Supernova factories in the centres of galaxies unveiled by the EVN

Miguel Pérez-Torres (torres@iaa.es) (IAA-ÇSIC,Granada) JIVE-ERIC Inaugural Symposium

This work wouldn't have been possible without the contribution of my colleagues.Thanks!

Antxon Alberdi Marco Bondi Rubén Herrero-Illana Antonis Polatidis Cristina Romero-Cañizales

JIVE-ERIC Inaugural Symposium

The hidden population of SNe in LIRGs

SFR density vs. redshift

Why do we need the EVN?

- Compact (<=200 pc), low-surface brightness central radio source
- Extended (>= Ikpc), bright-surface brightness circumnuclear region

- Higher angular-resolution needed
- Very high-sensitivity need

CCSNe as a direct SFR tracer in (U)LIRGs

M82 at cm wavelengths

- Stars with M >= 8 Msol yield CCSNe
- Optical searches are deemed to fail due to severe dust extinction.
- Radio emission is free from extinction effects => searches in radio for CCSNe more promising to yield true estimate of CCSN rates.
- CCSNe rate + IMF => direct measurement of current SFR

M82 - A Supernova Remnant Lab

- D = 3.5 Mpc
- I" ~ I7 pc
- $L_{fir} = 5.9 \times 10^{10} L_{sol}$
- CCSN rate ~ 2.7 x 10⁻¹² (L_{fir} / L_{sol})(Mattila & Meikle 2001) => SN rate = 0.16 SN/yr
- Radio observations yield SN rate = 0.1 SN/yr (Fenech+ 2008; Beswick+ 2006)

M82 at cm wavelengths

The prototypical ULIRG Arp 220

- D = 77 Mpc; I" ~ 370 pc
- $L_{fir} = 1.5 \times 10^{12} L_{sol} => CCSN Rate = 4 SN/yr$

The RSN factory in Arp 220

- •Large numbers of SNe and SNRs detected.
- •All Radio SNe are very bright => Type IIn SNe => very massive progenitors
- •Radio SN rate = 4 +/- 2 RSN/yr = Expected total CCSN rate!!

Large number of bright, Type IIn-like SNe => Top-heavy IMF!?

High-angular observations of Arp 299A • D = 45 Mpc; I" ~ 220 pc • $L_{fir} = 3 \times 10^{11} L_{sol} => CCSN Rate ~ 1 SN/yr$ 2.3 GHz (13 cm) Arp 299 Arp 299 814 nm 100 **A0** VLBA+GBT 2002Apr29 50 milliarcsec 0 -50 -100 20u 100 -100 -200 0 milliarcsec 2.3 GHz (13 cm) Arp 299 0.0 0 Arp 299 8.4 GHz (3.6 cm) 2.Ò 0.5 0.0 0.5 1.0 1.5 1.0 2.0 1.5 40 VLBA 40 VLBA + GBT В 30 30

10"

20

10

0

-10

-20

-30

-40

20

10

Peak = 3.04 mJy/beam

-10

0

milliarcsec

-20

milliarcsec

20

10

-20

-30

-40

Neff+2004 (Ap) milliarcsec

0

0

-20

 (\bigcirc)

A2-

milliarcsec 01-

> •Discovery of a recent, very bright RSN (A0; L(4cm) = 1.1 x 10²⁸ erg/s/Hz)

An extremely prolific SN factory in Arp 299-A revealed with the eEVN

 \star SNe and/or SNRs, likely embedded in SSCs.

- \star Evidence of recent RSNe (A0,A15 and A25), plus a possible microquasar (A6).
- \star These three RSN are relatively young, slowly evolving, long-lasting SNe.
- \star Moderate to high radio emission levels (typical of Type II SNe)

Pérez-Torres et al. (Letters to A&A, 2009)

High-angular radio as a tool to pinpoint AGNs. and individual SNe⁷SNRs.

- VLBI provides precise location of AGN (milliarcsecond resolution).
- Accurate quantification of AGN/SB contribution to total radio emission.
- AGNs show flat, or even inverted spectral index at radio wavelengths

 $S_{
u} \propto
u^{lpha}$ $\alpha \simeq 0.0$ (flat) $\alpha > 0.0$ (inverted)

AGNs show core-jet structure

210

100

-300

Pérez-Torres+2010 (Letters to A&A)

The Arp 299-A lab

- 26 sources detected
- 8 new ones
- Mixed population of CCSNe and SNRs
- Evidence for at least 2 recent SNe
- CCSN ~ 0.8 SN/yr
- Taking into account the other
 2 SNe that exploded in 2010
 => uncomfortably large CCSN
 rate for Arp 299-A
 => Top heavy IMF!?

Stacking of the 6-epochs of (e)EVN images (April 2008 through Nov 2010)

Bondi, Pérez-Torres et al. (A&A, 2012)

Radio light curves & spectra from SNe

Inverted spectra (alpha >> 0.0) suggest very recently exploded CCSNe. Steep (alpha << 0.0) suggest RSNe in their optically thin phase.

Source Spectra in Arp 299A

Evidence for RSNe in their optically thick phase (VERY YOUNG), as well as in their opt. thin phase (RELATIVELY YOUNG).

Arp 299A: Source classification and CCSN rate

- ~9 SNe
- 5 SNRs
- AGN + jet
- Microquasar (A6)
- 3 unclassified objects

• If t sn \sim 10 yr => CCSN rate ~ 0.9 SN/yr

2010

2010

2010

2010

2010

epoch

2011

2011

2011

2011

2011

• => Top-heavy IMF

The birth of a new core-collapse supernova - ERIC-A SN

Nov 2010

Jun 2012

Oct 2012

An extremely prolific SN factory in Arp 299A: The movie

Based on EVN & eEVN obs-ns @ 5 GHz

© Miguel Pérez-Torres (IAA-CSIC, Granada) Rubén Herrero-Illana (IAA-CSIC, Granada) Antxon Alberdi (IAA-CSIC, Granada) Marco Bondi (IRA-INAF, Bologna) Pérez-Torres et al. (2009, A&A Letters) Pérez-Torres et al. (2010, A&A Letters) Bondi, Pérez-Torres et al. (2012, A&A) Pérez-Torres et al. (tbs to A&A) The Arp 299-A starburst in context - Filling the gap between M82-like and Arp 220-like SBs

Luminosity - size relationship for Arp 299A

•Arp 299-A nicely fills the gap between M82 and Arp 220-like objects

LIRGI: eMERLIN Legacy Project

(http://www.lirgi.iaa.es) (PIs: John Conway & Miguel Pérez-Torres)

- Legacy survey observations of 42 of the most luminous northern LIRGs selected from IRAS (Sanders+ 2003)
- Sample spans the range of FIR luminosity from the upper end of LIRGs to ULIRGs
- Properties of LIRGI sources similar to SF-gals at high-z.
- Complementary to GOALS

SB-dominated (Early merger)

NGC 7469

Time

SB+AGN Intermediate-merger

SB 🔪 AGN 🖊

(Advanced merger)

Arp 299

IRAS 23365+3604

IC883

VLBI observations of local ULIRGs support a (U)LIRG/QSO evolutionary path (Yuan+2010)

Evidence of nuclear disks in starburst galaxies from their radial distribution of SNe

Fraction of (optically) missed SNe in Arp 299

VLBI observations allow to correct for the missing fraction of CCSNe in LIRGs/ ULIRGs

Arp 299 used as template for correct for missing fraction of SNe accross SF history

Bottom lines

Radio observations at the highest resolution and sensitivity are extremely useful to

- (i) discern SBs from AGNs in the innermost regions of (U)LIRGs,
- (ii) trace recent SFR activity, and
- (iii) unveil the hidden population of CCSN => true CCSN rates

Arp 299-A fills a gap between M82-like and Arp 220-like SBs

They seem to be the best testbed cases for studying in real-time SB factories in the central regions of U/LIRGs, and a VLBI radio monitoring of them must be supported.

VLBI radio searches on large samples needed to get meaningful statistical results.

