Structure and dynamics of the Milky Way

Max-Planck-Institut für Radioastronomie Andreas Brunthaler

Radio continuum and line surveys

Astrometry of star forming regions

Current Radio Galactic Plane surveys:

- Co-Ordinated Radio 'N' Infrared Survey for High-mass star formation: CORNISH
 - C-band (old) VLA B-configuration (1.5" res.)
 - 10° < l < 65 °; |b| < 1°
 - 200 400 µJy sensitivity
 - 50 MHz bandwidth

- Methanol Multi beam survey: MMB
 - blind methanol maser survey with Parkes
 - -180° < l < 60°; |b| < 2°
 - ~170 mJy sensitivity
 - 0.11 km/s velocity resolution
 - also excited OH (6035 MHz)

The Jansky Very Large Array (VLA)

- much more powerful than old VLA
- Complete frequency coverage 1 50 GHz !
- Much higher bandwidth: 1, 2, or 8 GHz instead of 50 MHz
- New correlator: Up to 64 spectral lines simultaneously !
- New and more sensitive receivers !

GLOSTAR

- A VLA Galactic plane survey
- 2° x 1° fields
- in D-configuration and B-configuration
- ~ 750 pointings, 2 scans of ~ 11 seconds => 5 hours total time per conf.
- 2 GHz continuum (4.2-5.2 GHz & 5.9-6.9 GHz) => 40 µJy sensitivity
- 6.7 GHz methanol maser (0.18 km/s; 370 km/s) => 20 mJy sensitivity
- 4.8 GHz H₂CO absorption (0.25 km/s; 260 km/s) => 20 mJy sensitivity
- 7 RRLs (3-4 km/s; ~400 km/s) => 5 mJy sensitivity
- ~2.8 TB correlated data

K.M. Menten, A. Brunthaler, F. Wyrowski, C. Carrasco-Gonzales, T. Csengeri, J. Urquhart, B. Winkel (MPIfR); M.J. Reid, (CfA); J. Ott, M. Claussen (NRAO); J. Pandian (Hawaii); P. Hofner (NMT); H. Beuther (MPA); B. Cotton (NRAO)

- First part of Survey: 28° < I < 36°; |b| < 1°:
- D-configuration data

A VLA Galactic plane survey

- First part of Survey: 28° < I < 36°; |b| < 1°:
- D-configuration data

- Effelsberg single dish data for short spacings:
- 2° x 2° field, centered on G59.0+0.0 (HERSCHEL science demonstation field)

- Effelsberg single dish data for short spacings:
- Galactic Center region

<u>6.7 GHz methanol masers:</u>

- so far 116 detections (48 new) in first part of Survey: $28^{\circ} < I < 36^{\circ}$; $|b| < 1^{\circ}$:
- MMB finds 72 sources in comparable region (324° < I < 332°)
- luminosity function not consistent with single power law

- First part of Survey: 28° < I < 36°; |b| < 1°:
- D-configuration data: 4.8 GHz H₂CO absorption

16 detections

b (deg.)

• Full survey on "Global view of star formation" (GLOSTAR) underway now:

IRAS 60 μ m

Structure of the Milky Way

Going to the third dimension!

- Bar and Spiral Structure Legacy survey, a VLBA Key Science project
- ~ 5000 hours over 5 years
- ~ 400 more masers
- BeSSeL will yield accurate distances to most HMSFR, locate the spiral arms and the bar, measure R_0 and Θ_0 to ~1%, and measure the rotation curve.

M.J. Reid, T. Dame (CfA); K.M. Menten, A. Brunthaler, Y.K. Choi, M. Sato, B. Zhang, A. Sanna, Yuanwei Wu, Hu Bo, Jing Jing Li (MPIfR); . K. Rygl (INAF-IAPS); Y. Xu, X.W. Zheng (Nanjing); L. Moscadelli (Arcetri); G. Moellenbrock (NRAO) Bartkiewicz (Torun)); K. Hachisuka (Shanghai); H. van Langevelde (JIVE)

• Also first projects in southern hemisphere (Australian LBA, with S. Ellingsen)

VLBI Parallaxes: Example

VLBI Parallaxes: Example

Rygl et al. (2012)

Image: van Langevelde

Max-Planck-Institut Radioastronomie

• Results of parallaxes from VLBA, EVN & VERA:

- ~ 100 sources
- Arms assigned by CO I-v plot
- Tracing most spiral arms
- Inner, bar-region is complicated

Background: artist conception by Robert Hurt (NASA: SSC)

- Outer spiral arms: ~12° pitch angles
- Inner arms may have smaller pitch angels (need more observations)

- Until 2009, the Dehnen & Binney 1998 HIPPARCOS Solar motion of

 $U_0 = 10.00 \pm 0.36$ km/s (radially inwards), $V_0 = 5.25 \pm 0.62$ km/s (in the direction of Galactic rotation) and $W_0 = 7.17 \pm 0.38$ km/s (vertically upwards)

was widely accepted.

- Until 2009, the Dehnen & Binney 1998 HIPPARCOS Solar motion of

 $U_0 = 10.00 \pm 0.36$ km/s (radially inwards), $V_0 = 5.25 \pm 0.62$ km/s (in the direction of Galactic rotation) and $W_0 = 7.17 \pm 0.38$ km/s (vertically upwards)

was widely accepted.

In 2009, we published results from first 18 sources (Reid et al. 2009), finding that i) Galaxy rotates faster (254 ± 16 km/s) and ii) HMSFR rotate slower (~15 km/s) than Galaxy.

- Until 2009, the Dehnen & Binney 1998 HIPPARCOS Solar motion of

 $U_0 = 10.00 \pm 0.36$ km/s (radially inwards), $V_0 = 5.25 \pm 0.62$ km/s (in the direction of Galactic rotation) and $W_0 = 7.17 \pm 0.38$ km/s (vertically upwards)

was widely accepted.

- In 2009, we published results from first 18 sources (Reid et al. 2009), finding that i) Galaxy rotates faster (254 ± 16 km/s) and ii) HMSFR rotate slower (~15 km/s) than Galaxy.
- HIPPARCOS revisited: Schoenrich, Binney & Dehnen (2010) $U_0 = 11.1 \pm 2.0 \text{ k/ms}, V_0 = 12.2 \pm 2.1 \text{ km/s}, W_0 = 7.2 \pm 2.0 \text{ km/s}$
- Bovy et al. 2012 claim even higher value of $V_0 = 26 \pm 3$ km/s

- Until 2009, the Dehnen & Binney 1998 HIPPARCOS Solar motion of

 $U_0 = 10.00 \pm 0.36$ km/s (radially inwards), $V_0 = 5.25 \pm 0.62$ km/s (in the direction of Galactic rotation) and $W_0 = 7.17 \pm 0.38$ km/s (vertically upwards)

was widely accepted.

- In 2009, we published results from first 18 sources (Reid et al. 2009), finding that i) Galaxy rotates faster (254 ± 16 km/s) and ii) HMSFR rotate slower (~15 km/s) than Galaxy.
- HIPPARCOS revisited: Schoennich, Binney & Dehnen (2010) $U_0 = 11.1 \pm 2.0 \text{ k/ms}, V_0 = 12.2 \pm 2.1 \text{ km/s}, V_0 = 7.2 \pm 2.0 \text{ km/s}$
- Bovy et al. 2012 claim even higher value of $V_0 = 26 \pm 3$ km/s

<u>Method</u> /	R _o	Θ ₀	dΘ/dR	<v<sub>src></v<sub>	<u<sub>src></u<sub>	Θ ₀ /R ₀
Rotation Curve used	(kpc)	(km/s)	(km/s/kpc)	(km/s)	(km/s)	(km/s/kpc)

	<u>Method</u> /	R ₀	Θ ₀	dΘ/dR	<v<sub>src></v<sub>	<u<sub>src></u<sub>	Θ ₀ /R ₀
	Rotation Curve used	(kpc)	(km/s)	(km/s/kpc)	(km/s)	(km/s)	(km/s/kpc)
("Outlier-tolerant" Bayes	<u>ian fitting</u> : Prob	o(D _i M,σ _i) ∝	$(1 \square exp(- R_i^2))$	/2)) / R _i ²	where R _i	$= (D_i - M_i) / \sigma_i$
	All source > 4 kpc	8.20 ± 0.20	248 ± 9	-0.5 ± 0.6	-10 ± 7	3 ± 2	(30.2)
	Removing 15 outliers*	8.34 ± 0.16	240 ± 8	-0.2 ± 0.4	-7 ± 2	3 ± 2	(29.5)
	Θ_0 and R_0 now only we $\Theta_0 + V_{sun} = 255$ $V_{sun} - \langle V_{src} \rangle = 18$	akly correlated km/s km/s					

Notes:

*Assuming new Solar Motion component: V_{sun} = 12 km/s (Schœnrich et al 2010)

 $\langle V_{src} \rangle$ = average deviation from circular rotation of maser stars

 $<U_{src}>$ = average motion toward Galactic Center

 $\Theta_0/R_0 = 28.8 \pm 0.2$ km/s/kpc from proper motion of Sgr A* (Reid & Brunthaler 2004)

- Fitted different Galactic rotation models to 6d data
- Average motions: U_s= 5 \pm 3 km/s, V_s= -8 \pm 2 km/s

	IAU	Maser data	Independent Measurements
R ₀ [kpc]	8.5	8.34 ± 0.16	$\begin{array}{ll} 8.4 \pm 0.4 & (\text{Ghez et al. 2008}) \\ 8.33 \pm 0.35 & (\text{Gillessen et al. 2009}) \end{array}$
Θ_0 [km/s]	220	240 ± 8	239 ± 12
Θ_0/R_0 [km/s/kpc]	25.9	28.8	28.7 (Reid & Brunthaler 2004)

(Reid & Brunthaler 2004)

VLBI Astrometry in the Future

- VLBA (HSA) upgrade to 32 Gbps \Rightarrow 8 \times more sensitive than today
 - more target sources
 - more and closer calibrators
 - less systematic errors
- SKA: large field of view & sensitivity
 - several in-beam calibrators
 - systematic errors greatly reduced
 - astrometric accuracies of a few μas
 - parallaxes of ~ 1 μ as

- SKA mid will cover the important 6.7 GHz methanol maser line
 - even a 5% trigonometric parallax to single maser in the LMC possible
 - and a rotational parallax

VLBI Astrometry in the Future

• VLBA (HSA) upgrade to 32 Gbps \Rightarrow

sensitive than today

- more target sc
- more and clos
- less systemati
- SKA. I
 - 5
 - SYSL
 - astrom
 - parallax

Long baselines of a few 1000 km essential!

- ,5'
 - even a
 - and a rotation