

erc

Image credit: Danielle Futselaar

UNIVERSITEIT VAN AMSTERDAM

University of Amsterdam & ASTRON - Netherlands Institute for Radio Astronomy

ason Hessels

Zooming in on fast radio bursts

What are FRBs observationally?

Cordes

Pulsars versus FRBs

Why important?

- Sites of extreme energy density. Important probes of extreme (astro)physics?
- New type of astrophysical object?
- Probes of intervening material.

Spitler, Cordes, Hessels et al. 2014

First non-Parkes FRB

FRB 12102: the Arecibo burst

 $DM_{FRB} = 3 \times DM_{Max Gal.}$

Scholz

FRB 121102: First repeating Fast Radio Burst!

(and still only known)

Spitler, Scholz, Hessels et al. 2016

Do they all have the same physical origin?

Dispersion removed

Why important?

Rules out a cataclysmic source (at least for this FRB)

versus

One-time-only explosion

Pulsar on steroids

Facilitates multi-wavelength follow-up

The need for localization

Chatterjee et al. 2017

0s of radio sources in an ultra-deep (10s of hrs) VLA image

Chatterjee et al. 2017

...and suddenly a burst (this is a 5-ms snapshot)

VLA localization

Chatterjee et al. 2017

 From previously stored baseband data EVN and VLBA show that radio source is compact

VLA localization

Association with persistent radio & optical sources

Host galaxy

Extragalactic nature confirmed: z = 0.193

- 25th mag., roughly
 100 million times
 fainter than the naked
 eye limit.
- Each burst (briefly) outshines all other stars in the galaxy!
- I 000× less massive than the Milky Way.

Relation to long GRBs and superluminous SNe?

Avoids the ambiguity in localizing a burst based on time coincidence with a multi-wavelength event

Keane et al. 2016

This is a direct localization, not an afterglow

Why zoom-in even further?

- Do the bursts come from exactly the position of the persistent radio source?
- What is their physical relation?
- Are the bursts coming from the center or the outskirts of the host galaxy?

Marcote et al. 2017

One bright & 3 weak bursts detected in a 2-hr observation

ACF in the frequency direction. Shows Galactic diffractive scintillation?

Arecibo+EVN detects a burst!

Marcote et al. 2017

Quantifying systematic errors on the position

Brightest FRB121102 burst seen by Arecibo+EVN

Arecibo+EVN localization

Marcote et al. 2017

Bursts and persistent radio source (coincident to within < 40 pc at IGpc) are physically related

Arecibo+EVN localization

Localization to ~ 10 mas

FRB 2 102 with HST

Clearly associated with a star-forming region

Bassa et al. 2017

EVN localization within galaxy is vital

Rotation measure of FRB 121102

(also shows that bursts are detectable at 5-10 GHz)

Variable rotation measure $\sim 140,000$ rad m⁻² in the source reference frame: Extreme and dynamic magneto-ionic Michilli, Seymour, Hessels et al. 2018

a dense nebula?

environment.

Persistent source a massive black hole or

Next step for EVN

Resolve the persistent source?

 5GHz EVN detection of persistent source (color map)

Prospects for EVN

- ASKAP, Apertif, UTMOST, etc per day thanks to CHIME, expected to increase to several Discovery rate of FRBs
- order of arcminutes. Discovery localizations on the
- follow-up instrument. EVN can be an important
- competitive discovery machine? Can EVN also be a

FRB follow-up with EVN

EVN can further differentiate between candidate persistent radio sources by finding the compact sources. (only ~20% of sub-mJy radio sources are compact on mas scales)

- Partly predicated on the assumption that other FRBs will repeat.
- All FRBs associated with a compact persistent source? These are relatively rare (e.g. Eftekhari et al. 2018).
- Need big dishes (Arecibo, Effelsberg, Lovell, GBT, FAST) and lots of smaller ones (instantaneous uv coverage).
- Rapid follow-up is best.

FRB follow-up with EVN

- recorder with coherent dedispersion. Ideally also use a local broadband pulsar Use biggest dish as a burst finder
- Use delay mapping to get from arcminute to 10s of mas before correlating at burst time(s).
- Image all VLA and ATCA point sources in error box to find potential persistent radio counterparts.

FRB121102 can be "blindly" localized in this way.

FRB discovery with EVN

But what about having the small EVN dishes continuously shadow Effelsberg PAF observations in order to provide direct localizations?

- EVN field-of-view is too small even for the small dishes and even in a "fly's eye" mode.
- Would require a major investment to equip ~10 dishes with focal plane arrays and the necessary real-time processing backends.
- Direct, precision localization is the goal. "Just finding" a new FRB is not so interesting anymore.

Summary

importance of VLBI for understanding FRBs (this was a pleasant surprise!). FRB | 2 | 102 demonstrates the

- Obtaining more precision localizations remains critical.
- With a modest investment, the EVN can be an important follow-up machine and enable precision burst localizations and identify potential persistent radio counterparts.
- would require a major investment and Discovering new FRBs with EVN

effort.

Wisest short-term investments

(in my opinion)

- around all > 0.1 mJy point sources. buffering individual telescope data and field-of-view (make EVN images imaging a large fraction of the primary Greatly expand the capacity for
- shadow an instrument capable of discovering FRBs at a reasonable rate Use the small dishes to continuously