[image: image1.png]JOINT INSTITUTE FOR VLBI IN EUROPE

Correlator Board DSP Software

1 Table of contents

21
Table of contents

2
Introduction
3
3
Organization and requirements
4
4
DSP Operating system
4
5
Application framework
5
5.1
The RT-DSP communication handler
5
5.2
Inter DSP communication handler
5
5.3
DMA handlers
6
6
Processing DSP operational tasks
7
6.1
Version Information
7
6.2
Read/Write static parameters
7
6.3
Read/Write dynamic parameters
7
6.4
Make Lag DMA table
8
6.5
Lag data read
8
6.6
Set Crossbars
8
6.7
Set global mode
8
6.8
IO Memory write
10
6.9
IO Reboot
10
7
Correlator board application software
11
7.1
Introduction
11
7.1.1
General application operation
11
7.2
Application Control Word
12
7.3
Basic lag data read (mode 0x01)
12
7.3.1
accepted events
13
7.3.2
flags supported
13
7.4
EVN application (mode 0x02)
13
7.4.1
accepted events
13
7.4.2
flags supported
13
7.5
DZB application (mode 0x03)
13
7.5.1
accepted events
14
7.5.2
flags supported
14
7.6
PCInt application (mode 0x04)
14
7.6.1
accepted events
15
7.6.2
flags supported
15

2 Introduction

This document describes the functionality and the organisation of the software running on the correlator board’s digital signal processors (DSPs). This software allows for better correlator performance by distributing the processing over the eight correlator-boards in the rack. In chapter X an overview is given of the correlator board and the required functionality and organisation is given. In chapter XX the functional description of the operating system running on the DSPs is given. Chapter XXX describes the framework for inter DSP communication and RT-DSP communication. In chapter XXXX the basic operational functionality is described. This functionality is mainly intended for board testing. Finally chapter XXXXX describes the actual operational applications.

3 Organization and requirements

The Correlator Board DSP Software (CBDS) consists of 2 highly related software components. One is running on the processing DSP and the other on the IO DSP. Despite the fact that they are two software components, their operations are so closely related that they appear as one program to the RT-system. Together these two components perform all the required processing and data transfer on the correlator board. Each of the two components doing their specific tasks.

The main tasks of the processing DSP are:

· interfacing to the RT-system

· start/controlling the required actions on the IO DSP

· processing the correlator data

The main tasks of the IO DSP are:

· interfacing to the correlator ASICs

· processing dynamic parameters

The IO DSP operates under full control of the processing DSP, i.e. the processing DSP instructs the IO DSP what to do and when.

For understanding the software architecture, an understanding is required of the correlator board hardware.

<< hardware overview >>

In this overview several important issues can be noted.

First four C4x communication channels interconnect the processing and IO DSP. This means that all inter DSP communication is to be done via these channels.

Also the IO DSP has no direct connection to the RT-system. Therefor all the actions on the IO DSP are started via the processing DSP.

The IO DSP boots from EPROM, which means that all required functionality must be available at the moment the EPROM is programmed. Since it is not easily possible to update the software in EPROM.

4 DSP Operating system

The Correlator Board DSP Software uses the dpsOS real-time kernel as the foundation for the application software. This allows for a multi-tasking implementation of the required functionality.

5 Application framework

For the Correlator Board DSP Software a framework is designed that runs on the operating system. It provides minimally required functionality for any application task to run. It includes a RT-DSP communication handler to handle the communication between the real-time system and the processing DSP. An Inter DSP communication handler providing functionality for the two DSP’s to communicate and DMA handlers, to provide controlled access to the DMA channels for the tasks.

5.1 The RT-DSP communication handler

The RT-DSP communication handler is a task that handles all the required communication between the real-time system and the processing DSP. It allows the real-time system to start tasks on the DSP and to send events to the tasks. It is also possible for the real-time system to request messages (status/error) from the DSP.

All communication between the real-time system and the DSP is performed via dual port memory. This 1K byte large memory is simultaneously accessible by the real-time system and the DSP. Two of the memory locations are mailbox register. A mailbox registers asserts an interrupt signal when it is written by one side of the dual port memory. One mailbox register generates an interrupt to the DSP and the other to the VME bus. The interrupt condition is cleared when the interrupted side accesses the specific mailbox register.

The mailbox register allows the real-time system to interrupt the DSP by writing a command in the mailbox register. The RT-DSP (rthost) communication handler reads the command from the mailbox register, performs the required action and writes a transfer terminator character back to the mailbox register to clear the interrupt condition. The real-time system polls the mailbox register for the transfer terminator character to detect completion of the requested action.

5.1.1 Dual port RAM definition

Dual-Port RAM - a small (1 kB) RAM which is the only memory area simultaneously accessible for both read and write to both the DSP and the VME interface. The dual-port RAM is intended for high-level real-time control functions between the CUCC and the correlator board, and is also a pathway for moving small amounts of data between the CUCC and any of the correlator-board memory banks. Dual-port RAM has several special (byte) addresses reserved for special purposes:

0x000-0x3df:
1008-byte block reserved for CUCC-to-DSP messages and data. Only the CUCC may write to this area

0x3E0-0x3EF:
16 bytes (4 words) of message data. When the CUCC requests a message from the DSP, it is written to this location. The first word contains the message type and three remaining words are message dependant. If the processing DSP has no message to send to the CUCC it writes the no_message character (0x000000ff) to the first word.

0x3F0-0x3F7:
8 bytes (2 words) used when sending events to a specific task. The first word specifies the task id and the second word is the event. These locations are written by the CUCC prior to starting the command.

0x3F8-0x3FB:
4 bytes reserved for the address of a Task Control Block to be passed to the processing DSP when interrupted by the CUCC through location 0x3ff. It is expected that the addressed TCB is in dualport RAM. Only the CUCC may write to this area.

0x3FC:
unused byte

0x3FD:
application control word (switch bank A to B etc.)

0x3FE:
VME interrupt is not used in the Astron correlator DSP applications

0x3FF:
a CUCC write to this byte location causes an interrupt to the processing DSP. The value (interrupt type) written specifies the action to be taken by the DSP scheduler (tentative values):

0 - reserved

1 – startup task

2 – send event to task

3 - reserved

4 - reserved

5 - reserved

6 - reserved

7 – enable event counter

8 – event counter reset and disable

9 – request message from DSP

Others may be defined in the future

Note: After the processing DSP reads address 0x3ff as the result of an interrupt, it writes a transfer terminator character (0x0fe) back to address 0x3ff. The CUCC then has the option of reading address 0x3ff to verify that the processing DSP has acted on the interrupt.

5.1.2 CUCC commands

All CUCC commands to the DSP are handled in a similar way, except for the start up of a task.

The CUCC writes the command to dualport RAM location 0x3FF and interrupts the DSP. The DSP performs the command and signals the CUCC of completion by writing a transfer terminator character to (0xfe) back to address 0x3FF. So the CUCC only has to poll 0x3FF to signal completion.

Message reporting

The DSP internally maintains an message for messages to the CUCC. These message can include general messages and status messages but also error messages. The entire message (16 bytes) is copied to dualport RAM on request by CUCC.

Task Initiation from the CUCC

Task startup is performed in a slightly different way of the other commands. When the CUCC interrupts the DSP, the DPS will create and start the task and it will write a message to the message queue saying that it created a task with a specific task id. Then the DSP writes a transfer terminator character to (0xfe) to address 0x3FF to signal completion of the task creation. The CUCC can then request messages to see which task id is associated with the created task (if required) If CUCC has to wait for the completion of the started task, it must continue polling message until a task completed message is received from the started task (task id).

The following sequence of events is necessary for the CUCC to initiate the execution of a DSP task.

1. The CUCC prepares and writes any necessary TCB’s to the dualport memory

2. The CUCC writes the head TCB address to byte addresses 0x3f8-0x3fb of the dual port RAM.

3. The CUCC writes the value ‘0x1’ to dual-port RAM location 0x3FF, which interrupts the processing DSP.

4. The CUCC monitiors dual-port RAM location 0x3FF and waits for a transfer terminator character. (continue at step 9)

5. The DSP reads the head TCB address and create and start the specified task.

6. The DSP write a message to the message queue, identifying that a task is created and which task id is assigned to it.

7. The DSP writes a transfer terminator character to dual-port RAM location 0x3ff.

8. The DSP executes the started task, and when the task finishes a TASK_COMPLETED message is written in the message queue.

9. The CUCC writes the value ‘0x9’ to dual-port RAM location 0x3FF, which interrupts the processing DSP. (continue at 11)

10. The DSP reports the first message from the message queue to the CUCC. If there is no message in the queue, a NO_MESSAGE message is reported

11. The CUCC monitiors dual-port RAM location 0x3FF and waits for a transfer terminator character.

12. The CUCC checks the reported message and continues when a TASK_COMPLETED message is received. When a NO_MESSAGE message is received, it continues at step 9.

5.1.3 Task Control Block

Word 0
Mode(16) | priority (8) | command (8)

Word 1
char[4] task name

Word 2
NPAR – number of task parameters

Word 3 – Word 3+NPAR
task specific paramets

5.1.4 Message format

Word 0
Error (1) | reserved (7) | message code (24)

Word 1
task id of the task responsible for the message

Word 2
message dependant info

Word 3
message dependant info

5.1.5 Message codes

Message ID
Code
word 2
word 3
description

NO_MESSAGE
0x000000fe
x
x
no messages to report

TASK_COMPLETED
0x00000001
x
x
This message is generated by a task when it completes.

TASK_CREATED
0x00000002
Tid
Name
This message is generate by the RT-host communication handler to signal the host which task is created.

5.2 Inter DSP communication handler

The inter DSP communication handler consists of a set of functions and tasks, part of it running on the processing DSP and the other part on the IO DSP. It allows tasks on the processing DSP to start tasks on the IO DSP. It also provides support for tasks to sent events to tasks running on the other DSP, and it is possible for the IO DSP to send messages to the processing DSP.

For communication between the DSPs on the correlator board the communication ports of the C40 DSPs are used. The C40 DSP’s each have six communications ports available. By default they have the following configuration at reset.

COMM 0
send

COMM 1
send

COMM 2
send

COMM 3
receive

COMM 4
receive

COMM 5
receive

For communication between the two DSPs there are four of the communication ports used for each DSP. This allows for four independent communication channels, two in each direction. Therefor it is possible to have a separate data and message channel in each direction. The following table shows how the communication ports are interconnected and which purpose the channels serve. The two remaining communication ports on the processing DSP are externally available as high speed input and output.

Communication port inter connection

Processing
DSP
IO DSP
function

0
-
external send

1
3
Message IO->PR

2
4
Message PR->IO

3
0
Data IO->PR

4
1
Data PR->IO

5
-
external receive

5.3 DMA handlers

The DMA handlers provide a mechanism for all tasks running in the system to use the DMA channels, without checking if the channel is available (i.e. not busy). For each DMA channel that is required by the software a handler task is created. These handler tasks monitor their DMA queues for requests. A task that requires to use DMA channel simply writes a message to the required queue and the DMA handler task starts the DMA transfer when it is ready to do so. It also provides a way to notify the requesting task that the DMA action it requested is completed. The handler does so by sending an event to the requesting task on completion.

When a task wants to perform a DMA transfer, it sets up a DMA table for the transfer. Then it writes a message to the queue of the DMA handler of the following format.

word 0
task id of the requesting task

word 1
address of the DMA table

word 2
event to send to the specified task on completion

word 3
unused

The handler task services the incoming messages in sequence of arrival.

6 Processing DSP operational tasks

The following operational tasks are available on the processing DSP.

· Version Information

· Make Lag DMA table

· Lag data read

· Read/Write static parameters

· Read/Write dynamic parameters

· Set Crossbars

· Set global mode

· IO Memory write

· IO Reboot

These tasks provide a basic set of functionality and are intended for global board configuration and test functions.

6.1 Version Information

task name
versionInfo

Command number
0x00

Parameters

6.2 Read/Write static parameters

task name
DSPstaticDataRW

Command number
0x02

Parameters

taskmode
task operational mode
bit 0 – Read (0) or Write (1)

flags

paramtable
address in local memory bank A or B where the static parameter table is to be stored or read from

chipmask
mask to indicate which correlator chips to read or write

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int paramtable;

unsigned int chipmask;

6.3 Read/Write dynamic parameters

task name
DSPdynamicDataRW

Command number
0x03

Parameters

taskmode
task operational mode
bit 0 – Read (0) or Write (1)

flags

paramtable
address in local memory bank A or B where the dynamic parameter table is to be stored or read from

chipmask
mask to indicate which correlator chips to read or write

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int paramtable;

unsigned int chipmask;

6.4 Make Lag DMA table

task name
MakeLagDma

Command number
0x06

Parameters

taskmode
task operational mode

flags

right
address where lag data is to be stored

left
address where lag data is to be stored

head
address where lag data is to be stored

chipmask
mask to indicate which correlator chips to read or write

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int right;

unsigned int left;

unsigned int head;

unsigned int chipmask;

6.5 Lag data read

The lag data read task reads lag and header capture data from the specified set of correlator chips and stores it in the specified memory area. This task works in close relation to a sister task on the IO DSP, which is started automatically.

The task assumes that the destination address points to a memory area large enough to store the lag and header data from all possible correlator chips.

task name
lagDataRead

Command number
0x01

Parameters

6.6 Set Crossbars

task name
DSPcrossbarWrite

Command number
0x04

Parameters

taskmode
task operational mode

flags

xbartable
address where the crossbar table is located

chipmask
mask to indicate which xbar chips to writen

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int xbartable;

unsigned int chipmask;

6.7 Set global mode

task name
GlobalMode

Command number
0x05

Parameters

taskmode
task operational mode

flags

datamode
data mode
0 - normal mode
1 - data injection mode
2 - data capture mode
3 - self diagnostic

sampselect
bit 0 - control signals
0 - internally generated signals
1 - backplane signals, SHSMP, ACCUM, TRDATA, CLEAR
bit 1 - accumulation mode
0 - accumulate disable during BOCF
1 - accumulate enable during BOCF

shsmp0
shift sample divide ratio during BOCF inactive
0 - divide by 2
1 - divide by 4
2 - divide by 8
3 - divide by 16
4 - always active
8 - always inactive

shsmp1
shift sample divide ratio during BOCF inactive
0 - divide by 2
1 - divide by 4
2 - divide by 8
3 - divide by 16
4 - always active
8 - always inactive

accum
accumulation divide ratio during BOCF inactive
0 - divide by 2
1 - divide by 4
2 - divide by 8
3 - divide by 16
4 - always active
8 - always inactive

chipcontrolA
chip control settings group A
bit 0 - chip test mode
bit 1 - validity mode
bit 2 - clear Static Parameters
bit 3 - initialize registers
bit 4 - initialize State Machine

chipcontrolB
chip control settings group B
bit 0 - chip test mode
bit 1 - validity mode
bit 2 - clear Static Parameters
bit 3 - initialize registers
bit 4 - initialize State Machine

chipmask
mask to indicate which correlator chips to read or write

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int datamode: 2;

unsigned int sampselect : 2;

unsigned int :4;
/* 4 reserved bits */

unsigned int shsmp0 : 4;

unsigned int shsmp1 : 4;

unsigned int Accum : 4;

unsigned int : 12;
reserved to complete the 32 bits

unsigned int chipcontrolA : 5;

unsigned int : 3;
/* reserved */

unsigned int chipcontrolB : 5;

unsigned int : 3;
/* reserved */

unsigned int : 16;
/* reserved */

unsigned int chipmask;

6.8 IO Memory write

task name
DSPioMemoryWrite

Command number
0x07

Parameters

taskmode
task operational mode

flags

source
address where the data is located

destination
physical destination address on the IO DSP

size
length of the memory block to write

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int source;

unsigned int destination;

unsigned int size;

6.9 IO Reboot

task name
DSPioReboot

Command number
0x08

Parameters

taskmode
task operational mode

flags

start
physical start address of the loaded code on the IO DSP.

unsigned int taskmode : 24

unsigned int flags : 8;

unsigned int start;

7 Correlator board application software

7.1 Introduction

The correlator board DSP software is used in different applications. This document gives an overview of the expected applications and the requirements of these applications.

basic lag data read
In this application no integration and parameter calculation is performed, it simply reads the lag data on command and stores it in the indicated local memory bank.

EVN application
In this application the data is integrated in the indicated memory bank and also dynamic parameter calculation is performed.

DZB application
In this application the data is integrated in the indicated memory bank and also dynamic parameter calculation is performed.

PCInt application
In this application the read lag data is transferred to the PCInt board.

The EVN, DZB and PCInt application are all based on the same concept. They only differ in processing details. The general concept of these applications is described in the following paragraph.

7.1.1 General application operation

The applications can be divided into two logical sections. The start up, initialization section and the processing section.

In the start up section all parameters are interpreted and the internal DMA tables and processing structures are initialized. The lag data read and process header tasks are started on the IO DSP and the Header Address Table is written to the IO DSP. After initialization is completed, the processing section is entered.

In this processing section the DSP waits for events, triggering processing events. The events can be external, e.g. BOCF interrupts or internal, e.g. DMA completion.

On the positive edge BOCF interrupt event, the application control word (ACW) is read from dualport memory. The conditions in the ACW are compared to the internal processing state of the application.

The negative-edge BOCF-interrupt starts the read action of lag data from the IO DSP. When data output to PCInt is enabled in the ACW, the data read is send out to the PCInt at the same time. DMA transfers perform the read and write actions.

When the lag data read is completed, the header data is send back to the IO DSP. The IO DSP then starts processing this data to calculate the dynamic parameters for the next BOCF.

On the processing DSP the frame number is extracted from the data and a check is made if it is still synchronous with the internal recirculation buffers. If it is synchronous the data is integrated in the appropriate buffer.

Synchronisation procedure

Synchronisation of the frame numbers with the data integration buffers is required to support recirculation, since this requires selecting the correct integration buffer.

At start up no knowledge is available on the current frame number. The first frame number can be determined when the first set of lag data is read. Since this is still inconclusive for the correct recirculation cycle, the data read is continued until the next frame number is detecting indicating the next recirculation cycle. From that moment the internal frame and recirculation numbers are synchronized with the data. When synchronisation is reached, a message is send to the RT-system and integration can be started properly.

events

0x04
rising edge BOCF
check application control word for a change in state. When a state transition from STOP to START is detected, the target memory bank is taken from the ACW and the memory clear indicator is set. This results in the start of a new integration in this memory bank.
In the START state a check is made for a change of the target memory bank. When this occurs, integration is restarted in this new target memory bank.

0x02
falling edge BOCF
If the current state is the START state, the reading of the chip data is started. This is done by sending a START_READ (0x01) event to the lag read task on the IO DSP followed by starting the DMA transfer. After the lag data read is started, output to the PCInt is started if it is enabled.

0x01
lag data read complete
After the lag data read is completed, the header data is send back to the IO DSP by sending a TRANSFER_HEADER event to the header processing task and starting a DMA transfer.
The frame number is extracted from the header information.
A check is made to see if received frame number is still in synchronisation with the expected frame number. If in synchronisation, the target memory pointers are updated to the correct recirculation buffer and integration is started.

0x80
stop task.
This event is sent by the RT system to stop the application task.

Header Address Table

The header address table (HAT) has two entries per element. It has elements for every 256 logical correlator blocks

7.2 Application Control Word

The application control word is a byte located at dual port memory location 0x3FC. This byte is read by the DSP on the negative edge of the BOCF signal. (note: operations start on the positive edge) This word is used to control the internal operation of the applications.

bit
name
definition
comment

0
BANK
0 = bank A
1 = bank B
indicated the memory to target on the next BOCF

1
STATE
0 = stop
1 = start
software start/stop of integration

2
Hardware access
0 = off
1 = on
indicate if the DSP is allowed to access the correlator board hardware (for application only)

3
data to PCInt
0 = off
1 = on
control sending data to the PCInt board

Not every bit is valid in every application. The bits in the internal copy of the control word are evaluated by the applications on the positive edge of the BOCF interrupt. Which implies that the control word because valid on the next BOCF interrupt.

7.3 Basic lag data read (mode 0x01)

The basic lag data read is intended for simply reading lag data by the RT-system. In this application the task is started and waits for an event instructing it to start a lag data read. Its operation by the RT-system is simple, start the task, send event to the task indicating to read data, and when finished reading data send an exit event to close the task.

7.3.1 accepted events

0x02
read lag data to local RAM bank A

0x04
read lag data to local RAM bank B

0x80
task exit

7.3.2 flags supported

0x01
send LAG_TRANSFERRED (0x10) message on read completion

7.4 EVN application (mode 0x02)

7.4.1 accepted events

0x80
task exit

7.4.2 flags supported

7.5 DZB application (mode 0x03)

Data buffer layout.

Each buffer is 20K words in size. The lag data is integrated in physical block sequence in the first 16 K words. The monitor data is placed at location xxxxx in the buffer (length 10 * number of correlator blocks)

The validity data is placed at location xxxxx in the buffer (length 2 * number of correlator blocks)

Drawing buffer layout.!!!!

Phase switching mode

In phase switching mode, the identification of real and imaginary data is based on the header information. Real and imaginary data are integrated in two separate buffers. The buffer for the real data is based on the current recirculation buffer while the imaginary buffer is MAX_RECIRCULATION_FACTOR further.

Detection of phase switching is based on the switch patterns in the headers of each signal. Each correlator block is based on two signals X and Y.

Since the switch pattern is based on the actual header data, the target buffers are not known a priori. They must be calculated based on the header data. The DZB application will create a buffer array with target memory areas prior to integrating the data. For each block this table contains the target memory area for the lag data, the validities and the monitor data. For creation of this table, the header address table is used. The HAT-table indicates for each logical block the physical location of the headers for the two signals X and Y. (actually the location of the phase rotators for the logical block).

The two entries in the HAT-table point to the physical block number where the header info is to be found. Only when the xhdr entry is –1, it indicates that previously calculated parameters pointed to by yhdr are to be copied.

Noise switching.

The monitor data processing in noise switching mode, is different from normal processing. In normal processing the headers are copied, while in noise switching mode only 5 entries are copied. Based on the noise on/off situation these values are stored at

Noise switch
on
store at monptr

off
store at monptr+5

Dynamic parameter calculation

The dynamic parameters for the next BOCF are calculate from the headers of the current BOCF data. Only in recirculation mode this is slightly different. Because in that case data of the same BOCF cycle is processed a number of times. So the parameters that can be calculated now are not necessary for another N processing cycles. These means that in recirculation mode the IO DSP tracks new dynamic parameters for every reciculation cycle.

< drawing !!!!>

A new recirculation cycle is detected by monitoring the header data for a new BOCF frame, since the BOCF frame number remains constant during a recirculation cycle.

Integration control Parameters

INTG_NOISESW

0 off

1 use parameters table

2 use header data

INTG_PHASESW

0 off

1 use parameter table

2 use header data

SORT_MODE

0 normal mode

1 capture mode

2 monitor mode

3 pass mode

SORT_SEL

0 DZB on/off reference lvls + total power

1 DZB header copy

2 EVN header at BOCF0

RECIRCULATION_FACTOR

0 off

1 1x

2 2x

4
4x

8 8x

16 16x

7.5.1 accepted events

0x80
task exit

7.5.2 flags supported

7.6 PCInt application (mode 0x04)

7.6.1 accepted events

0x80
task exit

7.6.2 flags supported

AUTHOR:	P.E.Kamphuis

DOCUMENT NUMBER:	

PROJECT:	Correlator Board DSP Software

ISSUE:	DRAFT

DATE:	9-nov-2000

1
5

