations in gaps). How-
ever, e-VLBI needs to see no gaps in the incoming data. One way to handle
this is to make sure the VEXfile used to control the correlation has its scans
extended to run up to the start time of the following scan. The stations observe
based on the original schedule with gaps.

o The apparent gap-less $SCHED section of the VEXfile propagates into the output
vexfiles, thus j2ms2 has no way of seeing that there are indeed gaps from the
stations’ point of view. Thus all the periods when the stations are off source
make it through into the MS, and hence the FITS file.

o scanfix.g, given the original ezp.skd file, could flag the data in the MS cor-
responding to times in gaps. Subsequent processing steps wouldn’t use them
(except currently standardplots). The data would go into the FITS files, but
with negative weights.

So until a fix at the correlation-control stage is enacted, the following step will
excise the data in gaps manually for e-VLBI observations:

include ’scanfix.g’

scanfix (> MSname’, ’>SKDname’, evlbi=T)

where the SKDname refers to the original skd-file. You can scp this from C? at
/ccs/var/log2vex/logexp_date/ EXP_yymmdd/exp . skd

or from vlbeer as user evn at vlbi_arch/monYY /.latest/exp.skd

(The yymmdd refers to the observing date — the initial day for experiments that
cross day boundaries; cf. 94.c for where to get this date.)

a. {jfilt}

jfilt (run at the linux prompt outside glish) combines multiple correlation
passes. The principal application is in experiments that have more than 16 stations
at any given time, which require (at least) three correlator passes to complete,
with each pass involving a different subset of stations. There are a couple MS-
conditioning tricks that we’ve picked up in the two experiments that have required
jfilt, but I've never gotten around to documenting these (they relate to ensuring
the integration epochs in the different pre-jfilt MSs are compatible & adjusting
them back afterwards, and to ensuring the appropriate data gets through jfilt’s
selection criteria, e.g., excising diagonal weights that fall in periods also having
synch loss). We haven’t had a > 16-station experiment since the Nov’03 session, so
I’ll refrain from further discussion here — jfilt has yet to be attempted on PCInt.

23

b. {duptim.g}

Add section about duptim: what it checks/why/etc. e-mail = tem-
plate

c. {polflag.g}

polflag.g takes care of cases where a station records a single polarization into
both pols in a dual-pol experiment — most typically On & Ur having only LCP at
K-band (and in the past, Sh having only LCP at L-band). The syntax is:

polflag(’ MSname’, antenna, subband, pol, scan)

where antenna is the affected station (passed as an antenna-ID integer), and pol
can be *L’, *R?, or ’C’ (this is to specify the unrecorded polarization). polflag.g
can handle only one antenna at a time (advertized as a safety feature, but really to
make the coding more straightforward in handling the effects of baseline order for
cross-pols). New selection criteria include subband and scan; the need for this extra
filtering has come up in specific experiments. Currently, scan can be only a single
scan, passed by scan-number.

polflag.g will flag both the parallel- and cross-hand Stokes visibilities asso-
ciated with pol on all baselines & autocorrelations involving antenna, taking into
account the “baseline order” for the cross-pols, if there are any. Therefore, if a
station recorded only LCP, then the pol parameter should be ’R’. There’s also
a special possibility pol=’C’, which will flag both cross-pols but neither parallel-
hand pols for baselines involving antenna. The rationale behind this option was
handling cases in which antenna recorded linear polarizations (while everyone else
had circular pols).

24

d. 2-bit van Vleck Correction

The correlator always works in a 2-bit mode (for 1-bit data, the “magnitude”
bit in each sample is set to 1). The correlator now outputs (lag-based) correlation
functions for a baseline/autocorrelation without any correction for the participat-
ing stations’ “sampler statistics”: the distribution of magnitude (high/low) and
sign (4/-) bits. The distribution of the magnitude bits in particular can make a
noticeable difference to the magnitude of the correlation function. With the cor-
relator’s current output, the amplitude of the central lag of an autocorrelation is
directly proportional to the fraction of high-bits (hereafter f,) — unity autocor-
relation amplitude corresponds to f;, = 0.364. Of course, for f, # 0.364, the raw
correlator output has the intrinsically nonsensical result of non-unity autocorrela-
tion peaks. The amplitude on baselines can likewise be affected as a function of the
fnr of the two participating stations’ data streams. The program 2bitVV computes
the appropriate 2-bit van Vleck correction for each visibility in the MS as described
below.

1 — First, however, we can use the linear relationship between the autocorrelation
peak amplitude and f;, to provide feedback to the stations. 2bitVV can correct the
amplitudes of the correlation functions in the MS, but if f} is significantly different
from our ideal 0.364, there will be an irrecoverable loss of sensitivity; in the extreme
case, f, = 1 would be the same as 1-bit recording. Near-zero f; are potentially
even worse in terms of SNR. So it’s in the EVN’s advantage if the stations could
set the BBC attenuators on their VCs/BBCs such that f;, ~ 0.364.

The autocorrelation-amplitude plots generated by the daily cron-job (cf. §1.d)
provide this information, without the scaling to f,. There is a type of plot in tplot
that directly shows f;, (plotted as %, with a fixed y-axis range of —1% < f), <
101%). The most direct way to obtain this is:

a:=readms (’ MSname’, auto=T, firsttime=’yyyy/doy/hh:mm:ss’>, dur=At)

tplot(a, type=’samp’, yplot=Nga,xplot=Ng,,
multisub=F, outfile=’PLOTfilename’)

In readms, the parameters firsttime & dur can be used to read in only part of
the MS by time (At minutes starting from firsttime — cf. 93.j.7). Especially
for experiments with short ¢;,¢, it would be faster to plot a few instances of a few
minutes than the whole experiment. The parameter auto=T limits the MS-read
to only autocorrelations. In the tplot call, only the parallel-hand polarizations
are used (cross-pol correlations are treated as ordinary baselines in the correlator).
Parameters in tplot not previously discussed include:

o multisub=F makes separate plots for each SB; this makes it easier to see
which (if any) SB/pol has problematic f;, without having to worry about
the color-scheme (in these plots, red=LCP, blue=RCP).

o Depending on which of Ng. or Ng, is larger, you may want to use land-
scape=T (default is to make a portrait postscript file). Typically, xplot=8

25

doesn’t look good in portrait. You can always put yplot< Ng,, and the
output file will span >1 page.

o An entry for outfile= puts the plot to the specified (postscript) file. If
outfile isn’t specified, the plot goes to the screen. When you’re putting
the plot to a terminal run from a linux machine, the colors can differ from
what they would be in the postscript file (& on screen in a unix machine).
The “save” button on the widget doesn’t seem to work.

The mapping between SB/pol on the plots and BBC at the stations can be figured
out from the $FREQ section in the top-level VEX file. This may differ from station
to station, depending on the type of recorder used. The ’samp’ plots do not do the
reverse-FFT back to lag space to calculate f;, but rather make use of the property
that the integral of a function (the real freq-space autocorrelation bandpass) over all
w is equal to the value of its transform at the origin (the lag-space autocorrelation
peak). It sums the real over all frequency points to approximate the integral over
all w.

1 — 2bitVV

2bitVV (run at the linux prompt outside glish) applies the 2-bit van Vleck
correction to the MS in-place. Unlike other programs in the section that flag data,
2bitVV actually changes the visibility data. If for some reason it fails in the middle
of a run, don’t just restart it on the same (partially-corrected) MS. The choices are
to remake the MS or to revert to a previously saved pristine copy of the MS via cp
-r MSname MSnameORIG). Now that 2bitVV is done outside glish, the chances of
encountering a problem during running is low enough it’s probably not worth the
time/effort to save a pristine copy of the MS prior to running 2bitVV.

The syntax is:

2bitVV {-H fp. ..} {-W wmin} MSname

min

Here, the optional parameters -H & -W provide the means to flag data for which
the process of computing the 2-bit van Vleck correction would likely be suspect:
defaults are f5_,, = 0.01 and wpin = 0.1 (below the weight cut-off used for most
other reasons). These parameters control “targeting” individual integrations in an
autocorrelation BBC (SB/parallel-hand pol). Any integration for a baseline SB/pol
in which a targeted autocorrelation BBC participates is in turn targeted. Any such
targeted visibility has its weight set negative in the MS, which will follow into the
FITS file. You might be able to use insights gained through plots from €3.d.s to

adjust f . if necessary.

min

e. fixfbs

fixfbs (run at the linux prompt outside glish) applies a post-correlation correc-
tion for the phase-slope error across the band resulting from the fractional bit-shift,

26

which is most noticeable near times of zero delay-rate. Here, the slowly changing
residual delay error, caused by the difference between the (discontinuous quantized)
integral-lag delay by which the two bit-streams can be adjusted with respect to each
other and the actual continuous 7(¢) geometric model, results in the phase slope
across the band pivoting about the central frequency point. This could affect es-
timation of delays in fringe-fitting and create sawtoothy plots of vector-averaged
amp(t). As long as the vector-averaging takes place over a range of frequency
points symmetric about the center, the phase(t) plot should remain less affected
since the pivoting takes place about the central frequency point. However, for over-
sampled data, the pivoting appears to take place 1/(20s) into the band, where os
is the oversampling factor. Figure 4 shows before/after amp(t¢) plots for a subset of
NO6M2.

Amplitude for TST1.master Amplitude for TST1

E Do—ef (0-1)

Da—Ef (0-1)

55 60 65 70 75
T e

Da—Wb (0-2) | [bo—wb (0-2)

5 8 10 12 14 16

Da—db (0-3) Da—Jb (0-3)

100 30 35

sf Ef—wo (1-2) Eoef-wb (1-2)

Ef—db (1-3) ' ' ' ' Efi—db (1-3)

s T T
T wb—Jb (2-3) Wb—Jb (2-3)

6 8 10 12 1440

18"04™ o8™ 12" 167 20" 18"04™ o8™ 12" 6™

Figure 4: amp(t) plots before (left) and after (right) fixfbs (from NO6M2).

1 — For safety’s sake, it might be prudent to make a copy of your MS at this point
(via cp -r MSname MSname0). fixfbs has been tested relatively thoroughly, but
there are some kinds of experiments it hasn’t seen. Like 2bitVV, this is the kind
of program that would not recover well from stopping part-way through. It’s also

27

important to remember to run fixfbs only once per MS; the modifications it makes
in successive runs would be cumulative — the first time fixes the FBS, a second run
would add back in the FBS error with the opposite sign, a third run would double
that, etc.

it— The syntax for fixfbs is straightforward, with a slight complication (currently)
in the formatting of the MS name:

fixfbs ./ MSname

The “./” is currently required, and there should be no trailing “/” at the end
of the MS name (as would occur should you use tab-completion half-way through
MSname). Like fixuvw.g & plyflg.g, fixfbs currently requires the jobs to be on
disk, since it finds the a priori model polys files there.

11 — If you have saved the pre-corrected MS, you can use movie.g to compare
the before/after phase across the band in animations. The syntax (without deeper
explanation) is:

a := readdata(’MSname’, Antl, Ant2, firsttime=’yyyy/doy/hh:mm:ss’,
dur=At)

movie(a, N_sb, M_pol, ’phas’, weight=0.2, wait=30, plotline=F)

Here, Ant1 & Ant2 are the index numbers for the two stations (e.g., 0,3 or 1,2 for
the affected baselines in figure 4). The time-range is most quickly specified with the
firsttime and dur parameters (At in units of minutes — cf. 93.j.7). movie.g will
open a pgplot widget, and show the phase across the band for each integration of
the selected subband/polarization, specified by the subband & pol indices. You can
click on the done button when the animation is over. A subsequent run will open
another pgplot widget, whether you’ve dismissed the previous one with done or
not. The wait parameter controls how quickly the animation-refresh occurs; larger
numbers lead to slower animations.

f. fixuvw.g

fixuvw.g corrects values for the UVW coordinates in the MS to be consis-
tent with the a priori model used during correlation. To do this, it uses UVW
polynomials written to the polys files in a way comparable to the delay and phase
model polynomials. These UVW overwrite the existing ones, so there’s no danger
to multiple runs. This is run in glish:

fixuvw(’ MSname’)

Like fixfbs & plyflg.g, fixuvw.g currently requires the jobs to be on disk, since
that is where the polys files live.

28

g- {plyflg.g}

plyflg.g flags time ranges where the a priori correlator models lead to known
problems for the output data. Currently (correlating in local validity), the only
applicable situation is when an a prior: delay-rate on a baseline is close enough to
zero that the phase-cal tones at the two stations correlate with each other, causing
brief spikes in the bandpass corresponding to frequency points where the phase-cal
tones lie. This only needs to be run for stations that have phase-cal on, which can be
checked from plots of the autocorrelation real(v). If the experiment isn’t spectral
line, you may not have enough resolution to tell for sure; there may be higher-

lag correlations from the clock-searching (plots should be in the yellow experiment
folder).

The first sub-paragraph discusses plyrecon.g, which can be used to get a feel
for where such model-based flaggable events may lie — this is fast because it doesn’t
read the MS to see what data actually exists. The second sub-paragraph gives some
basic functions you can use to investigate the time-range found by plyrecon.g. The
third sub-paragraph discusses flagging the MS for real with plyflg.g.

t — As a first step, you can run plyrecon.g to get an easier-to-read summary of
time-ranges that “should” have events to flag. Once back in glish after completing
2bitVV, run plyrecon.g for standard DR~0 flagging:

plyrecon(’ MSname’>, >OUTPUTfilename’)

Here, OUTPUTfilename will hold the summary of events it found to flag — a list of
time-ranges per baseline, sorted in roughly time-order (actual sort = by job). If the
experiment used Wb single dish (not fed through the adding box), also include the
parameter WBarr=F. If you have a subset of stations which you know did not have
phase-cal on, you can also include noDR=[’S%ta,’>, ’>Stas’,....], where Sta; are
the two-letter station abbreviations of the stations without phase-cals. An extract
from output for GP042 looks like:

** From job 505102134 **
Br-Kp
Rate event #01: 063/04:49:01.000 - 063/04:50:36.000

** From job 505102204 **

** From job 505102346 **

Cm-Ef
Rate event #01: 063/05:54:12.000 — 063/05:57:00.000
Rate event #02: 063/05:58:08.000 — 063/06:07:17.000

Jb-Sc
Rate event #01: 063/05:59:10.000 — 063/05:59:51.500

Listing 6: plyrecon.g output (from GP042).

There is a further parameter (minwrap) to control the extent of flagging per DR~0
event. It might be useful to reduce this from its default of 4 for experiments with
low t;n¢. The subparagraph below describes how to check whether the time-ranges

29

found by plyrecon.g are appropriate. There are even further capabilities to flag
fringe-rate harmonics (so far only needed twice for Jbhy) and/or delay-based event
where tape(disk)-frame headers correlate with each other (occurring for Mk4—Mk4
baselines under global-validity, which we currently don’t use). We won’t go into
these here; see the Operational Impact of Delay/Rate Problems guide on the JIVE
how-to wiki.

Since every advantage has its disadvantage, the downside of the speed gained by
not reading the full MS data is that plyrecon.g depends entirely on the polynomial
models. These are computed during the job-preparation stage and last over the
entire time-range selected for correlation. If the job stopped earlier than this, the
polynomial models would last longer than do the data from that job. If your
experiment has lots of jobs that were truncated before finishing or otherwise had
part of their initial duration re-done, then there may be some duplication in the
plyrecon.g output. As an example, if the first job was run trying the entire
experiment, but then a second job had to be re-correlated over the 2nd half of the
experiment, then any event found by plyrecon.g in the 2nd half of the experiment
will be listed twice (once in each of the two jobs). If you prepared the lis-file
correctly, there would not be such duplication in the data themselves.

1 — plyrecon.g only uses the a priori model polynomial files associated with each
job/station; it makes no attempt to check whether there are actually any data in
the MS corresponding to the full time ranges found. If you want, you can alway plot
the time-ranges corresponding to these events (say, if you're unsure whether some
stations really do have phase-cal on or not, or if you want to investigate fine-tuning
the minwrap parameter). The steps for doing this (in glish) include:

mssum(’ MSname’) — check the antenna numbers for your stations

a := readms(’ MSname’, F,Ant,Bsin, firsttime=’yyyy/doy/hh:mm:ss’,
dur=At)

tplot(a, F,F,F,F,[1,2], ’amp’, yplot=2,xplot=1)

For more syntax about these glish functions used here, see the discussion in €3.j.
Note that you don’t have to “include” these functions, as they are automatically
loaded upon starting glish (if logged in as user jops). Briefly, in readms, Ant &
Bsin, here integral antenna-numbers matching the return of mssum (2-letter station
abbreviations are also allowed), function as ANTENNA & BASELINE in classic AIPS,
respectively (the first F would be used for passing an array of stations, from which
all possible baselines/autocorrelations would be formed — this is usually the way
readms is called). They can be single stations or a vector of stations, passed by
antenna number. The firsttime & dur parameters control the time-range read
in from the MS; these can be set to a few minutes before the beginning and a few
minutes after the end of the plyrecon.g time-range to investigate (units of At are
minutes; cf. 93.j.7). The combination of these two is to read in dur minutes of

30

data following the time in firsttime. In tplot, the 4 F’s correspond to antenna,
baseline, subband, and fg (frequency group). Their being F’s denote use all data
(the selection was done in reading the data into the variable with readms. The next
parameter is pol — here only the two parallel-hands (if not a cross-pol experiment,
this can also be F). yplot and xplot control the layout of plots on a page; if plotting
more than 1 or 2 baselines, you’ll want to supply appropriate numbers here. The
default weight cut-off for such amp(¢) plots is 0.2, which suffice in almost all cases
(otherwise you could also include a weight=w parameter. By default, all SBs/pols
will be combined into a single plot per baseline, color coded following the scheme
in 93.j.7 (Table 2).

119 — Once you're happy with any plyrecon.g investigations, you can run plyflg.g
for standard DR~0 flagging:

plyflg(’ MSname’, > OUTPUTfilename’)

Here, OUTPUTfilename will hold the list of MS-rows flagged, with each visibility
on a separate line (including the baseline, integration epoch, and value of the DR).
There is an undo option, if necessary (by default, undo=F, to undo the plyflg flag-
ging, include undo=T in the parameter list). There are additional parameters similar
to plyrecon.g: noDR, minwrap, parameters for flagging phase-rate harmonics, and
parameters for flagging Mk4-Mk4 delay events for global-validity correlations. Like
fixfbs & fixuvw.g, plyrecon.g and plyflg.g currently require the jobs to be on
disk, since that is where the polys files live.

31

h. standardplots.g

standardplots.g makes a set of CBD-approved plots, whose existence officially
permits us have our policy of automatic tape/disk release a couple weeks after
distribution of the experiment to the PI. In other words, the plots provide PIs
sufficient overview of the correlation that they don’t need to analyze their data
through AIPS themselves before they’re confident that the correlation went okay.
Looking from the other point of view, the plots will let the PIs know if there was a
problem within the 2-week period before tapes/disks become eligible for release to
get back in touch with us if they think re-correlation is necessary.

i — The syntax for standard plots is straightforward (and provided on-screen each
time you include the program). Within glish, enter:

include ’standardplots.g’

standardplots (’ MSname’, °>Sta’, ’Src’)

You can also use two sources, in which case you need to use double- quotes (empir-
ically, double-quotes also seem to work in the single-source case as well):

standardplots (’ MSname’, °’Sta’, "Srcy Srca")

Here, Sta is the 2-letter station abbreviation you want to use as the reference station
in the plots (baselines will be Sta—*). Frequency-based plots show 1-minute of data
taken from the middle of automatically-selected scans; Src (either one or two) will
control the selection of these scans. If one source is given, then the first & last
scans of that source will be used (if only one scan of the source exists, then only
the middle 1-min interval of that single scan is used). If two sources are given,
then a 1-min interval from the first and the last scan from the combined set of
scans of the two sources are used. There is a consequence of this for typical phase-
referencing experiments: if the fringe-finder(s) don’t occur at the very beginning or
end of the experiment and you specify a fringe-finder & the phase-reference source
in standardplots.g, you will not get plots from a fringe-finder scan. The weight
cut-off for the plots (other than the weight plot) is 0.7. You can change the weight
cut-off with the wthresh=w parameter, and can skip the weight plot altogether with
NoWgt=T. Since the weight plot is made for the entire experiment, there is no need
to remake it if you want to re-run standardplots, say to try a different reference
station or different reference source(s). The weight plot can often take the longest
to make, so skipping it in subsequent runs could save noticeable time.

11 — standardplots.g makes four types of plots:

e Weight vs time plot (plot filename: MSroot-weight.ps, where MSroot is the
name of the MS, not including the “.ms”) — Shows the station (autocorrela-
tion) weight for each station in the MS. The plot covers the whole extent of
the experiment (or at least of the MS, which should be the same), and each

32

“won

integration is plotted as a separate (plot can get big). Only the first four
SB/pol are plotted: either SB 0&1 for dual-pol or SB 0—3 for single -pol.

e Autocorrelation amplitude vs frequency plot (plot filename(s): MSroot-auto-
N.ps) — One plot for each of the 1-min intervals from the 1 or 2 selected scans
(the Nin the file name refers to these two scans, taking the value 1 or 2). Shows
all pols of each station, with each SB in separate plots (thus Nga - Ngp individual
plots). The y-axis ranges of the individual plots scale separately, not necessarily
going down to 0.

e Baseline amplitude/phase vs frequency plot (plot filename(s): MSroot-cross-
N.ps) — One plot for each of the 1-min intervals from the 1 or 2 selected scans.
Shows all pols for each baseline to the reference station, with the SBs shown in
separate plots. Amplitudes are on the bottom of each individual plot; phases
are on the top.

e Baseline amplitude/phase vs time plot (plot filename: MSroot-ampphase.ps) —
Shows the amp and phase on baselines to the reference station for a time-range
starting ~30min before and ending ~60min after the first of the scans used for
the frequency-based plots. Only one pol from the first two SBs (or from just
SBO, if only 1 subband) is plotted. Each integration is plotted as a separate “.”,
vector-averaged over the middle ~80% of the band. All sources in that fall in
the time-range shown are plotted, and color-coding marks the source changes.

Under the current printer-server system in the building, you need to take an extra
step when printing out multi-page postscript level-1 plots (as are the standard plots,
and other plots made via pgplot in glish). At the unix/linux command prompt, use
the syntax:

lprpsl -p ’-Pxrxict’ filename

Where here, the color printer is being used.

191 — Limitations. The raison d’étre of standard plots is to allow the PI to have
confidence in the correlation such that the original recording media may be released
prior to the experiment being analyzed in any real depth. The CBD has approved
standard plots to serve in this capacity, so in terms of operations, all is well. How-
ever, there are specific characteristics of the standard plots that leave them a bit
short of this goal in reality. First, they show only a small part of the data, es-
pecially for experiments with many subbands (e.g., 1 Gb/s observations) — the
weight plot shows only the first 4 “channels”, avoiding the higher BBCs which are
usually more troublesome than the lower ones, and the amp/phs(¢) plot shows just
~1.5hr of data on 2 channels to baselines to just one station. Besides the sparse
channel-sampling, this latter plot is quite insensitive to correlator-based problems,
which can be baseline- rather than station-based. Second, there is not a great deal
of leverage in terms of picking the scans to use for the frequency-based plots, espe-
cially important in globals where it’s quite common for there to be no single scan

33

observable by all stations. For sources observed repeatedly in the schedule, there is
no means to steer the standard plots to specific scans, short of making (& processing
through the steps up to here) a sub-MS specifically crafted to force standard plots
to pick the desired scan(s). Even in this case, care has to be exercised with the
resulting file-names to avoid overwriting. Third, a similar lack of leverage exists in
terms of picking the 1-minute interval used by the frequency-based plots. The most
common problem is that the middle of the scan comes before some of the slower
stations have slewed on-source (especially in the baseline plots, since the chances
are the reference station is going to be big, and hence more likely to be slow). Oc-
casionally, the 1-min interval can be too late, in the case of an undetected diagonal
weight (required conditions: the scan was surrounded by gaps, and long enough to
have lost fringes but too short to have displayed the characteristic diagonal-weight
signature that seems to follow a couple minutes after loss of fringes — thus nothing
for the operators to catch during correlation). Also, in a multi-mode MS, standard
plots just “see” only the first mode (not applicable in a multi-mode experiment that
has individual-mode Measurement Sets, cf. §2.a.ii7).

All the items in this sub-section are on a list being looked at by the responsible
people.

j- Other Investigative/Diagnostic Plots

There are fairly painless ways of overcoming some of the standard-plot short-
comings discussed above (93.h.7ii) via plots you can make interactively in glish.
These “old-style” plots let you check out the experiment more exhaustively (more
SB/pol, more baselines, different time ranges, etc.), and clever use of the data-
reading and plotting functions can make these more enjoyable (minimize run-time,

typing, etc.).

The principal data-reading function is readms, and the two principal plotting
engines are tplot & fplot. Viewing each baseline/SB/pol in the MS as a data-
cube abscissae time and frequency, tplot produces slices in time, averaging over
frequency and fplot produces slices in frequency, averaging over time.

The easiest way to proceed is usually to read (portions of) the MS into a variable,
then carry out all plotting from the variable. If you haven’t pre-read the MS into a
variable, putting the name of the MS as the first parameter will essentially invoke
a call to readms to access the data, but without as much fine control as you have
in running readms yourself. If you want to make N plots from the same data,
pre-reading the MS into a variable will save you (N — 1) iterations of reading the
MS from disk. readms returns a record containing the specified data from the MS,
along with the useful ancillary data to allow characterization of the data in physical
terms (baseline names, frequencies per subband, polarizations, times, weights, etc.).

34

There are lots of possible input parameters to readms, but they basically fall into
functional categories to:

control the stations selected

@)

@)

control the subbands selected

@)

control the time-range selected

o limit what sort of data to select

The syntax for readms is:

readms (’ MSname’, Ants, Ant, Bsin,
continue with 2nd+ lines....

As readms begins it figures out how many visibilities it will need to read, and as it
runs it will keep you updated on what visibility range it’s currently processing.

Once you've read in the data you want into a variable (record), the basic calling
syntax for the plotting functions tplot & fplot is:

tplot (’wrble’, Ant, Bsin, SB, FrqGrp, Pols, ’type’,
various control parameters)

The five parameters following the variable to plot further control what data gets
plotted; by default they are all F, which means plot everything (in the MS, or in
the variable read in from a MS, as appropriate). If specified, each of these pa-
rameters must be a vector of integers (a single integer counts as a 1-length vector,
naturally); use mssum(’ MSname’) to check the integer-coding for the various sta-
tions/subbands/etc. As above (93.g.7i), Ant & Bsin function as the ANTENNA &
BASELINE adverbs in AIPS, and are passed as integral antenna numbers. SB, Frg-
Grp, and Pols are the subband (0-based), frequency-group, and polarizations (1-
based) to plot. You’ll almost never use FrqGrp. Currently on PClnt, polarization-
coding is typically 1=RR, 2=LL, 3=RL, 4=LR up to the number of polarizations
actually correlated — the exception would be a 1-pol LCP experiment, in which case
1=LL (rigorously, there’s no explicit requirement for this mapping, and the proper
way to determine what polarizations are in the MS is via the DATA_ DESCRIPTION
& POLARIZATION tables). The type parameter is the quantity to plot on the y-axis:
weight, real, amp, phas are the ones you're likely to use (we've also seen samp
earlier in 93.d.7). There are many other control parameters whose default values
you're likely to be happy with. The ones you’ll use the most are yplot & xplot
to control how many plots go on a page (default = 8 x 1 for tplot, 8 x 2 for
fplot), and outfile to specify the output postscript file if desired (default = goes
to screen). The default weight cut-off is —1 for weight plots and 0.2 for other types
of plots. The subparagraphs below give some basic recipes for using these functions
to expand upon standard plots.

35

1 — Weight plots

If you have a large Ny, experiment, the standard plots won’t show all the SB/pol
(plots <4 channels). Here’s how to generate an “old-style” weight plot with all
channels:

a := readms (’ MSname’, auto=T, wonly=T, [firsttime=Tstry,
lasttime=Tstry, dur=At)),

tplot(a,F,F,F,F,[1,2], ’weight’,T, yplot=N,,xplot=N,, {landscape=T
outfile=’ PLOTfilename’)

a := F (once you've finished with the variable a)

Note that you don’t have to “include” these functions; they are loaded automati-
cally upon starting glish (if logged in as user jops). The readms function as called
above reads only the autocorrelation weights into the variable a. This is much
faster and uses much less memory than reading in actual data (weights = Ny
per visibility instead of Npoi X Nu; Nauto ~ v/ Nbsin). Weight plots need only the
parallel-hand polarizations — if there are no cross-pols in the MS, then the “[1,2]”
can be replaced by an F. The “T” after the type means plot only autocorrelations
(needed even if the data you're plotting are only autocorrelations). The combina-
tion of xplot=1, landscape=T lets you get the maximum physical length for the
x-axis; yplot=8 produces pretty legible results without using up too much paper.

o If you want to plot subsets of the MS in time, you have two options: use at most
two of the three parameters: firsttime= or lasttime= or dur=. The syntax
for the absolute times in the first two parameters is either yyyy/doy/hh:mm:ss
(day-of-year) or yyyy/mo/dy/hh:mm:ss (month/day). The units of dur= are
minutes). If you use dur with either of the other two, you will get the At
minutes following firsttime or preceding lasttime. The default firsttime is
the beginning of the data, and the default lasttime is the end. You also have
the opportunity to use the initvis= (default = first) and/or ntimes= (default
= all starting from initvis) parameters in tplot. Here, the units are visibility
number of the data read into the variable a. The readms time-specification
parameters have more user-friendly units (albeit with more typing), and read
in only the time-range you want (faster, less memory use), but would require
another readms if you want another time-range.

o Each baseline/autocorrelation in tplot/fplot plots will always start a new plot;
color-coding is used to for multiple SB/pols in a single plot. The color-coding
scheme matches that used by plotweight.pl (1.d), with 16 colors, enough for
8SB/2pol (e.g., a 1 Gb/s experiment without cross-pols). In assigning colors, the
polarizations form the inner loop, and subbands the outer loop (i.e., SBO/RR,
SBO/LL, SBO/RL, SBO/LR, SB1/RR, and so on). The colors get assigned based
on the data that is present, i.e., there is no fixed SB/pol-color identification —
if there are cross-pols, SBO/RL gets the “third” color (cyan; cf. Table 2 below);
if there are only dual-pols, SB1/RR gets cyan; if only single pol, SB2 gets cyan

36

(the last two statements apply if there are indeed that many subbands). But
the color-coding in a single output file is indeed global for all plots in the file
(i.e., if a station/baseline is missing some SB/pol, the remaining colors in that
baseline’s plot mean the same thing as in all the other baselines’ plots). Table 2
shows the order of the color-coding.

lines 1-4 red blue cyan green
lines 5-8 pink med.gray brown purple
lines 9-12 teal yellow steel blue It.gray
lines 13-16 black orange lt.green lt.purple

Table 2: Color-coding for tplot & fplot output screen plots or postscript files.

i1 — Autocorrelation plots

These plot real(v) rather than amp(v) because the autocorrelations are intrinsi-
cally even functions (thus imag=0 in the Fourier transform). Advantages are speed
(no need to compute the quadrature sum) and direct sensitivity to negative autocor-
relations (although no longer an issue with the correlator’s original 2-bit correction
turned off, and certainly not once 2bitVV has been run). Here’s how to generate
“old-style” autocorrelation plots:

a := readms (’ MSname’, auto=T, [firsttime=Tstr;, lasttime=Tstrs]
dur=At)

fplot(a,F,F,F,F,[1,2],’real’,T, yplot=N,,xplot=N,,
{multisub=F,} outfile=’PLOTfilename’)

a := F (once you've finished with the variable a)

The firsttime, lasttime, and dur parameters to readms control the time-range
read in from the MS (use no more than two of these three at once; cf. 93.j.i). By
default, fplot will vector average over the time-range in the data, which of course
for real is numerically a moot point, but the design of the time-squashing code is
such that vector averaging is faster. By default, fplot will make a separate sub-
plot for each station (thus N, - N, should equal Ny, to get single-page output),
with the different subbands separated by dotted vertical lines and all using the
same scale. The units on the y-axis are “unscaled” correlation coefficient (perfect
correlation = 1). Color coding runs over the polarizations in each SB. If one SB has
considerably more RFI than others, it can ruin the y-axis resolution for the others.
In this case, you can use the additional parameter multisub=F to force separate
plots by SB (thus, the product N, - N, should now be N, - Ny, to keep single-
page output). Now each SB gets its own self-scaled y-axis. A similar multipol=F

37

parameter exists if you also want to separate polarizations. Aesthetically, guidelines
for yplot & xplot include:

o for multi-SB N4, < 12 experiments: yplot=Ng,, xplot=1 if multisub=T

o for single-SB experiments, or globals with Ng, > 13: yplot=Nga/2, xplot=2
if multisub=T (NB: this xplot is the default, and could be omitted)

o for Ny, < 4 experiments with uneven RFI across the SBs: yplot=Ng., xplot=Ng,,
multisub=F

o for Ng, = 8 experiments with uneven RFI across the SBs: yplot=Nga., xplot=Ng,,
multisub=F, landscape=T

It’s easy to play around with the various page-layout parameters by omitting the
outfile parameter so that the plot goes to the screen directly — this is always
more landscape-like than portrait-like.

i1t — Baseline amp/phs(v) plots

The disadvantages of the standard-plot baseline amp/phs(v) plots include show-
ing only baselines to a reference station and difficulty in controlling exactly what
time-range to plot. One disadvantage of the “old-style” plots is that they don’t
combine amp & phase for a baseline into one POSSM-like compound plot, if you like
that sort of thing. Here’s how to generate “old-style” baseline amp/phs(v) plots
that address these points:

a := readms (’ MSname’, {Ants}, [firsttime=Tstr;, lasttime=Tstry,
dur=At], [scan=Ngeanl)

fplot(a,F,F,F,F,F,’amp’, yplot=N, ,xplot=N,,
outfile=’ PLOTfilename’)

fplot(a,F,F,F,F,F, phas’, yplot=N,,xplot=N,,
plotline=F, globalscale=T, outfile=’PLOTfilename’)

a := F (once you've finished with the variable a)

The firsttime, lasttime, & dur parameters to readms provide direct control over
what time-range to read in from the MS (use no more than two of the three; cf.
€3.j.7). Use of the scan parameter can control which whole scans to read in (Ngcan
can be a vector of [non-contiguous| scans if desired). These provides the leverage to
pick scans not accessible via the automatic standard-plot selection algorithm, and
to adjust the interval within a scan as desired (shift in time, lengthen/shorten).
If reading in just a few minutes of data, readms will be pretty quick for even the
biggest MS. To check whether there are fringes in a specific time-range, you may
first want to play around with phs(¢) plots as described in the next sub-paragraph.

o If there are some stations you know you don’t want to read in, you can use the

38

Ants entry: a vector of antenna IDs that limit readms to only those baselines
(& autocorrelations) that can be formed from the set of stations in Ants. As
this is the second parameter, you don’t need to type the “ants=" when you
use it in the order above. In this case, it’s usually easiest to establish a vector
of antenna-IDs that you do want to use prior to calling readms (for example,
gdsta := [0,2,5:8,11]), and then use this variable in the readms call:

a := readms(’MSname’, gdsta, ...). This saves typing when you make
subsequent readms calls for different time-ranges.

o For alternative ways to read in different subsets of the MS, you could use the
parameters source=Src_ID or scan=Scan_No. The former will read in all data
associated with the specified source(s), and the latter will read in all data asso-
ciated with the specified scan(s). Both arguments take the form of a vector of
integers.

As run above, readms loads all baselines into the variable a. For a 16-station global,
this can be 120 baselines. yplot=12 and xplot=3 provides a reasonable compromise
between minimizing the number of output pages and having legible plots. Getting
much past 17 x 4 (good for 12 stations on 1 page) leaves the plots pretty small. If
you want, to plot a subset of baselines, you can use the first two parameters after the
variable-to-plot: replace the first two Fs by vectors of antenna-IDs to function in the
manner of ATPS adverbs ANTENNA and BASELINE, respectively (see the discussion at
the beginning of §3.j).

In fplot, the default is to vector average all the integrations in the time-range
contained in the variable a. If you'd prefer a scalar average, then include scalar=T.
The units for the amp(v) plots are correlation-coefficient x 10? (often termed “milli-
amp” — but not to be confused with current....), and degrees for the phase(v) plots.
Note the two additional parameters for the phase(v) plot:

o plotline=F plots points rather than connecting them with lines (the fplot
default). This avoids clutter on the plot for SB/pols whose phase hugs +180°.

o globalscale=T forces the y-axis range of all plots to be the same rather than
scaling individually to fit each plot. This can be handy for phase plots, to allow
a quick visual check on the “flatness” of the phase across the band, without
having to worry about reading the y-axis ranges.

39

iv — Baseline amp/phs(t) plots

You can go beyond the standard plots by showing more SB/pols, a larger extent
of the experiment, and/or more baselines. The trick is to read in more of the data
without using up excessive memory, by doing the averaging across the band in the
readms stage. Here’s how to generate “old-style” baseline amp/phs(t) plots that
address these points:

a := readms (’ MSname’, {ants=Ants},{antenna=Ant},{baseline=DBsin},
{source=Sres}, [firsttime=Tstr;, lasttime=Tstry, dur=At]
avfreq=T, {averaging-control params})

tplot(a,F,F,F,F,F,’amp’, yplot=N,,xplot=N_,
outfile=’ PLOTfilename’)

tplot(a,F,F,F,F,F, ’phas’, yplot=N,,xplot=N,,
globalscale=T, outfile=’ PLOTfilename’)

a := F (once you've finished with the variable a)
The differences between this and the previous calls of readms include:

e The explicit inclusion of all three parameters used for making subsets of base-
lines. By default, each is F, which means include everything (not excluded by
one of the other parameters). The ants parameter is the same as seen in the
previous sub-paragraph for amp/phs(v) plots. The antenna & baseline pa-
rameters behave the same as the “first two Fs” in tplot/fplot (cf. the initial
example in §3.j). Each takes a vector of antenna-ID integers or station abbre-
viations. You can’t use ants=Ants in combination with either antenna=Ant
or baseline=Bsln. Taking account of the rules for parameter-passing in glish,
examples of the ways you would likely want to run readms for amp/phs(t) plots
include:

o a:=readms(’ MSname’ ,gdsta,firsttime=.....) — reads all baselines
formed from the set of stations in the (pre-assigned) vector gdsta (if gdsta
not pre-assigned, it’s value will be F, so all stations will be read in).

o a:=readms(’ (MSname’ ,F,[1,4],gdsta,firsttime=....) — readsin all
baselines to stations 1 & 4 formed by stations in gdsta. You don’t have to
worry about baseline order; if gdsta includes station 2, then baseline 24
will exist in a. Reading in all baselines to 2 stations is often a convenient
way of avoiding the effects of an outage-period in the “real” reference station
in a global, without going to the extreme of reading in all ~16 stations.

o a:=readms(’ (MSname’ ,F,gdsta,gdsta,firsttime=....) — readsin ex-
actly the same data as the first example, but the internal workings of the
MS querying makes it much slower (the reason why the ants parameter was
added in the first place).

e Use of the source= selection criteria allows you to limit the plot to appropriate
sources, usually ones for which you have reasonable detections (to avoid plotting

40

unpedagogical near-zero amps and random phases). This can be a single source
or a vector of sources, expressed either as source-ID integers (check these out
via mssum(’ MSname’) or as source-name strings.

e The inclusion of the avfreq=T and averaging-control parameters. avfreq=T
averages the data across frequency for each baseline/SB/pol/integration as it is
being read from the MS into the variable. The averaging process is controlled
by three additional parameters:

o scalar= : default is F, can be set to T

o x1=FPioy, x2=FPyign: the lowest & highest frequency points to include in
the average. If not are specified, then the middle ~80% of the passband
is used (best to specify both or neither). The “middle” frequency point is
defined as N, /2 + 1 — thus 17 for a 32-point spectrum.

o width= : specify the fraction (0 — 1) of the band to average over, centered
at the middle of the band, if x1 & x2 are not specified (default = 0.8).

For tplot, the default is to plot points rather than lines, so a separate plotline=F
isn’t needed for phases (of course, plotline=T could be used if desired for either
plot). Again, there are 16 different colors in the color-scheme, enough for 8B of
2pol or 4SB of 4pol. If you have 8SB of 4pol, then the last 4SB will all be black.
You can avoid this by plotting a subset of SBs (the third “F”, 0-based) or pols
(the fifth “F”, 1-based). You could also use multisub=F to separate the SBs per
baseline, at the expense of Ng,-times more sub-plots. I doubt that we could come
up with 32 distinguishable colors (16 might even be considered a stretch...), but if
demand is there, we could give it a go, or at least repeat the 16-colors twice rather
than just default to all black after 16.

k. flagweight

This step establishes a low-weight floor. All visibilities with a weight lower
than the specified weight cut-off will be flagged (actually, will have their weights
w set to —|w|, and passed to the FITS file that way — the data will still exist
in the FITS file). Weights >1 are also flagged, regardless of the weight cut-off
used. I generally run flagweight last, so that the low-weight visibilities will show
up on the standardplots, and thus provide a more honest view of the correlation.
If flagweight were run before standard plots, then all the low-weight visibilities
would have negative weights, and thus fall outside the plots, making the plots look
too “clean” (of course, with disks this point is becoming moot). Here are the steps
for doing the weight flagging:

i — {whist} prints out a tabular histogram of how many autocorrelations & base-
lines would remain unflagged for various weight cut-offs (0 to 0.95 in steps of 0.05).
Due to previous operations (mostly flagging for specific conditions when making the
MS & later 2bitVV), some visibilities will already have w < 0 by this point. whist

41

also provides a count of visibilities with w > 1 (which usually signifies some sort of
correlator bug), which will also be flagged by flagweight. The syntax is:

whist (’ MSname’, > OUTPUTYfilename’)

The outputfile will be simple text. With the advent of universal disk recordings,
whist has lost much of its interest, since weights are now much more likely to be
nearly perfect or < 0.

1t — flagweight does the actual flagging. In the standard usage, the syntax is
simply:

flagweight (>’ MSname’, Wey)

where W, is the value of the weight cut-off, usually somewhere in the range 0.2
0.7. The whist output file plus the weight plots lets you judge the consequences
of your choice on the amount of data that get through. Except for some bad-track
problems that cause autocorrelations to drop to ~0.25, Wy as low as 0.2 will weed
out the truly bad data. Higher weight cut-offs (> 0.5) could be used when there
are no specific subband/polarization-channel problems. Nowadays the low-weight
tail of the Nyis—W diagram is so steep that changing W,y by 0.2 usually results in
incrementally rejecting/accepting only a few x0.1% of the data.

There are additional parameters in flagweight for flagging based on antennaf(s),
SB(s), source(s), scan(s), or time-range, and also an undo=T parameter for unflag-
ging (setting the negative weights back to positive). Flagging based on these sorts
of criteria would be done in a separate execution of flagweight, either before or
after flagging by W, The syntax for time-range flagging uses the firsttime &
lasttime parameters as used by readms above (93.j.7). As for any glish function,
you can see all of the parameters (& their default values) by typing in flagweight
without any following parentheses (or parameters that live inside them). If you
include any of these extra-weight flagging parameters, flagweight will first form a
subset of the MS according to them, and then apply the weight cut-off criterion to
this subset. If you want to flag everything to a station or everything in a time-range,
you’ll need to set W, to 1.0.

42

4. Making the FITS Files.

a. tConvert

Now that you’ve finished all the reviewing/flagging operations on the MS(s) in
glish, tConvert turns an MS(s) into FITS file(s). The standard usage produces a
set, of IDI FITS files, each no larger than 2 GB. These can be read directly into AIPS
via FITLD, either altogether (with NCOUNT set to the number of files) or individually.
The syntax for standard production of FITS files is simple:

tConvert MSname FITSname

There are some optional parameters (run tConvert without arguments for a sum-
mary), but you will ~never need them. Upon starting, tConvert will figure out
how many individual FITS files will result, and will provide a running update of its
progress in each one at the bottom of the screen.

1 — The only tricky bit is getting the output FITSname correct, so that it will work
properly with the pipeline (§6). The form of the file name is:

FITSname = exp_C_P.IDI

where:

C' is an integer to denote correlation passes done with different correlation param-
eters that should pipelined independently. Examples include continuum/line
experiments (different Ny, during correlation, resulting in continuum & line
MSs), multiple-field experiments handled by changing source coordinates in
different passes (e.g., EZ013, ES051), and experiments where the PI prefers
separate FITS files for each mode, corresponding to variously Doppler-shifted
spectral line sources (e.g., EL032).

P is an integer to denote correlation passes done for sub-sets of SBs that can
be pipelined together (i.e., combined straightforwardly with VBGLU). The order
of P should increase with increasing frequency: P=1 for the lowest sub-set
of SBs to P=Np,s for the highest sub-set. If the frequencies overlap, then the
FITS files should be distinguished with the C-integer. Examples of experiments
that would use the P-integer include wide-field mapping experiments correlated
in multiple passes because only one SB would fit into the correlator at once
(e.g., GG053B). The new pipeline can handle VBGLUing FITS files resulting
from separate correlation passes for the RCP & LCP channels of a dual-pol
experiment, so these also can distinguished via the P-integer.

(49

One thing to keep in mind when planning to use VBGLU is that it has a “si-
multaneity criterion” of one-tenth of an integration period for combining SBs.
Thus if the epochs of the integrations in your two FITS files differ by more than
this, the data will appear to be lost in the combined data set. This condition
can result in our data because we have no absolute control over the integral

43

second in which data starts flowing out of the correlator. Thus, for example, if
ting = 2s, then the first pass may have odd integration epochs and the second
pass even ones. Using t;,; < 1s avoids this complication, but this may require
pre-correlation liaison with the PI to ensure that such short integrations (and
the consequent data size) are okay.

tConvert will append an additional integer after the “IDI” extension, to denote
individual FITS files belonging to the same “dataset” — files whose complete file-
names differ only by the n should be identical in all respects, except for the time-
range covered. If the total size of the output FITS data for a given run of tConvert
is <2 GB, then there will be no integer appended. However, in this case you should
rename the file extension from IDI to IDI1 for proper operation of subsequent steps.

it — If C'or Pexceed 1 for any FITS file(s) created, you should create a simple text
file called exp.README to explain the significance of the naming convention. This
README file will be bundled together with the FITS files on the EVN Data Archive

(cf. 94.c). Examples shown in Listing 7.

GGO053B was run in two passes, with each IF done separately.
Each of the two IFs has its own set of FITS files:

gg053b_1_1.IDI* IF1 - 62 parts, 109.4 GB total
gg053b_1_2.IDI* IF2 - 64 parts, 111.7 GB total

ez013 1 1.IDI<n>: phase centers on W44C & W44F
n=12,..8
tint=1s

ez013_2_1.IDI<n>: phase centers on W44B & W44E

n=1.2,..15
t_int=0.5s

Listing 7: Examples of exp.README files (for GG053B, EZ013).

b. Cover Letter

You can find the cover letter template for your just-correlated experiment in
~jops/piletters/ (in the “upstairs” machines, not ccsops, juw36, nor PCInt).
The filename of the cover letter is exp.piletter, and of the associated experiment
summary ezp.expsum. The cover letter begins with a query to the PI about the
preferred method for retrieval of the FITS files. If they want the FITS file sent to
them on physical media (e.g., DATs, DVDs), they should get back to you. There
follows some boiler-plate (which may change as time progresses). The cover letter
ends with the opportunity for you to fill in some information you have learned while
reviewing the correlation up to this point: problems at stations, other points to bring
to the PI's attention, etc. There are plenty of examples of cover letters on the EVN
Data Archive (under the standard-plots menu item). I probably write excessive
cover letters (leading the PI through each type of the plots, trying to find something

44

to say about each). The principal goals are to announce the availability of the PI’s
long longed-for FITS files and to persuade them that we've done a conscientious job
ensuring the quality of their correlation (wiz. proper correlation parameters used;
problems have already been found/investigated/understood, & determined not to
be improvable by recorrelation). Also keep in mind that other people using the
EVN Data Archive might rely on the cover letter to help them decide whether they
want to mine data from this specific experiment (the descriptions in the pipeline
would also help here).

project summary on 20/09/2005
EK020C
entry last modified on: 05/09/2005

Type and status of exper: USER DONE, evaluation not yet complete
date release: ——/——/-———
date distribution: —=/—=/-———
date completion: 05/09/2005
archive is public: ——/——/———-

observe date: 08/06/2005

Project information: The Circumnuclear Region of OH Megamaser Galaxies
Principal Investigator: Kloeckner (hrk@astro.ox.ac.uk)
observation resources: 11x10hr@5Disk 18cm
scheduled telescopes: Ef Cm Nt Tr Jb Wb On Mc Ur Hh Ar
sub-netting detection: Number networks: 9, max 10 min 8 telescopes

1 observe modes:

recorded format: 4 bands with 8MHz,
using Usb, and DPOL
and 2 bit sampling
tapeform: 1:4@4MbpstoDisk
UT range observed: 159d23h14m00s - 160d09h38m00s

2 correlator passes:

Correlator configuration: 11 Tels, 2 band X 2 pols,
each with 128 frequency points,
4 sec dump correlator time.
status and capacity: DONE OK
hours and date: 10hr, complete on 05/09/2005
note: Continuum pass

Correlator configuration: 11 Tels, 1 band X 2 pols,
each with 256 frequency points,
4 sec dump correlator time.
status and capacity: DONE OK
hours and date: 10hr, complete on 05/09/2005
note: Line pass

configuration in skd: (11 Tels, 2 band X 2 pols,)
(each with 256 frequency points,)
(4 sec dump correlator time.)

Handling at JIVE: Bignall (bignall@jive.nl)
tapes at JIVE: 13 disk
release procedure: automatic by JIVE, after 2 weeks
net network hours: 10hr

Source list:
src = 3C286, type = fringefinder (confd), use = YES (confd)
src = 120550, type = target (confd), use = NO (confd)

src = 2134+004, type = calibrator (confd), use = YES (confd)
src = J2139+1423, type = reference (confd), use = YES (confd)
src = J2052+1619, type = reference (confd), use = YES (confd)

Status pipelining: no information
Inquired publ. status: not set

status processing: no information

Listing 8: Example of an ezp.expsun files (for EK020C).

The expsum-file (e.g., Listing 8) is for your use, providing information about
the correlation parameters, PI contact information (at least, from the time they
ran sched for this experiment), and the public/private nature of the individual
sources in the experiment (needed to know when pipelining). Sources having “use

45

= NO” are private, and their pipeline plots & post-SPLIT FITS need to have the
same 1-year proprietary period as do the raw FITS files for the experiment as a
whole (cf. 96).

The exp.piletter & ezp.expsum files are not (yet) automatically generated
and put into the proper location. So it’s not out of the realm of possibility that
you may not find them for your experiment when you look. If this should happen,
it means I've forgot to put make them & put them there, and you should direct
complaints towards me.

c. archive

The next step is to populate the EVN Data Archive, both with standard plots
and FITS files. This paragraph describes these steps, and also some actions that
may be required a little later pending liaison with the PI. The perl script archive
takes care of transferring material to the Archive, with slightly different syntax
depending on what is being transferred. The thing you need to know before you
start archiving is the reference-day for the experiment. This is associated explicitly
with the experiment name, and has the format yymmdd. You can confirm this date
on ccsops:

1s -d /ccs/var/log2vex/logexp_date/EXPx*

There should be a single directory found; the appended year-month-day string will
match exactly what you need to use in archiving, once you omit the first two digits of
the year. This should also match the “observe date” in the exp.expsum file (but if it
doesn’t, the date associated with the experiment in the loghook databasing structure
above is what the archive will expect. Let me know if you find discrepancies.

1 — Standard plots.

First, gzip the standard plot output. If you have no other filenames of the form
expx.ps, then this is of course simply gzip ezp*.ps. Then transfer the standard
plots (and cover letter) via:

archive -stnd -e EXP_yymmdd exp*.ps.gz erp.piletter

The first parameter tells what kind of material follows (& where it should be placed
in the archive). The -e parameter directs the material to the proper experiment. If
you make a mistake (usually in the yymmdd, if you're like me), you won’t necessarily
get an error, but the data won’t wind up in the Archive (writing to the archive is
a multi-step process, of which running the archive script on E? initiates the first
step). You can always confirm successful population by checking that the files you
expect to be there actually reside on the archive. As you can see above, archive
can handle normal wild-card use in filename specification. The above example,
with both standard plots and the cover letter being passed to a single execution
of archive, has equivalent action to running archive separately for the standard

46

plots and then for the cover letter.

If for some reason you're archiving plots made outside standardplots.g, you'll
also need to make a plotdescription.txt file to describe the plots you are archiv-
ing, and include that in the archive line. Every experiment’s standard-plot page
on the Archive has a plotdescription.txt; it uses the standard template unless
you explicitly overwrite that with a “private” version for the experiment. You can
check any of these on the Archive for an example of the contents. The only times I
remember supplying such a “private” plotdescription.txt were for experiments
such as GG060, GG053B, EB032* (extra-huge wide-field mapping experiments that
didn’t get along well with standardplots.g).

11 — FITS files.
To archive the FITS files & exp.README, just use a different first parameter.

archive -fits -e EXP_yymmdd erp_*IDI* exp.README

This will most likely take considerably longer, due to the scp’ing the FITS files to
jop15 (it should take about 5-6 minutes per individual <2 GB FITS file).

iii— Cover letter distribution. Mail out the cover letter to the PI (info jops@jive.nl).
I’ve held off the actual mailing until now, since the cover letter says that the stan-
dard plots and FITS files are on the EVN Data Archive, and they’re actually not
until now.

1w — Setting downloading authorization

If the PI gets back in touch to say they want to download their FITS files from
the Archive, you next have to arrange a user-name & password with the PI. There
are no explicit guidelines for this process. The syntax for assigning the protection
to an experiment’s FITS files is:

archive -auth -e EXP_yymmdd -n user-name -p password

We haven’t been keeping an internal register of user-names & passwords (arguably
for extra security — now there’s no records that could fall into enemy hands &
there’s no one person for them to try to turn). If a PI forgets the password, we can
just re-run the above to overwrite the old one.

Before this authorization step, no one can download the FITS files from the
Archive. After this step, the individual FITS filenames on the Archive are clickable
links that bring up a dialogue box to enter user-name and password. The FITS
files become public one-year after the distribution date (of the last part, if it is a
multi-part experiment), unless the PI takes action through the PC Chairman to
extend the proprietary period. Adjusting the public-release date in such cases is
my responsibility, rather than the support scientist’s.

47

d. {Transfer to Physical Media}

If the PI downloads the FITS files off the archive, this paragraph can be skipped.
If they want us to send them their data on physical media, you first have to work
out (with them) what they could use. The most convenient for us would probably
by DDS-4 DATSs; however, some PIs may not have access to a compatible reader.
So far, we have distributed data on DATSs of all kinds, on CDs (once), and on DVDs
(once). The paragraphs below describe making distribution DATs and DVDs (the
~0.7 GB capacity of CDs make them too small to discuss further).

1— DATSs

There is a new perl script called fits2dat to write the FITS files onto DATSs.
I’ve never actually used it yet for a real experiment, so what follows is based on sim-
ple test runs, the documentation on the JIVE how-to wiki, and following through
the code. It can be run either interactively or from a single command line (inter-
active seems easier, and is the only way described below). It can get the FITS
files either from the local working directory or from the Archive (local access would
seem faster, since the scp step is avoided). However, there is currently no DAT
drive on PCInt. It may be quicker overall to scp the FITS files yourself from PCInt
to somewhere on juw27_[011] and then treat that as your working directory. It
can also plan when to prompt you to change DATS, since you can tell it what sort
of DATs you will be using (a limitation seems to be that you need to use only one
sort for the whole transfer). The interactive syntax is just to execute fits2dat,
and then answer the following questions:

e name of DAT device: /dev/rmt/[0|Il]n:

o you need to supply the integer number of the drive you want to use — juw27
has two DAT drives; enter 0 (upper one) or 1 (lower one). The default is 0.

e capacity of DAT [GB]:

o You should answer based on the type of DAT you’ll be using:
DDS-4 (150m) = 19, DDS-3 (125m) = 11.4, DDS-2 (120m) = 3.7. These
numbers would provide some space for block/file overhead. The DAT drives
on juw27 can’t write to DDS-1 DATSs, but some of the drives attached to
computers upstairs can. The default corresponds to DDS-4 DATs.

e Read FITS from archive (jopl5)7?

o answer y to get the FITS from the archive, or n to get the FITS from the
local working directory.

e name of experiment:

o if getting the FITS files from the local disk, just enter EXP; if getting them
from the archive, enter EXP_yymmdd (cf. §4.c for details about the yymmdd
experiment suffix).

48

e list of filenames:

o the default is exp_x_*.IDI*, which should be sufficient anytime you want
to move all FITS files to DAT. If you have multiple correlation passes (the
C integer, cf. §4.a.7), and you want to make sure that each DAT has FITS
files for only one or the other, you could replace the first * with a specific
C'integer, and run fits2dat multiple times.

fits2dat will then proceed to write the DATS, prompting you to insert new DATSs
as required. No FITS file should span more than one DAT. At the end, it will ask
whether you want to make a printed label for the DAT cases.

In cases where you have more than one C- or P-number, the standard labeling
for the DAT label doesn’t fully reflect this. It’s easy to take care of these cases
manually via the command datlabel:

e fits2dat makes a file called EXP.datlog, which datlabel will use as input.
This file contains a list of individual FITS-file names, file creation dates, sizes,
and the DAT number on which each resides. If you make multiple runs of
fits2dat, as described in the last bullet above, then this file will be overwritten
in each subsequent run. There are two disadvantages to this:

o You lose the “template” with which to remake the DAT label trivially.

o The “name” of all DATs from the same experiment will be just FXP, with
no further qualification (i.e., cont, line, etc.) — although the C- and P-
numbers will be shown in the individual FITS-file names.

e If you move the FXP.datlog file to a slightly different name, you can overcome
the first of these two disadvantages. If you choose the new name to provide
some information about the purpose of this pass (such as EXP.line.datlog)
then you can overcome the second disadvantage as well, because datlabel will
use the part of this file-name before the .datlog extension as the “name” of
the DAT.

e Here’s an example syntax for EXP = EMO058A, for which the above file re-
naming has occurred. We also know from fits2dat that two DATSs are needed.

datlabel -e EMO58A.line -t 1
datlabel -e EMO58A.line -t 2

where the -t parameter specifies for which of the DATSs to make a label. The
result of each run is that the label appears on the screen, and you can print it
to a selection of printers using the buttons. Figure 5 shows what you would see.

Should you ever need to transfer a FITS file manually to a DAT, the fundamental
command is:

dd if=FITSname of=/dev/rmt/Dn bs=28800

where D is the integer identifier for the drive to use. The block size of 28800 is
consistent with what AIPS will expect.

49

[@] datlabel.pl (juw27)

Exit Print

Jive

JOIMT INSTITUTE FOR VLBl IN EUROPE
Fits data exp: EMO5GA.LINE 2006-04-12

Mo Filename Length (bytes)
1 emdb8a_2_ 101 19378137460
2 em058a_2_1.1DIZ2 1937813740
3 em058a_2 1.IDI3 1937813760
4 em058a_2_1.1DI4 19378137460

EmMOESA line Taped of 2

em05ga_2 11015 19378135760
em05ga_2 11016 19378135760
em05ga_2 11017 1937815760
em0&2a_2 11018 1937813760
emQ&8a_2_1.1D19 1937813749

W on - anodn

Figure 5: DAT label produced for first DAT for the line pass for EM058A, following
the “manual” procedure above.

1 — DVDs

Making distribution DVDs obvsiously requires a machine with a DVD burner.

The only time I've done this (for EZ013) has been on jop25 (in the Visitors’ Room),
which I will use as an example here. One trick about these linux machines is that
you can’t log in as jops — something as yet unidentified in the login scripts seems
to prevent KDE from starting up. I just logged in as myself.

The first step if to ftp the FITS files from E? (or the Archive). I put them onto
/jop25_0/images.

Then start up the DVD burner (k3b). Via the KDE start menu, this was under
multimedia, then CD/DVD burning.

Once k3b starts up, pick “create DATA DVD”. In the upper part of the screen,
do what you need to do in order to get the listing of files in the directroy where
you put the FITS files to appear in the upper-right window.

Then drag-and-click files to the bottom window to assemble the contents to
burn. A DVD holds ~4.7 GB, so two 2 GB FITS files fit nicely. The last FITS
file made by tConvert may be noticeably shorter than 2 GB; if you have an odd
number of FITS this last FITS file may also be able to fit onto the last DVD.

Once the bottom window has the files to include in the present DVD, click on
50

the Burn button at the lower right. You’ll then see a set of configuration menu-
tabs; most of these seem fine as they are. You’ll want to check Settings (no
multi-session) and Volume Desc (add a name?). In the Writing tab, make sure
the device is right (jop25 had only one burner, so this was trivial), and that
on-the-fly is checked.

e Finally, click on the Burn button in top right of the window. For EZ013, it took
~15min per DVD (which works out considerably faster than writing DDS-2
DATSs, which have about the same amount of space, ~4 GB). We don’t have
any dedicated CD/DVD label writing software; I just added hand-written an-
notations (giving the data that personal touch...).

111 — Regardless of the specific media format used, give them to Nico for shipping
out (along with an address for the PI).

o1

5. Housekeeping.

a. D3: After your experiment is distributed, let Nico know that its data (correlator
jobs) on D? can be removed. By now, all of the jobs should have been archived
to DAT anyway. You can check by going to /jaw0_1/jops/cat, and running grep
EXP *.cat — make sure that the latest job from your experiment is listed; to be
extra thorough, that all jobs in your 1is-file(s) are listed. (jaw0 used to be C3.)

b. E3: Back ups of PClInt are envisioned to be done in a communal fashion, but the
explicit procedures have yet to solidfy. In general, the philosophy is that it would
be useful to have a back-up of as much of the experiment’s post-correlation review
stages as reasonably practical, in case you (or someone else) would ever need to go
back and re-do something. Typically, this would include at least the processed MSs
and any other small stuff like plots, scripts, 1is-files — the jobs are already saved
as above, and the FITS files on the Archive are backed up separately by Bauke (a
weekly incremental back-up, and a full back-up twice a year). But if it’s not a
terribly big experiment, backing up the jobs as well would give you a single place
from which to recover them, rather than the official correlator-job archive, that for
your specific experiment is likely spread over several DATSs. For the moment, there’s
no real responsibility for the support scientist here, except maybe to delete clearly
temporary things (test MSs, re-done MSs),,, and perhaps the final FITS files after
enough time to be sure they’ve been backed up from the archive, to give a more
honest view of what needs to be backed up from E3.

c. C3: If you've put any large files on /ccs/expr/EXP on ccsops, move or delete
them. Get rid of any unneeded core file(s).

d. Paper Files: Put the experiment folder in the folder-archive (the middle black
cabinet for EVN experiments, the one to the right for globals & NMEs/tests).
Within the folder archive, experiments are alphabetized for easy retrieval; as time
goes by, more and more drawers will be needed, so the specific contents of each
drawer may change (hence the post-it labels in place of something more permanent).
This step could wait until after the pipelining is done.

6. Pipelining.

The pipeline performs the initial calibration of the FITS data, making the first
few versions of CL and other tables the PIs may use to save some time. It also fringe-
fits the data, and makes preliminary images of all the sources (private sources get
the same 1-year proprietary period protection enjoyed by the raw FITS files). These
results can be retrieved via the fitsfinder utility on the EVN archive, or via the
Bologna archive of EVN observations. More thorough information is available on
the JIVE how-to wiki.

52

Appendix. Behind the Scenes

This appendix gathers the more lengthy of the “Behind-the-Scenes” vignettes
that look into the workings of various steps in the post-correlation review process.
The section numbering reflects from where in the main text the individual discus-
sions have been drawn.

1.f: Daily review of correlations

© — data_handler.log

Every job has a data_handler.log, which forms the basis for much of the “sta-
tistical” summaries about the correlation (e.g., the 5 numbers in the Integrations
column of showlog [q1.c], or at a lower level, datasum.pl). The data handler.log
lives in the job-directory (on one of the D? data disks); all subjobs in the job
will be included within this single log. Listing 9 shows a very brief example
of data handler.log extracts (here, from EJOOTA — 9 sta, 4 SB, 4 pol — job
507281739).

Integration #301 illustrates a “normal” situation. For this integration, you can see:
e which sub-job you're in (#1).

e how many interferometers you got back from the correlator compared to the
expectation (1368 out of 1368). Note that numbers in this line are actually
2 x Ni¢, because both “stations” of the interferometer are counted separately.
Thus, Table 1 (91.c) tells us that a 9-sta, 4-pol experiment will have 171 interfer-
ometers per SB; the 4 SBs make 684 interferometers, and the x2 finally results
in the 1368 listed here in the data_handler.log. The fraction of got/expected
is also expressed as a percentage.

e what correlator-frame numbers were found for the start & end of the integration
(210, 273), and how many interferometers had those correlator-frame numbers
(here, all of them). The number of correlator frames you’d expect in an inte-
gration depends on the correlator-frame rate (often referred to as BOCF-rate,
given in Hz: BOCF=16 is the standard operational rate, tested limits = 4-64)
and the integration time. Here we see 64 correlator frames (the end frame =
the start frame + ¢, x BOCF — 1).

o Changing the BOCF rate requires re-starting the real-time processes; there
are scripts for the more common rates, but we’re quickly getting beyond the
scope of this document...

o The BOCF count wraps back to 0 every 10 min, or at 9600 for the standard
BOCF=16. The BOCF count is truly the fundamental clock for assigning
time-stamps to the visibilities coming out of the correlator — a (spurious)
jump in the BOCF count will impart a corresponding jump in the time
stamps in the resulting correlator output data for the job, and hence in the

53

Read #301 from buffer #9, data address 0xfd7163e8

SubJobHandler(1): Got correlator data
SubJobHandler(1): Start processing new integration....

Statistics based on 1368 out of 1368 (100.00%)

Found start=210 (1368)

Found end=273 (1368)

SubJobHandler(1): BOCF EXPECT/FOUND = 273/273

TIME

Start: (Data Handler) Sysclks : 4.3620522000000000e+14 (158 18:30:13)
End: (Data Handler) Sysclks : 4.3620534800000000e+14 (158 18:30:17)
BOCFs were start=210, end=273

Read #302 from buffer #11, data address 0xfd4163a8
SubJobHandler(1): Got correlator data
SubJobHandler(1): Start processing new integration....

Fokkkkdkkkkkkkkk AAARG H H H H H Fkkkkkkkkkkkkkk
BOCF framenrs differ across integration!!!

Statistics based on 1368 out of 1368 (100.00%)

Found start=274 (1368)

Found end=337 (1216)

Found end=0 (152)

PROBLEM found on X part of 0-7:0 3-3 ifnr=17

FR# 1= 274 DOFF=1734462219 DRAT= -1708 POFF= 763442131 PRAT= -350522 PACC= 0 FR# 2= 0 SUID=7 CHAN= 1 KCFG= 1 OVSAMP=1
PROBLEM found on X part of 0-4:3 3-4 ifnr=641

FR# 1= 274 DOFF=1734462219 DRAT= -1708 POFF=1217334963 PRAT= -355645 PACC= 0 FR# 2= 0 SUID=7 CHAN= 7 KCFG= 1 OVSAMP= 1
SubJobHandler(1): BOCF EXPECT/FOUND = 337/337

TIME

Start: (Data Handler) Sysclks : 4.3620534800000000e+14 (158 18:30:17)
End: (Data Handler) Sysclks : 4.3620547600000000e+14 (158 18:30:21)
BOCFs were start=274, end=337

Read #303 from buffer #4, data address 0xfdd16470

SubJobHandler(1): Got correlator data
SubJobHandler(1): Start processing new integration....

Statistics based on 1216 out of 1368 (88.89%)

Found start=338 (1216)

Found end=401 (1216)

SubJobHandler(1): BOCF EXPECT/FOUND = 401/401

#i## TIME ###

Start: (Data Handler) Sysclks : 4.3620547600000000e+14 (158 18:30:21)
End: (Data Handler) Sysclks : 4.3620560400000000e+14 (158 18:30:25)
BOCFs were start=338, end=401

Read #304 from buffer #6, data address 0xfda16430
SubJobHandler(1): Got correlator data
SubJobHandler(1): Start processing new integration....

Fkkkkkkkkkkkkkk AAARGHHHHH Fkkkkkkkkkkkkkk
BOCF framenrs differ across integration!!!

Statistics based on 1216 out of 1368 (88.89%)

Found start=402 (1216)
Found end=0 (304)
Found end=465 (912)

Listing 9: data_handler.log extracts (from EJOO7A).

MS and FITS file arising out of that job.

e the start and stop times of the integration. Here, t;, is clearly 4s. The resolution
of the quoted time is integral seconds, so for sub-second ti,, you would often
see identical start/end times. The start/end BOCF counts would correct reflect
the sub-second t;,¢, though.

Sometimes, however, the expectations for the BOCF start/end counts can get out
of kilter with what is seen in some of the data coming back from the correlator.
The technical term for this is an “AAAARGHHHH”. Integration #302 illustrates
one of these. You can see that all 1368 interferometers started on the same BOCF
count=274, but that 152 of them ended at 0 instead of 337 (=274+64-1). If there

54

is an AAAAARGHHHH, then there will follow a “PROBLEM found on..." line for
each “responsible” half of the “discrepant” interferometers. Thus there would be
~152 entries for this integration, of which I kept two. Here, X refers to the first
station and Y to the second. In the syntax I-J: K M-N,

o I & Jrefer to the two stations making up the interferometer (0-based, in the
order of stations as listed in the $STATION section of the VEX file used to
control this job, but omitting stations that didn’t participate at the time of
job-preparation from the ordinal count).

o K refers to the (0-based) subband.

o M & N refer to the polarizations, where 3 denotes LCP & 4 RCP (the other
possibilities for these fields include 0 = unknown, 1 = X, and 2 = Y).

The infr can be used to track down problems in the hardware path taken by the
data via dzbcp (cf. §App.1.f.77). Note that for this specific AAAAAARGHHHH,
the amount of interferometers lost corresponds to one station (9 stations started the
job; 152/1368 = 1/9). You could also confirm this had I not deleted almost all of the
“PROBLEM found” lines — all of them involved the station 0. The other interesting
clue is that the problem with the “discrepant” interferometers is that their end-
BOCF was exactly 0. These features (a station’s worth of interferometers that end
at BOCF=0) are clear symptoms of a specific sort of problem, called a BSE (Biggs
Syndrome Event, cf. §App.1.g.i.a). A more generic AAAAAARGHHHH could have
problems with the start or end, for an arbitrary number of interferometers, and even
more than one “discrepant” BOCF count in the start or end.

Continuing on in time, the 8 remaining stations’ worth of data in integration
#303 have no problem. In integration #304 (only the beginning part of it shown),
there appears to be the loss of the 2"4 and 34 stations’ data (304/1216 = 2/8) with
end BOCF=0, continuing the typical BSE behavior.

Information in the “out of” line in the data_handler.log can also point out
a different sort of problem, when the percentage of good data doesn’t express a
fraction (NN — L)/N, where N is the total number of stations that started the job,
and L is the number of stations lost. A loss of data that can’t be attributed to
an integral number of stations is difficult to attribute to the DPUs or SUs — most
likely culprits could include loss of some serial links or a localized casualties in the
correlator (input boards or correlator boards themselves).

The 34 and 4" of the 5 numbers in the Integrations columns seen in showlog
output (cf. §1.c) are computed from the first number (good interferometers) of the
“out of” lines: datasum.pl builds an internal histogram of this number over all
integrations (for each subjob). The 4*" number is simply the mode of this histogram
(corrected for the extra factor of 2 in the data_handler.log), and the 3¢ number is
just the number of integrations that don’t have this number of good interferometers
(either fewer or more).

The start/stop scan boundaries in the showlog output also derive from process-

5%}

ing the data_handler.log. Sometimes, showlog will report an end-scan that is one
higher than what is actually in the data (seen, for example, from the plotweight .pl
plots, ¢f. §1.d). This situation arises because it takes a short (but finite) amount
of time to shut down the subjob handler. datasum.pl checks the times in the
data_handler.log against times derived from the $SCHED section of the VEX file.
Therefore times in the data_handler.log that come while the subjob handler is
shutting down may trick datasum.pl into thinking that some data from the next
scan is present (a few seconds, tops). A series of safeties in j2ms2 and the output-
VEX file (c¢f. 92.c.ii) prevent such integrations from getting into the output MS.
Since plotweight.pl reads the data directly, it doesn’t see these integrations, and
its quoted scan ranges at the top of its plots is therefore more robust.

11 — Correlator Hardware Investigation

If you see problems with specific interferometer numbers in the data_handler.log,
you can use the program dzbcp to trace down the hardware path associated with
those interferometer numbers. Essentially, you need to start the program, and
answer a series of questions. The key point is that each different correlator config-
uration (i.e., set of Ngia, Nob, Npol, Niag) will have a different map, so you need to
run dzbcep right after a job that you're interested in (or at least before a job with a
different correlator configuration runs) — another good reason for daily review of
the previous day’s jobs. Here’s what you should input to get the hardware map.

e start the program (as jops on jaw2): /users/evn/bin/dzbcp_prod
e Now you'll get the list of questions; enter (in order below):
o sl (select list)
o 6 (interconnect info)
o 3 (interferometer hardware path)
o -2 (setup-id = global — in a different sense than global/local validity)

o 0 1 Ny (first, increment, and number of interferometers — the default
should be okay for this entry; N;r should be the same as the “out of N’ in
the data_handler.log, divided by 2)

o 2 (auto & cross)

o{ ml| mt} (noprompt for this: ml = output to printer & file, mt =
output to terminal)

o /1 (execute the program according to the inputs above)
o /e (terminate & exit)

It’s a feature that to get a copy of the output saved to file, you'll also get it printed
out on jetbmj. There’s also a possible complication about saving the output to
file. The output file you want will be /HP-RT/users/evnfra/txt_files/SLU.TXT,
It’s not unprecedented, however, that Albert has run dzbcp previously, making an

56

SLU.TXT file for which jops doesn’t have write permission (to overwrite it with the
new one). When I have the occasion to run dzbcp, I usually move the output file
to the ~/expr/EXP/ directory for safe keeping.

wikxkiek DZBCP on jawQ **xksxk Fri Aug 15 17:20:03 2003
*** Data format descriptor print out ***
Jobs= 1 Subarrays= 1 Interferometers= 156 Datablocks= 32 Total data= 393216

Job format descr: Job nr= 0 Job id= 308151658 Nsubarray = 1 SAindex= 0
Nintfr= 156 IFindex= 0 Ncorfn = 156 CFindex= 0
Data sizes: Job= 393216 Max Subarray= 393216
Max Intfr= 2048 Max Corfn= 2048

Subarray format descr: Subarray nr= 0 SAindex= 0
Nintfr = 156 IFindex= 0 Ncorfn= 156 CFindex= 0
Data sizes: Subarray= 393216 Max Intfr= 2048 Max Corfn= 2048

IF data sizes: Nlagplf= 2048 NlagpCf= 2048 Mon= 4 Sigsrc= 10

Stn Un SU suim DDU presel DDU posel COR input COR corr
Intf Un Sig TxSig Bd Rx Sig Bd Tx Sig Un Bd Rx Sig Un Bd Chip

200X15 0 00 27 0 100001002 16

Y3000 0301030013

2lX6 000 06 0 101001102 24

Y 030 103001

22X15 0 0 0 27 1 0001002 24

YOO0OO0OO 000 1020012

23X7 000 07

24X4 000 04
04

0
0
0
25X4 000 0

0
10 0
10 0
10 0

coo

s
S
o
w
o

Y7000 070 1050015
26X6 202 06 2 01 010104 0
Y4 20 042 014010 4

5
4
4
1

072 0165
28X 6 2 0 06 2 11010104 8
Y 02 072 0150
29:X15 2 0 2 2 2 0010004 8

7 01
042 014010 4

Stn Un SU suim DDU presel DDU posel COR input COR corr
Intf Un Sig Tx Sig Bd Rx Sig Bd Tx Sig Un Bd Rx Sig Un Bd Chip

300X3 202 032 013010304 16

02 04 01401 4
3LLX0 2 0 0 012010204 16
. 02 072 01 01 5
32X3 202 032 01301030424
Y7 072 0150105
33X0202 002 012010204 24
Y4202 042 014010 4
34X6 202 062 011010106 0
Y15 000 270 1100110
35:X15 202 272 010010006 O
'Y 6 06 0 1110111
36X6 202 062 011010106 8
'Y 6 06 1110111
37.X15 2 02 272 010010006 8
Y15 000 270 1100110
38X 3 2 2 32 013010306 16
Y15 000 270 1100110
39X0202 002 012010206 16
'Y 6 0 060 1110111

Listing 10: dzbcp output (from GP036B).

Listing 10 shows an extract from a dzbcp output file, from GP036B (2 SB, 4 pol,
512 lag). Note that this is a different experiment/configuration than shown in the
data_handler.log example in Listing 9. After the header, the list of interferometers
follows, in blocks of 10. The first column lists the interferometer number (here, we
look at #20-39), which directly correspond to the listed “ifnr” in AAAARGHHHs
in the data handler.log. After the colon(s) come station(s) participating in the
interferometer, expressed as an X & Y part (X = 1 station, in our parlance); either
a single-station auto-correlation (e.g. Intf #24) or a two-station cross-correlation
(e.g., all others in Listing 11). The stations are referred to by their SU locations
in the job. The UnSig column gives the 0-based channel number (in the VEX-file

57

sense) used for each station. You can see what this channel-ID means from the $FREQ
section of the VEX file used to control this job. Typically, channel 0 corresponds to
SB0O/RCP; in a dual-pol observations, the even channels would be RCP and the odd
channels would be LCP (in a single-pol observation, the channel-ID would directly
give SB). There is one possible complication for interpretation of the UnSig column,
which is illustrated in Listing 11: for fan-out=4 experiments (such as this one),
the odd-channels are skipped in forming the data to go to the correlator, so here
UnSig=0 corresponds to SBO/RCP and UnSig=2 corresponds to SBO/LCP. (those
with long memories will recall that the LSB/USB mask’s inconsistent treatment of
this fact led to the “bad-LSB” problem, which has since been repaired, and hence
not mentioned in §App.1.g.) You can see some Stokes=RR baselines (Intf #20-23,
25), some Stokes=LL baselines (Intf #26-33), and some cross-pol baselines (Intf
#34-39). Note that Intf #36-37 are actually cross-pol “autocorrelations” — a
station’s RCP & LCP signals correlated with each other. The rest of the groups of
columns trace the signal flow through the Data Processor: which parts of the DDU
pre-selector board, the DDU post-selector board, the correlator-input boards, and
the correlator itself were used to handle each interferometer’s data (note that once
inside the correlator and baselines have been formed, there’s only one entry in the
COR corr columns. For the correlator-related columns, Un refers to the crate (0-3)
and Bd refers to the board within the crate (0-7). Individual interferometers having
many lags may be spread out over multiple chips (the only constraint is that an
interferometer must fit onto a single correlator board, which can handle 4096 lags
in local validity — c¢f. 43.1 of the “Field-of-View Calculations” document on the
JIVE how-to wiki, or on the EVN web site www.evlbi.org/user_guide/fov/).

If you have some known subset of interferometers that are having a problem,
such as persistent AAAARGHHHSs affecting only a couple ifnr’s, try to come up
with the common factor among them — a correlator board, a portion of an corre-
lator input board (the two most recurring suspects), etc. Inform Sjouke of specific
hardware problems once identified.

1.g: A Correlator-Problem Bestiary

Here, we’ll try to touch on each of the regularly-occurring problems you might
encounter in reviewing the correlation of your experiment. Many of these are typ-
ically caught during correlation, and affected scans immediately recorrelated (see
€2.a.2i1 for techniques of editing the 1lis-file to exclude specific scan-ranges from
going to the Measurement Set, and thus ultimately the FITS file(s) the PI gets).

i — Problems that you can detect/diagnose from the plotweight.pl weight plots
(on /juw26_6/data/PltWgt/EXP) by themselves:

«) Biggs Syndrome Event (BSE). In a BSE, individual stations drop out of the
job one to a few at a time, often in rapid succession over 10’s of seconds to a
couple minutes. In the plotweight.pl weight plots, their lines just appear to

58

stop in the middle of the job. In the data_handler.log all the drop-outs occur
when the end-BOCF-count is 0. The number of interferometers dropping out
can always be attributed to an integral number of stations. See §App.1.f.7 for an
example from an affected data_handler.log. BSEs seem to occur rather more
frequently for disk stations than for tape stations. Data from baselines that
include a BSE’d station are rubbish, but they are now pre-flagged (to w < —1,
so that any subsequent un-flagging of data will leave the weight >1, thus still
eligible for flagging via flagweight, cf. §3.k). Recorrelation should begin from
the scan in which the BSE first started to occur (or maybe the scan before that,
to avoid the 30s correlator start-up-time in that first BSE-affected scan — in
this case the first recorrelated scan would be omitted from the MS).

Sudden Onset AAAARGHHHHs (SOA). As distinct from BSEs, a Sudden On-
set AAAARGHHHH is when a (sub)job that has been running perfectly well
(all 100% data in the data_handler.log) suddenly starts to experience messy
AAAARGHHHHSs that persist through the rest of the (sub)job, which can’t be
attributed to a specific set of stations. It would be quite possible for there to
be multiple different start and/or end BOCF counts, with varying numbers of
interferometers associated with them. Sometimes it’s possible to trace “rogue”
BOCF counts moving in parallel with the correct count, and sometimes it’s pos-
sible to see the same few BOCF counts repeating themselves in a cyclical pattern
over just a few integrations (rather than the 10 min BOCF-wrap period). Some-
times, there’s no readily discernible pattern. When you encounter an SOA, find
out the time of the last “uninfected” integration (go to the first occurrence of
an AAAARGHH in the data_handler.log, and scroll up to the first preceding
good integration), and check to which scan it belongs (i.e., from the vexsum-file
or equivalent). Re-correlate that and following scans in the (sub)job, and use
j2ms2’s 1is-file scan-range checking feature to exclude the infected scans from
the original correlation.

Diagonal Weight Incident (DWT). This occurs almost exclusively when the EN-
ABLE_CRM_SERVO is on — which is required for experiments that have 16 MHz
subband bandwidths (c¢f. the “16 MHz jump” problem below in §App.1.g.iii.v).
The characteristic weight-plot signature is a station suddenly dropping from
w ~ 1.0 to ~ 0.5, and then decreasing in a straight diagonal line towards 0. If
there is a gap in the schedule long enough for the SU to be reconfigured, the
DWTI will be over at the start of the scan after the gap. There are two forms of
diagonal weights:

o) Slow: can take up to ~20min to reach 0. This is by far the most common
DWT (~10 times more common than the “fast” DWIs). Fringes on baselines
to the station undergoing a DWI disappear before the manifest beginning of
the DWT on the weight plots (i.e., the drop from unity to half weight). This
time range, for which there is no apparent problem in the weight plot but
no fringes to the station, depends on the per-track recording rate: < 5™345

59

for 4 Mb/s/tr, < 3M015 for 8 Mb/s/tr, and ~ 1™ for 16 Mb/s/tr (these are
the longest recorded periods of premature fringe-loss prior to a slow DWI
that we’ve seen empirically). Any re-do should start with the scan that was
running at the onset of the DWI, less the appropriate time above. Because
of this lag between fringe-loss & characteristic signature, it’s quite possible
that you won’t be able to notice a period of fringe-loss should it fall too
close to the end of a subjob or the beginning of a gap (in which the SUs get
reconfigured). Unless you get “lucky” and see something in standard plots
(93.h) or other plots (93.j), you’ll probably never find this sort of premature
fringe-loss period. There are two incidents I know of where this has likely
happened — one was recoverable because it happened in the scan that ()
was used as the standardplots.g scan, and (i) was also the scan used for
clock-searching (so there was an “earlier correlation” for comparison).

o Fast: takes ~4-5min to reach 0. Fringes disappear on baselines to the
affected station exactly a the onset of the DWI as seen from the weight
plots.

In experiments with ¢, < 1s, the diagonal decrease on the weight plot can
become a rhombus: at low resolution (as on the weight plots), it appears there
are two traces forming a rhombus after the jump down from unity to half weight.
One trace starts off horizontally at the reduced weight, while the other decreases
diagonally. When the decreasing trace hits zero, it turns horizontal and the
hitherto horizontal trace starts to decrease at the same rate as the first one did
at the beginning of the DWI. The bisector of the initial vertex therefore remains
diagonal itself, and decreases at about the same rate as a DWI for t;,; > 1s.
However, at higher resolution, it is clear that the two legs of the rhombus that
appear exist are really formed by the weights of alternating integrations jumping
between the two traces. Occasionally, even weirder patterns in sub-second tj,
jobs can be seen (an “x” in the middle of the rhombus). Exceptionally unusual
traces include very slow diagonally increasing weight after an unusually large
initial jump down (seen twice) and a diagonal weight that appeared to reflect
off w = 0, and started increasing at the same rate it was decreasing (seen once).

DWTIs should be recorrelated from the start of the scan that contains the time
~3-5min prior to the manifest start of the DWI (for a slow DWI) or from the
scan that contains the DWT (for a fast DWI). Edit the start/end-scan columns
in the lis-file to excise the scans affected by DWIs (q1.e.7).

Ghost Data. This occurs when a station’s trace remains in the weight plot after
it has actually stopped recording or otherwise participating in the subjob. The
last integration continues to be output from the correlator over and over (seems
to be able to last ~7-12min). j2ms2 on PCInt handles ghost data at the MS-
creation stage (it recognizes that the station really has left the schedule, on a
scan-by-scan basis).

60

€) Ghost Data Termination. However, one negative consequence of the Ghost
Data is that when it stops in one station (say, G), it can (but doesn’t have
to) effectively kill the weight of another station (say, V) at the same time.
For station G, it will look like its weight-plot trace disappears (actually the
weight goes to —m, but the weight plots have a fixed y-axis range). The ghost
data termination (GDT) occurs only if G leaves the array and doesn’t return
in the subjob (otherwise the ghost data will remain constant weight until G
does return). The weight on V will drop to 0 simultaneously to the GDT on G.
Characteristics of the data during the GDT event include:

o baselines G—* are of course bad, since G has stopped observing for this time
range.

o the autocorrelation V-V is indeed bad — it’s not just the weight spuriously
dropping to 0.

o other baselines V—* are okay. This clearly points to a correlator problem,
since the autocorrelations and cross-correlations are done entirely indepen-
dently.

o in spite of this, the baselines V—* will not be useful if 2bitVV (93.d) is
run. 2bitVV needs the autocorrelations to compute the 2-bit van Vleck
corrections to apply to the baselines; without autocorrelations (i.e., the
weight less than the weight cut-off), 2bitVV will flag all baselines V-*.

A GDT event can also occur if G in the subjob doesn’t begin observing from
the start of the subjob. In this case, some other station)V may have 0 weight
until G comes in. Here, the ”"Termination” aspect of the name is something of
a misnomer, but the two aspects clearly stem from the same cause.

As mentioned, the GDT events are clearly a correlator bug. When the correlator
computes autocorrelations (one station, one SB, one parallel-hand pol), it uses
half the amount of correlator hardware as it does for a baseline (one baseline,
one SB, one pol). This is because the autocorrelation will be symmetric about
the peak lag (0 delay); the correlator computes only the top (or bottom?) half
and subsequent processing uses the symmetry to reconstruct the full autocorre-
lation spectrum. We have determined empirically that the relation between the
autocorrelations for G & V is that they share the same correlator “footprint”
that a baseline would have used (as traceable via dzbcp, cf. §App.1.f.77). Some-
times, ghost data terminating on a station & doesn’t knock any other station
G out — in this case there wasn’t another autocorrelation “sharing” the same
baseline “footprint” with S&’s autocorrelation.

The recorrelation tactic when a GDT event is noticed is to limit the scan-
range selection in the runjob gui to avoid the array missing a station at the
beginning or end of the subjob(s). Note that some events that automatically
trigger a subjob change (e.g., a disk-pack change) could complicate the scan-
range selection.

61

() Premature Stop. It’s quite possible for various things to die in the middle of
a subjob (software: the CDI process, the shared-memory allocator; hardware:
serial links, etc.). There may be obvious signs of this in the weight plot (only
some stations/subbands/pols stop early) or not. Even if there are no such
obvious signs, it should be clear from the end-time of the plots themselves —
this would precede the last time in the last scan of the job. A more rigorous
test would be to check the last reported time of a good integration in the
data_handler.log. Such events are almost always caught during production,
but if there’s a final partial scan in the subjob, you’ll need to edit the end-scan
column of the 1lis-file to make sure it doesn’t go into the MS (92.a.ii7).

n) Servo’'ing / Synching. Especially for tapes, it’s not uncommon for synch to be
lost and regained, often several times in a subjob. Sometimes recorrelation on
the same unit helps, sometimes not. The operators usually notice such events,
and try changing station location or checking various SU boards. With disks,
servo’ing is rarely a problem, except maybe for some stations at 1 Gb/s.

0) BOCF jump. This almost never occurs anymore. Because of the inherent
10-min cycle for the BOCF count, a “rogue” BOCF count returned from the
correlator, coherent over enough interferometers that it is not interpreted as the
count causing an “AAAAARGHHH” (¢f. §App.1.f.7), could case a corresponding
jump in the (UTC) time stamps associated with the data. Typically, this could
be seen in the weight plots as a “blank” time-range, where no station has any
weights. Also, the duration of the job would be up to 10 min longer than it
should have been. Since there’s no explicit scan information in the correlator
output data, plotweight.pl figures out the scan boundaries in the data by
referring back to the VEX file. Thus if Tjymp S10min are skipped in the data,
the weight plot would “assign” data after the BOCF jump to whatever scan
falls 7jump after the scan they really belong to. The scan-range of the plot as
seen in the upper-right corner would extend to scans that weren’t done in this
(sub)job. Of course, if the job were stopped prematurely because the BOCF
jump was noticed, this end-scan-is-too-big test may not be applicable, but the
Tjump Missing-weight interval will still be a diagnostic.

11— Problems that you can detect from the plotweight.pl autocorrelation-amplitude
plots:

k) Sampler Stats. The amplitude of the autocorrelation peak for a given channel
(subband/parallel-hand polarization) in the correlator output is now propor-
tional to the fraction of high-bits (f},) as recorded by the station in that channel.
Thus you can get a quick check of the the stations’ “sampler statistics” directly
from the autocorrelation-amplitude plots made by plotweight.pl. The pro-
gram 2bitVV (cf. 93.d) will take care of computing and applying the 2-bit van
Vleck correction, so there’s no action to take at this point with respect to the

62

data in hand. But if the stations’ fj, are too far off optimal (36.4% for us),
then some of the sensitivity gains of 2-bit sampling will be irretrievably lost:
frn = 1.0 would just be 1-bit sampling, and if the f;, get too close to 0, then noise
will play a larger role in the computed 2bitVV corrections. The plotweight.pl
autocorrelation plots provide a means to get feedback to the stations about
their sampler stats, without having to wait for the analysis of the MS. (Even
better, this sort of thing should have been looked at during clock-searching,
which would have provided even faster feedback. If f, < 0.15, Sergei suggests
that we should force treat the station’s recording as 1-bit, by making a sepa-
rate $TRACKS section for it in the VEX file, with all the MAG bits commented
out. This is another reason to check in clock-searching, prior to the production
correlation. Of course, to shift a station from 2-bit to 1-bit, the low f;, would
really have to be true for all SB/pol, since the number of bits in the recording
is a station-based characteristic in our system.)

111 — Problems that you can’t detect from any plotweight.pl plots, and would
need further investigation of the data itself to discover:

)

Byte Slips. There are two types of these, one arising in the DMMs (Delay
Memory Modules) and another in the TRMs (Track Recovery Modules). Of the
two, the TRM Byte Slips have largely be excised, although as we do more and
more 64-track experiments, we may re-encounter some boards that were more
prone to these events (we had moved them to the upper half of the SUs so that
they wouldn’t be used as much). The DMM Byte Slips seem more prevalent
in (but not exclusive to) experiments with only 2 channels. There’s really no
smoking gun for these without an olayspec of the lag spectrum for baselines to a
suspected station. There is a separate guide to Byte Slips available on the JIVE
how-to wiki; it contains a series of illustrative figures for both kinds showing
the characteristic behaviors in various sorts of plots. DMMs that appear to
be vulnerable to DMM byte slips have been marked, and moved to the upper
position in the upper SUs — the easiest approach is avoidance.

A priori correlator model effects. Specific conditions in the a priori correlator
model for a baseline may trigger problematic correlator output for a specific
time range. There is a separate guide to these events available on the JIVE
how-to wiki.

o When the a priori delay-rate on a baseline is close enough to 0 that the
phase-cal tones in both stations can correlate with each other (a function
of the subband frequency and the integration time). This causes a period
of excess correlation amplitude in frequency points corresponding to the
phase-cal locations, which bleeds through into averages across the band.
In the past, we have also seen instances (twice that I know of) where Jby
has also had similar effects at times when harmonics of 50 Hz about the
phase-cal tone also correlate against another station’s phase-cal tones. If

63

V)

one or more stations in the baseline don’t have phase-cal on, then there
is no problem. The glish program plyflg.g takes care of these events by
flagging the appropriate time range (cf. 93.g).

o If using “global” validity, there is also a problem when the Mk4 tape-frame
headers correlate with each other — in other words when the a prior: delay
on a baseline is near an integral multiple of the time represented by a tape
frame (a function of the fan-out ratio, the subband bandwidth, and the Nj,g
used for correlation). Baselines including a VLBA-format station will not
be affected (VLBA format doesn’t use data-replacement headers). The only
operational reason to use global rather than local validity is to squeeze an
extra factor of 2 in Nj,g out of the correlator (all other correlation param-
eters being equal). However, increasing Ni,, just increases the time-range
that would be affected by this problem, so it is essentially never worth-
while to use global validity (with Mk4-format recordings). (Also note that
the standard correlator-load formulas assume the reduced correlator-output
load appropriate to local validity, so while we can read-out the whole corre-
lator to B2 reliably in 0.25s in local validity, that’s not necessarily true for
global validity.) In any case, plyflg.g (cf. §3.g) can also flag time-ranges
affected by this a priori delay condition.

BWg,=16 MHz jumps. There’s a circular memory buffer in the CRMs (Channel
Recovery Modules) whose read & write pointers can overlap for data recorded
with subband bandwidths of 16 MHz (or 32 Msamples/s). At this data rate, this
buffer holds ~ 141 ms of data. When one station’s pointers “overlap”, fringes are
lost to that station (it’s data are offset by 141 ms with the others); when a second
station’s pointers “overlap”, then fringes return on the baseline, but there’s a
141 ms shift of the data with respect to the model. In other words, (once all
stations’ pointers have “overlapped”) plots of delay-jump vs. a priori rate yield
a straight line, as do plots of rate-jump vs. a priori acceleration, and so on for
higher derivatives of delay, out to the level of noise in the data. The solution
to this problem was to turn on the CRM-SERVO mechanism, which works to
ensure the read/write pointers stay as far away from each other as possible.
We’ve never seen a 16 MHz jump when ENABLE_CRM_SERVO was on. However,
this feature seems to be involved in causing/allowing diagonal weights, so now it
should be used only for experiments that have BWg,=16 MHz. Unfortunately,
there is nothing in the output data or ancillary files which can tell you whether
it was on or not for a specific job.

Any other loss-of-fringe problem that doesn’t have a corresponding low-weight
signature (e.g., the fringe-loss in a slow DWI prior to the manifest diagonal
weight signature). Another recent discovery (that appears to have been re-
solved) was the fact that SU5 prevented fringes in baselines to its mounted
station for oversampled data. The hardest problems to find are of course the
ones we don’t know about yet.....

64

2.c — j2ms2

The correlator output data lives in job-directories (YMoDyHrMi/). Each job
directory has one or more subjob subdirectories (N/), in which live the subjob’s raw
correlator output (CDF) and ancillary files (HDRS, MAP). The CDF is in lag-space,
and can get pretty big — currently ~14 GB/hr for a full-correlator, ti; (0.25s) mode
(more precisely, 1 MB per integration for the full correlator in local validity). These
files contain all the correlation functions for all the interferometers/integrations, but
have no intrinsic information to tie these to physical stations/baselines/SBs/pols.
The correlator continues to pump out data as long as the job is running, regardless of
gaps in the schedule (in which case of course, the data would be meaningless — you
can often see this in the plotweight.pl weight plots, where strange weight patterns
can be seen in periods of gaps in which the stations have stopped recording). A few
other files are used to provide the ties back to the physical observing setup.

The SB/pol set up, including frequency assignments, is taken care of by the
top-level VEX file (¢f. 92.a.1i, §2.b.i7). This is why it’s important to use the correct
VEX-file in the first line of the 1is-file, especially in experiments that have multiple
correlator passes, each using a different subset of SBs/pols. The top-level VEX
file also provides antenna information, so it’s important not to edit the $STATIONS
section (e.g., remove antennas not used, change ordering) in the course of production
correlation. Every run of j2ms2 that contributes to the same MS should use the
same top-level VEX file.

Each job directory also holds an “output VEX file”, named EXP_joblD.vex.
This is used to take care of the assignment of scan information, as well as to control
what data actually makes it into the MS. Data at times that do not belong to a scan
according to the output VEX file are not written to the MS. To be considered “in
a scan”, there is an additional test: the system knows which scans you are doing in
each job (since you have to select them in the runjob window); the source for all
other scans is set to “unknown” in the output VEX file. Data with times belonging to
such scans are also not written to the MS. This is the safety referred to in §App.1.f.7
— the fact that the output VEX file is a job-based rather than a subjob-based entity
allows the possibility of “orphan data” sneaking through at the beginning of second
(& subsequent) subjobs in a multi-subjob job. However, the scan-range checking
capability of j2ms2 -v exp.lis (cf. §2.a.i7i) provides a much more interactive way
to constrain further what scans from individual subjobs contribute to the MS. The
output VEX file also has a “header” comprising commented-out lines that provide
you an oversight over the correlation parameters, and tell j2ms2 what the versions
of the on-line correlator software were for this job (ABMajor, ABMinor), so that it
can interpret the correlator output data properly. The “OLD_prep_job” line shows
the syntax for the older command-line interface for starting a job (i.e., prior to the
GUlI-based runjob.pl). This line can be handy for testing/debugging (add a “-1
3” to the line, and only the CJD will be made without actually starting a job).

65

3.d — 2bitVV

All actions listed below are performed in a loop over each separate integrations
in the MS. Thus the 2-bit van Vleck corrections for each integration are independent
of those for other integrations, with no averaging period as in ACCOR in AIPS.

e read the DATA, WEIGHT, DATA_DESC_ID, ANTENNA1, and ANTENNA2 columns from
the MS. The DATA DESC_ID columns provides the means to trace the SB/pol in-
formation from the SPECTRAL_WINDOW and POLARIZATION subtables.

e Loop over autocorrelations (ANTENNA1 == ANTENNA2, only parallel-hand pols):

o Recreate the lag spectrum: keeping track of the upper/lower sidebanded-
ness, “fold-over” the (real-only) N,-long frequency spectrum to 2N, — 1;
compute the value for “freq #0” (such that lag #0 will be 0 4+ 0i after the
FFT); do the FFT to lag-space.

o Read off the value of the peak lag; scale by 0.364 to fj; store in a table
(dimensions ista, Jsbs Kpol)-

o Compute the corrected lag-spectrum for this Sta/SB/pol using the table of
coefficients A;; determined by Sergei in his simulation:

Na:9 :
> Ty (orig. lag spectrum) Z Ti—1(2fn—1)

i=1 iz

Here, Ty(z) denote the Chebyshev polynomial of order ¢ (range —1 < z <
1). Note that each point in the autocorrelation lag spectra gets corrected
separately (the overbar intends to signify treatment as a vector).

o FFT the corrected lag-space autocorrelation back to frequency-space; trun-
cate from Ni,g = 2N, to N,, keeping track of lower/upper sidebandedness.

e Loop over baselines (cross-hand pols for ANTENNA1 == ANTENNA2 are considered
baselines, along with ANTENNA1 != ANTENNA2):

o extract the appropriate fj, & f, for the two participating Sta/SB/pol.

o compute the single baseline-scaling factor (B), using the table of coefficients
X determined by Sergei in his simulation:

N,=8 Np,=8
Z Tz 1 2fh1 - 1 Z X’L]T] 1(2fh2 - 1)
=1 =1

o Multiply the (complex) baseline frequency-space correlation function by 5.

Figure 6 shows the B “field”. The green thick line is the locus of B = 1. A box
bounding 0.3 < f, < 0.4 for both stations is over-plotted (this forms something of

66

2bitVV Baseline Correction—Factor Field

(sta.2)

fraction of high—bits

0.0 0.2 0.4 0.6 0.8 .0
fraction of high—bits (sta.1)

Figure 6: 2bitVV baseline-scaling factor as a function of f, for both stations.

an unofficial target for the stations to achieve). Note the numerical limitations of
the correction: two stations with “optimal” fj will have B of ~ 0.98.

3.e — fixfbs

fixfbs computes its corrections to the phase slope across the band to compen-
sate for the residual fractional bit shift (FBS). The basis for the correction is the
relation that 1 lag of delay induces a 180° slope across the (upper or lower side-
band) frequency bandpass, pivoting around the central frequency point (N, /2+1).
The goal will be to compute the net residual fractional bit shift for an integration,

convert that to a phase per frequency point gradient, and apply it to the actual
data in the MS.

The first step, just as in plyflg.g or plyrecon.g, is a loop over all jobs in the
MS, loading the polynomial representations of the a priori models passed to the
SUs for the participating stations (i.e., the start & stop times and the 6 coefficients
applicable over those time ranges). The model polynomials are evaluated via 7(t) =
Y2 o Cy - (t —to)", where tg is the start time associated with the polynomial. Each
polynomial can be valid no longer than two minutes (¢t —ty < 1205s), but the explicit
rules for how the start & stop times are assigned for the time range covered by a
specific scan in the VEXfile are somewhat complicated, and may well change from

67

job to job (depending on what range of scans the job covers). Of course, if the
start & stop times differ between two jobs, the polynomial coefficients themselves
will also be different, such that the evaluation of the total delay model remains the
same.

Once the polynomials are loaded for all stations & jobs, there’s a separate
set, of loops that go through all the baselines & integrations in the MS. For each
bsln/int, the net residual FBS can be computed from the area in the (delay, time)
plane above/below the 7(t) curve with respect to the closest (horizontal) integral
lag “lobe” that are spaced 1/(2BW) apart in delay (and on which the FBS is
instantaneously 0). The net area normalized by t;,¢ provides a net FBS delay.
Per integration, we compute a best-fit linear model to 5*"-order polynomial model.
This linearization greatly assists the computation in two ways: determination of the
crossing times of 7(¢) with the equally spaced integral lag “lobes”, and cancellation
of above/below areas when 7(t) crosses >1 lag “lobe”. With this linearization, a
few geometrically-envisionable rules suffice to handle all possibilities of the relative
configuration among the start/end fractional lag “lobes”, the initial direction of the
7(t) curve, and the integral lag “lobes”. The resulting net FBS is converted into a
phase slope, slp :=dy/dv; [rad/frq.pt], and a N,-long vector of phase-offsets

—
is computed: Ay :=[1 : N,] * slp. Loops over subbands and polarizations
within the bsln/int are then done to read in, correct, and write back the actual
data. The correction steps are:

Jo := arg(data)

-

A :=| data |

. . —

P1 1= Po — Ay

data;, := .Zexp(complex(0, B1))

6 — Setting the per-source protection for Pipeline output
Note that this requires that that archive -auth has already been run for the
experiment (cf. §4.c.iv).

o go to the web site www. jive.nl/archive/scripts/pipe/admin.php. This will
not work well under Netscape 4.76; does work well under Netscape 7 (= mozilla
1.4). Log-in as jops via the dialogue box.

o Select your experiment from the pull-down menu; click on the Submit Query
button.

o Click on the experiment name (in column 0). A new window will appear. This
has two columns of pipeline-generated plots: on the left, a list of experiment-
wide plots, and on the right, a list of source-specific plots.

o In the upper right is a pull-down menu of sources. For each of the “private”
sources (cf. the expsum-file), click on the source in this pull-down menu, click

68

on the Select all source field button at the bottom, and then click on the Enter
into database button. Then go on to the next “private” source.

When you check the pipeline part of the Archive, you should be able to view
any plot for non-“private” sources, but should get a dialogue box asking for a
user-name/password for any plot for a “private” source (once you log-in once,
no subsequent dialogue box will appear in the same Netscape session).

69

