VLBI: The Next 20 Years

Colin Lonsdale MIT Haystack Observatory

April 21, 2015

- A historical perspective drivers for progress in VLBI over the last 20 years
- The nature of transformational change in technology, with examples
 - Latency in technology adoption and use
- Future VLBI-relevant technologies
- Future VLBI stations and arrays

- A historical perspective drivers for progress in VLBI over the last 20 years
- The nature of transformational change in technology, with examples
 - Latency in technology adoption and use
- Future VLBI-relevant technologies
- Future VLBI stations and arrays
 - The technically feasible 😳

- A historical perspective drivers for progress in VLBI over the last 20 years
- The nature of transformational change in technology, with examples
 - Latency in technology adoption and use
- Future VLBI-relevant technologies
- Future VLBI stations and arrays
 - The technically feasible 😳
 - The economically plausible 😃

- A historical perspective drivers for progress in VLBI over the last 20 years
- The nature of transformational change in technology, with examples
 - Latency in technology adoption and use
- Future VLBI-relevant technologies
- Future VLBI stations and arrays
 - The technically feasible 😳
 - The economically plausible 😃
 - The likely reality 😕

20 Years Ago ...

- VLBA recently commissioned
 - Sustained 128 Mbit/sec record rate on tape
 - Analog filtering and baseband conversion
 - Multiple frequency bands with fast switching
 - Imaging u-v coverage by design, not by chance
 - Major leap in capability
- 'Ad-hoc' VLBI
 - EVN and other arrays, several large apertures
 - MkIII recording systems, comparable to VLBA
 - Good sensitivity, low duty cycle, difficult imaging
- Mostly I.6 GHz to 22 GHz, some 43 GHz

10 Years Ago ...

- VLBA 10 years older
 - Sustained 128 Mbit/sec record rate on tape
 - Analog filtering and baseband conversion
 - Multiple frequency bands with fast switching
 - Imaging u-v coverage by design, not by chance
 - Static capability, except for software improvements

• 'Ad-hoc' VLBI

- EVN and other arrays, several large apertures
- Transition from tape to Mk5A disk units in progress
- Good sensitivity, low duty cycle, difficult imaging
- Mostly I.6 to 22 GHz, some 43, 86 GHz

10 Years Ago ...

- VLBA 10 years older
 - Sustained 128 Mbit/sec record rate on tape
 - Analog filtering and baseband conversion
 - Multiple frequency bands with fact switching
 - Ima Stat Modest change ...
- 'Ad-hoc' VLBI
 - EVN and other arrays, several large apertures
 - Transition from tape to Mk5A disk units in progress
 - Good sensitivity, low duty cycle, difficult imaging
- Mostly I.6 to 22 GHz, some 43, 86 GHz

Today

- VLBA 20 years older
 - Sustained 2 Gbit/sec record rate on disks
 - Full digital signal path from IF (RDBE)
 - Multiple frequency bands with fast switching
 - Imaging u-v coverage by design, not by chance
 - Major leap in capability
- 'Ad-hoc' VLBI
 - EVN and other arrays, EHT, several large apertures
 - Mk5, Mk6 recording systems, up to 16 Gbit/sec
 - Data transfer over internet at IGbps+
- Mostly I.6 to 86 GHz, some 230 GHz

Today

- VLBA 20 years older
 - Sustained 2 Gbit/sec record rate on disks
 - Full digital signal path from IF (RDBE)
 - Multiple frequency bands with fast switching

Transformational change! (what happened?)

- EVN and other arrays, EH I, several large apertures
- Mk5, Mk6 recording systems, up to 16 Gbit/sec
- Data transfer over internet at IGbps+
- Mostly I.6 to 86 GHz, some 230 GHz

Basic Elements of VLBI

- Antennas
- Receivers
- Analog and digital stages
- Recorders and data transport
- Correlation
- Postprocessing, imaging, geodesy

Basic Elements of VLBI

- Antennas
- Receivers
- Analog and digital stages
- Recorders and data transport
- Correlation
- Postprocessing, imaging, geodesy

Two Technologies

• Hard disk drives got big, cheap and fast

- Samplers and FPGAs got cheap and fast
 - Similar performance gains
- Multi-Gbit/sec recording went from impossible to easy in just a few years ...
 - It took VLBI a few more years to implement

Two Technologies

• Hard disk drives got big, cheap and fast

From Impossible to Trivial

- Ubiquitous feature of modern technology
 - Vinyl records \rightarrow CDs \rightarrow internet streaming
 - Video rental stores \rightarrow internet streaming
 - Land lines → cell phones
 - Slide rule \rightarrow electronic calculator
 - Typewriter → word processor
 - Film \rightarrow digital imaging
 - PC and console gaming \rightarrow VR (growth 100%/yr)
 - ... and many more
- Each transition has been abrupt just a few years
 - It's the exponential nature of IT progress on a broad front
 - IT progress catalyzes rapid gains in many other areas too

Key future technologies for VLBI

- RF over fiber
 - Very wide IFs, simplification at feed
- Digital receiver components
 - ADC, FPGA/CPU, I/O capacity
- Inexpensive clocks
- Non-volatile solid-state memory
 - 3D NAND, RRAM (Racetrack, PCM, ...)
- Fiber transceivers, internet backbone capacities
- Massively parallel computing
 - multicore, hybrids, integrated NVRAM, ...
- Lower cost, more flexible apertures
- Advanced computing techniques and software

Digital Receivers

- ADCs are getting faster, cheaper, lower power
 - September 2014, Semtech announced 64 Gsps part, dualchannel, 4mm² chip area, 2.1 watts
 - Faster, lower power units in early 2016
- FPGAs are keeping pace
 - Latest high-end chips can accommodate tens of 10Gbps data streams on a single device
- Multicore and hybrid processor designs are in the pipeline that can handle high I/O rates
 - Takes development into the software domain, not FPGA bitcode
- Inexpensive digital receivers capable of handling tens of GHz of RF are around the corner

VLBI frequency standards

- Gold standard has been H-maser
 - ~10⁻¹⁵ in 1000 sec
 - Cost \$250k, sensitive to temperature, vibration
- Strong market drivers for size/cost
 - Chip-scale atomic clock (CSAC)
 * Limited to 10⁻¹¹ level
 - Deep Space atomic clock (DSAC)
 - * Mercury ion, I litre, 3kg
 - * Reaches 10⁻¹⁴, but still costly
- Many options under development
- Requirements will decline

VLBI frequency standards

- Gold standard has been H-maser
 - ~10⁻¹⁵ in 1000 sec
 - Cost \$250k, sensitive to temperature, vibration
- Strong market drivers for size/cost
 - Chip-scale atomic clock (CSAC)
 * Limited to 10⁻¹¹ level
 - Deep Space atomic clock (DSAC)
 - * Mercury ion, I litre, 3kg
 - * Reaches 10⁻¹⁴, but still costly
- Many options under developmen
- Requirements will decline

- Current state of the art 3D NAND
 - e.g. Samsung USB SSD
 - \$600, I TB, 26 grams, I Gbit/sec
- Many contenders for replacement ...

- Current state of the art 3D NAN
 - e.g. Samsung USB SSD
 - \$600, I TB, 26 grams, I Gbit/sec
- Many contenders for replacement ...

- Current state of the art 3D NAN
 - e.g. Samsung USB SSD

Zero-RAM

- \$600, I TB, 26 grams, I Gbit/sec
- Many contenders for replacement ...

- Current state of the art 3D NAN
 - e.g. Samsung USB SSD
 - \$600, I TB, 26 grams, I Gbit/sec
- Many contenders for replacement ...

- Current state of the art 3D NAN
 - e.g. Samsung USB SSD

Cellular

- \$600, I TB, 26 grams, I Gbit/sec
- Many contenders for replacement ...

Line Cards

Network Systems

Network Memory Modules

-PBX

CMORRAM

CMO

SPBMM

Transparent

Flexible

ano-Mech

intel

- A leading candidate resistive RAM (RRAM)
 - Fast switching
 - Low power
 - High durability
 - Excellent volume density potential
 - Can use existing fab facilities

RAM)

NEWS

A terabyte on a postage stamp: RRAM heads into commercialization

	Memristor	РСМ	STT- RAM	DRAM	Flash	HD
Chip area per bit (F²)	4	8–16	14–64	6–8	4–8	n/a
Energy per bit (pJ) ²	0.1–3	2–100	0.1–1	2–4	10 ¹ 10 ⁴	10 ⁶ 10 ⁷
Read time (ns)	<10	20–70	10–30	10–50	25,000	5-8x10 ⁶
Write time (ns)	20–30	50–500	13-95	10–50	200,000	5-8x10 ⁶
Retention	>10 years	<10 years	Weeks	<second< td=""><td>~10 years</td><td>~10 years</td></second<>	~10 years	~10 years
Endurance (cycles)	~1012	10 ⁷ -10 ⁸	10 ¹⁵	>1017	10 ³ 10 ⁶	1015 ?
3D capability	Yes	No	No	No	Yes	n/a

Because NVM technologies combine the fast access patterns of DRAM and the persistence and capacity of disks, they will cause a collapsing of the memory-storage hierarchy that will permeate all the way into the software we write across the board, from operating systems to middleware to applications. This will be a deep-reaching fundamental, powerful, and beneficial change.

Endurance (cycles)	10	10-10	10	>10	10-10	10 :
3D capability	Yes	No	No	No	Yes	n/a

Fiber data transport

- Butter's Law
 - Fiber bandwidth doubles every 9 months
- Swift progression
 - 10 Mbit/sec, 100 Mbit/sec, 1 Gbit/sec, 10 Gbit/sec
 - Mass market soon 40 Gbit/sec, 100 Gbit/sec, 400 Gbit/sec
 - Theoretical limit ~ | Pbit/sec per optical mode
- 400GbE link tested Tokyo-Osaka
- Intercontinental undersea capacities rapidly rising into tens of Tbit/sec regime
 - e.g. Southern Cross 14 Tbit/sec into Australasia using 100 Gbit/sec links

Massively Parallel Computing

The Machine

"The Machine" Hewlett Packard

Performance estimates – transaction speed

What could you do with 168 GUPS?

RAPID DXP-1 RF Data

1 GSPS - Dual channel 16 bit IQ at 125 MHz final BW per channel DXP-1 = DAQ eXperiment Platform 1

RF from DXP-1 and SKALA Generation 1 Antenna 2 Gbyte / second limit from FPGA to CPU Digital downconverters and programmable FPGA filter bank Currently 8 or 16 bit output for one or two RF inputs

Field testing with first SKALA Generation 2 antennas in ~ 1 month Integrated unit prototypes soon to follow... Production system will record 1 to 2 Gbytes / second (TBD)

DAQ Unit

Highly Integrated Data Acquisition Unit (IP67 outdoor) Equivalent Functional Prototype for Testing and Evaluation Analog + ADC + FPGA (dual 14 bit ; > 1 GSPS) Integrated Intel DAQ Computer (Intel quad core) Dual RF inputs via N-connectors WiFi and internal ports (e.g. USB 3.0) for connection Hot swap SSD bay (2.5" drives) Thermal interface via vapor chamber heatplate Typical power draw during acquisition of ~ 30W peak

RAPID Antenna and LNA

SKALA Gen 1 – RAPID Alpha Array

Derived from SKA Log Periodic Antenna

Retains SKALA Design Electromagnetics Significant RAPID design contributions to SKA Alternate solar panel base structure Minor modifications for disassembly SKALA-R (RAPID variant)

LNA compatibility with SKALA

Switched LNA / Calibrator design for RAPID Low power high stability calibrator Integrated laboratory test points

Current VLBI Station

- VGOS system as a relevant example
- 12-meter antenna, ~2-14 GHz feed + receiver
- Multiple tunable bands within receiver range
- I GHz total bandwidth, dual-polarization, 8 Gbps
- Cost in \$5M range

2025 VLBI Station

- Smaller antenna (e.g. ATA style, 6 meters)
- Auxiliary antenna on bright source for coherence
- One or more wideband feeds
- Digitize full receiver range, of order 20 GHz
- Store and/or forward at 100+ Gbps
- Cost in \$1M range ??

2035 VLBI Station

- Broadband phased array
- Many beams limited only by digital capacity
- Trade aperture size against aperture re-use
- Digitize entire RF band
- Deep local memory and full connectivity
- Cost unclear ...

Broadband Phased Arrays

Frequency (GHz)

f (GHz)

Technically possible ...

- Large numbers of compact, inexpensive stations
- Full coherence, all frequencies, all the time
- Many independent beams all across the sky
- 10:1 frequency ratio or more, all frequencies all the time
- Continuous operation, extreme automation
- Full FoV correlation, archive, observing as a database query
- Al, machine learning, human-guided insight generation
- Science justification TBD (!)

Technically possible ...

- Large numbers of compact, inexpensive stations
- Full coherence, all frequencies, all the time
- Many independent beams all across the sky
- 10:1 frequency ratio or more, all frequencies all the time
- Continuous operation, extreme automation
- Full FoV correlation, archive, observing as a database query
- Al, machine learning, human-guided insight generation
- Science justification TBD (!)

Economically plausible ...

- Digital upgrades of all existing stations
- Many new, inexpensive stations
- Full coherence through auxiliary small dishes
- Processed RF bandwidths I0 GHz +
- Increased duty cycle, much better performance
- Advanced software of various types
- Limited major investment, leveraging of Moore's law
- Science case per unit cost can/should be strong

Economically plausible ...

- Digital upgrades of all existing stations
- Many new, inexpensive stations
- Full coherence through auxiliary small dishes
- Processed RF bandwidths I0 GHz +
- Increased duty cycle, much better performance
- Advanced software of various types
- Limited major investment, leveraging of Moore's law
- Science case per unit cost can/should be strong

Likely Reality

Likely Reality

The Challenge

- Can we converge on a vision for the future?
- Mutual benefit
 - Common vision and goals
 - Coordinated development and implementation
 - Demonstrable cost sharing and efficiency
 - Strength in unity when seeking money
- Modularity and interfaces dictate tracking latency

Shift the needle from "likely" toward "economically plausible"