Cas 2020 Virtual

European Astronomical Society Annual Meeting EWASS

SS16 Registering the Universe at the highest spatial accuracy (Re)solving the riddle about the size of GRB170817A through global VLBI observations ^{by}

Om Sharan Salafia

INAF – Osservatorio Astronomico di Brera, Milan, Italy INFN – Sezione di Milano-Bicocca, Milan, Italy

INFN

Intro: gravitational waves (GW)

["Gravitational Waves", artwork by Penelope Cowley]

 $\begin{array}{l} \mbox{Perturbations of space-time metric} \\ (a.k.a. gravity) \\ \rightarrow \mbox{ cause dilation/contraction} \\ ("strain") \mbox{perpendicular to propagation} \end{array}$

Produced by mass-energy distributions whose quadrupole moment accelerates

Quadrupole moment: $Q_{jk} = \int \rho x^j x^k dx$ Strain: $h_{jk} = \frac{2}{r} \frac{d^2 Q_{jk}}{dt^2}$

Propagate at c (experimentally!)

GW sources & detectors

• Continuous (e.g. rotating, asymmetric star)

eas

- Transient
 - Compact binary mergers
 - Supernovae
 - Other unknown "bursts"
- Stochastic background

LIGO-Virgo GW detections to date

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

- O1 & O2 (2015 2017)
 - \circ 10 BBH
 - 1 BNS (multi-messenger)

LIGO-Virgo GW detections to date

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

- O1 & O2 (2015 2017)
 - \circ 10 BBH
 - 1 BNS (multi-messenger)
- O3 (2019 2020)
 - 3 published events (all with far-reaching implications)
 - 56 public alerts issued
 - $\circ~$ interrupted due to Covid-19

The GW – Radio connection: an old liaison

• first observational support of GW: Hulse-Taylor pulsar (Taylor et al. 1975, 1979)

eas

The GW – Radio connection: an old liaison

[Artwork: David J. Champion]

- first observational support of GW: Hulse-Taylor pulsar (Taylor et al. 1975, 1979)
- pulsar timing arrays (Detweller 1979)

The GW – Radio connection: an old liaison

- first observational support of GW: Hulse-Taylor pulsar (Taylor et al. 1975, 1979)
- pulsar timing arrays (Detweller 1979)
- CMB polarization \rightarrow imprint of primordial GW

The GW – Radio connection: supermassive BH binaries

[Rodriguez et al. 2006]

VLBI observations

eas

best view on supermassive BH binary candidates & dual AGNs

 \rightarrow ultimate answer from LISA & SKA pulsar timing

GW170817 + GRB 170817A discovery

First ever GW+EM multimessenger event

eas

 ${\sf Close \ temporal + spatial \ association}$

Weak short GRB

Kilonova & host galaxy

[HST image - NASA/ESA/A.J.Levan/N.R.Tanvir/A.Fruchter/O. Fox]

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

First-ever kilonova identified \lesssim 12 h post-merger (Coulter et al. 2017)

Precise position \rightarrow host galaxy \rightarrow redshift

 \rightarrow multi-wavelength monitoring

Radio afterglow

Figure 4: Quasi-spherical ejecta models.

eas 2020 Virtual

Slowly brightening radio counterpart identified ~ 16 days post-merger in 3 GHz VLA obs (seen also in X-rays and later in Optical)

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

The successful jet/choked jet dichotomy

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

Breaking the degeneracy

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

GLOBAL VLBI observations

Our global VLBI array (P.I. G. Ghirlanda)

Image by Paul Boven (boven@plve.eu). Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visible/earth.nasa.gov).

$[{\sf Paul Boven (JIVE)} \ / \ {\sf NASA Visible Earth}]$

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

JIVE Support

16

[G. Ghirlanda, M. Leeuwinga & myself at JIVE]

Support in

- data access
- data reduction
- data analysis

plus: accommodation at the Astron guest house

Meanwhile: polarization inconclusive

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

Meanwhile: apparent superluminal motion

$$\begin{split} \Delta\theta &\sim 2.7\,\mathrm{mas}\\ \Delta t_\mathrm{obs} &\sim 155\,\mathrm{d}\\ d_\mathrm{L} &\sim 40\,\mathrm{Mpc} \end{split}$$

$$\rightarrow \beta_{\rm app} \sim 4$$

(yes, we've been scooped!)

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

Our result: unresolved source

19

Observed size $\theta_{\rm obs} < 2.5 \,{\rm mas}$

 $\begin{array}{l} \mbox{Predicted size} \\ \theta_{\rm choked} \gtrsim 3 \, {\rm mas} \\ \theta_{\rm success} \lesssim 2 \, {\rm mas} \end{array}$

 \rightarrow Jet!

[Ghirlanda, Salafia et al. 2019, Science]

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

\rightarrow constraint on Hubble constant

Fig. 2: Posterior distributions for H₀.

[Hotokezaka et al. 2019]

2020

eas

\rightarrow accretion-to-jet efficiency

[Salafia & Giacomazzo 2020, arXiv:2006.07376]

ightarrow universal SGRB jet structure? (1)

[Salafia et al. 2019, A&A 628, A18]

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A EUROPE

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

\rightarrow universal SGRB jet structure? (2)

[Salafia et al. 2020, A&A 636, A105]

Will we able to do it again?

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

- GW Radio Astronomy connection keeps producing great science (just a tiny part shown here)
- VLBI will have a leading role
- future "golden" events can unveil GRB and compact binary physics (see deluge of papers following GW/GRB 170817), and enhance standard-siren cosmology
- next sources may be even fainter! Looking forward to MeerKAT joining VLBI

Thank you!

Backup slides

Multi-wavelength lightcurve of the GRB 170817A afterglow

Constraints on the KN velocity distribution

Current, late-time monitoring disfavours very fast KN ejecta (but see Margalit & Piran 2020)

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

 Table 3
 Summary of a plausible observing schedule, expected sensitivities, and source localization with the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the detectors' commissioning progress

Epoch		2015-2016	2016-2017	2018-2019	2020+	2024+
Planned run duration		4 months	9 months	12 months	(per year)	(per year)
Expected burst range/Mpc	LIGO	40-60	60–75	75–90	105	105
	Virgo	-	20-40	40–50	40–70	80
	KAGRA	-	-	_	-	100
Expected BNS range/Mpc	LIGO	40-80	80-120	120-170	190	190
	Virgo	_	20-65	65-85	65-115	125
	KAGRA	_	_	_	_	140
Achieved BNS range/Mpc	LIGO	60-80	60-100	_	_	_
	Virgo	_	25-30	_	_	_
	KAGRA	-	-	_	-	-
Estimated BNS detections		0.05-1	0.2–4.5	1–50	4-80	11-180

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

The GW – Radio connection: stellar compact binary mergers (1) eas 2020

[[]Hansen & Lyutikov 2001]

32

Pre-merger

Interaction of magnetospheres

- \rightarrow dissipation of orbital (& possibly rotational) energy
 - \rightarrow possible coherent emission & reconnection events (FRB?)

(see also Lai 2012; Piro 2012; Palenzuela et al. 2013; Paschalidis et al. 2013; Ponce et al. 2014; Mezger & Zivancev 2016; Wang et al. 2016; Carrasco & Shibata 2020; Most & Philippov 2020)

The GW – Radio connection: stellar compact binary mergers (2) eas 2020

Post-merger

Fast ejecta produced in BNS and BHNS mergers: jet and dynamical ejecta

\rightarrow shock in ISM \rightarrow synchrotron emission

[Barbieri, Salafia et al. 2019]

Viewing angle probability

GW radiation pattern

Inclination probability

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

GW – GRB delay

35

[Salafia et al. 2018]

The missing afterglow

No X-ray afterglow identified during the first ~ 10 days \rightarrow on-axis jet & slightly off-axis uniform jet excluded

2020

Virtual

eas

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

What the heck is the "cocoon"?

Om S. Salafia – (Re)solving the riddle about the size of GRB170817A

Posterior on size (s_x, s_y) & total flux F exploiting:

- our peak flux measurement $F_{\rm p} = 42 \,\mu {\rm Jy}/{\rm beam}$
- the prior $F = 47 \pm 9 \,\mu \text{Jy}$ based on VLA high-sens. measurements
- knowledge of the noise

$$P(s_{\mathbf{x}}, s_{\mathbf{y}}, F \mid F_{\mathbf{p}}, \text{noise}) = \frac{P(F_{\mathbf{p}} \mid s_{\mathbf{x}}, s_{\mathbf{y}}, F, \text{noise})P(F)P(s_{\mathbf{x}}, s_{\mathbf{y}})}{P(F_{\mathbf{p}})}$$

How to compute $P(F_p | s_x, s_y, F, noise)$

2020

Virtual

eas

Result

